SUPPLEMENTAL TABLE 8: Model output of a multiple linear regression used
to explore how late hibernation body mass differed between caged and
free-flying bats in each of the two persisting sites.
ACKNOWLEDGEMENTS
We would like to thank several individuals for their invaluable
contributions to the field element of this study. From the New York
State Department of Environmental Conservation (NYDEC), we would like to
thank Amanda Bailey, Samantha Hoff, and Casey Pendergast. From the
Vermont Fish & Wildlife Department, we thank Kerry Monahan and Joel
Flewelling. Funding was provided by the joint NSF-NIH-NIFA Ecology and
Evolution of Infectious Disease award DEB-1911853 and Virginia Tech.
REFERENCES
1. Antolin, M. F., Gober, P., Luce, B., Biggins, D. E. & Van Pelt, W.
E. The Influence of Sylvatic Plague on North American Wildlife at the
The Influence of Sylvatic Plague on North American Wildlife at the
Landscape Level, with Special Emphasis on Black-footed Ferret and
Prairie Dog Conservation. US Fish Wildl. Publ. 57 ,
104–127 (2002).
2. LaDeau, S. L., Kilpatrick, A. M. & Marra, P. P. West Nile virus
emergence and large-scale declines of North American bird populations.Nature 447 , 710–713 (2007).
3. Langwig, K. E. et al. Sociality, density-dependence and
microclimates determine the persistence of populations suffering from a
novel fungal disease, white-nose syndrome. Ecol. Lett.15 , 1050–1057 (2012).
4. Mccallum, H. et al. Transmission dynamics of Tasmanian devil
facial tumor disease may lead to disease-induced extinction.Ecology 90 , 3379–3392 (2009).
5. Scheele, B. C. et al. Amphibian fungal panzootic causes
catastrophic and ongoing loss of biodiversity. Science (80-. ).363 , 1459–1463 (2019).
6. Van Riper III, C., Van Riper, S. G., Goff, M. L. & Laird, M. The
Epizootiology and Ecological Significance of Malaria in Hawaiian Land
Birds. Ecol. Monogr. 56 , 327–344 (1986).
7. de Castro, F. & Bolker, B. Mechanisms of disease-induced extinction.Ecol. Lett. 8 , 117–126 (2005).
8. Friedman, A. & Yakubu, A.-A. HOST DEMOGRAPHIC ALLEE EFFECT, FATAL
DISEASE, AND MIGRATION: PERSISTENCE OR EXTINCTION. SIAM J. Appl.
Math. 72 , 1644–1666 (2012).
9. Lande, R. Demographic Stochasticity and Allee Effect on a Scale with
Isotropic Noise. Oikos 83 , 353–358 (1998).
10. Brannelly, L. A. et al. Mechanisms underlying host
persistence following amphibian disease emergence determine appropriate
management strategies. Ecol. Lett. 24 , 130–148 (2021).
11. Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and
epizootic dynamics of the chytrid fungal pathogen of amphibians.Proc. Natl. Acad. Sci. 107 , 9695–9700 (2010).
12. Voyles, J. et al. Shifts in disease dynamics in a tropical
amphibian assemblage are not due to pathogen attenuation. Science
(80-. ). 359 , 1517–1519 (2018).
13. Scheele, B. C., Hunter, D. A., Skerratt, L. F., Brannelly, L. A. &
Driscoll, D. A. Low impact of chytridiomycosis on frog recruitment
enables persistence in refuges despite high adult mortality. Biol.
Conserv. 182 , 36–43 (2015).
14. Scheele, B. C. et al. After the epidemic: Ongoing declines,
stabilizations and recoveries in amphibians afflicted by
chytridiomycosis. Biol. Conserv. 206 , 37–46 (2017).
15. Epstein, B. et al. Rapid evolutionary response to a
transmissible cancer in Tasmanian devils. Nat. Commun.7 , 12684 (2016).
16. Lazenby, B. T. et al. Density trends and demographic signals
uncover the long-term impact of transmissible cancer in Tasmanian
devils. J. Appl. Ecol. 55 , 1368–1379 (2018).
17. Patton, A. H. et al. A transmissible cancer shifts from
emergence to endemism in Tasmanian devils. Science (80-. ).370 , eabb9772 (2020).
18. Hohenlohe, P. A. et al. Conserving adaptive potential:
lessons from Tasmanian devils and their transmissible cancer.Conserv. Genet. 20 , 81–87 (2019).
19. Woodworth, B. L. et al. Host population persistence in the
face of introduced vector-borne diseases: Hawaii amakihi and avian
malaria. Proc. Natl. Acad. Sci. 102 , 1531–1536 (2005).
20. Reichard, J. D. et al. Interannual Survival of Myotis
lucifugus (Chiroptera: Vespertilionidae) near the Epicenter of
White-Nose Syndrome. Northeast. Nat. 21 , N56–N59
(2014).
21. Frick, W. F. et al. Disease alters macroecological patterns
of North American bats. Glob. Ecol. Biogeogr. 24 ,
741–749 (2015).
22. Hoyt, J. R. et al. Environmental reservoir dynamics predict
global infection patterns and population impacts for the fungal disease
white-nose syndrome. Proc. Natl. Acad. Sci. 117 ,
7255–7262 (2020).
23. Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts
of white-nose syndrome on bats. Nat. Rev. Microbiol. 19 ,
1–15 (2021).
24. Langwig, K. E. et al. Drivers of variation in species impacts
for a multi-host fungal disease of bats. Philos. Trans. R. Soc. B
Biol. Sci. 371 , 20150456 (2016).
25. Samuel, M. D., Woodworth, B. L., Atkinson, C. T., Hart, P. J. &
LaPointe, D. A. Avian malaria in Hawaiian forest birds: Infection and
population impacts across species and elevations. Ecosphere6 , 1–21 (2015).
26. Scheele, B. C. et al. After the epidemic: Ongoing declines,
stabilizations and recoveries in amphibians afflicted by
chytridiomycosis. Biol. Conserv. 206 , 37–46 (2017).
27. Best, A., White, A. & Boots, M. Maintenance of host variation in
tolerance to pathogens and parasites. Proc. Natl. Acad. Sci.105 , 20786–20791 (2008).
28. Boots, M., Best, A., Miller, M. R. & White, A. The role of
ecological feedbacks in the evolution of host defence: what does theory
tell us? Philos. Trans. R. Soc. B 364 , 27–36 (2009).
29. Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the
face of parasites: a review of host tolerance. Zoology119 , 281–289 (2016).
30. Råberg, L., Sim, D. & Read, A. F. Disentangling Genetic Variation
for Resistance and Tolerance to Infectious Diseases in Animals.Science (80-. ). 318 , 812–814 (2007).
31. Råberg, L., Graham, A. L. & Read, A. F. Decomposing health:
tolerance and resistance to parasites in animals. Philos. Trans.
R. Soc. B Biol. Sci. 364 , 37–49 (2009).
32. Restif, O. & Koella, J. C. Concurrent Evolution of Resistance and
Tolerance to Pathogens. Am. Nat. 164 , E90–E102 (2004).
33. Roy, B. A. & Kirchner, J. W. Evolutionary Dynamics of Pathogen
Resistance and Tolerance. Evolution (N. Y). 54 , 51–63
(2000).
34. Voyles, J. et al. Shifts in disease dynamics in a tropical
amphibian assemblage are not due to pathogen attenuation. Science
(80-. ). 359 , 1517–1519 (2018).
35. Wilber, M. Q., Carter, E. D., Gray, M. J. & Briggs, C. J. Putative
resistance and tolerance mechanisms have little impact on disease
progression for an emerging salamander pathogen. Funct. Ecol.35 , 847–859 (2021).
36. Heard, G. W. et al. Refugia and connectivity sustain
amphibian metapopulations afflicted by disease. Ecol. Lett.18 , 853–863 (2015).
37. Mosher, B. A., Bailey, L. L., Muths, E. & Huyvaert, K. P.
Host–pathogen metapopulation dynamics suggest high elevation refugia
for boreal toads. Ecol. Appl. 28 , 926–937 (2018).
38. Schelkle, B. et al. Parasites pitched against nature: Pitch
Lake water protects guppies (Poecilia reticulata) from microbial and
gyrodactylid infections. Parasitology 139 , 1772–1779
(2012).
39. Springer, Y. P. Do extreme environments provide a refuge from
pathogens? A phylogenetic test using serpentine flax. Am. J. Bot.96 , 2010–2021 (2009).
40. Tobler, M., Schlupp, I., García De León, F. J., Glaubrecht, M. &
Plath, M. Extreme habitats as refuge from parasite infections? Evidence
from an extremophile fish. Acta Oecologica 31 , 270–275
(2007).
41. Zumbado-Ulate, H., Bolaños, F., Gutiérrez-Espeleta, G. &
Puschendorf, R. Extremely Low Prevalence of Batrachochytrium
dendrobatidis in Frog Populations from Neotropical Dry Forest of Costa
Rica Supports the Existence of a Climatic Refuge from Disease.Ecohealth 11 , 593–602 (2014).
42. Arthur, A., Ramsey, D. & Efford, M. Impact of bovine tuberculosis
on a population of brushtail possums (Trichosurus vulpecula Kerr) in the
Orongorongo Valley, New Zealand. Wildl. Res. 31 ,
389–395 (2004).
43. Lachish, S., McCallum, H. & Jones, M. Demography, disease and the
devil: Life-history changes in a disease-affected population of
Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol.78 , 427–436 (2009).
44. Mcdonald, J. L. et al. Demographic buffering and compensatory
recruitment promotes the persistence of disease in a wildlife
population. Ecol. Lett. 19 , 443–449 (2016).
45. Spitzen-Van Der Sluijs, A., Canessa, S., Martel, A. & Pasmans, F.
Fragile coexistence of a global chytrid pathogen with amphibian
populations is mediated by environment and demography. Proc. R.
Soc. B Biol. Sci. 284 , 20171444 (2017).
46. Fenton, A., Fairbairn, J. P., Norman, R. & Hudson, P. J. Parasite
transmission: reconciling theory and reality. J. Anim. Ecol.71 , 893–905 (2002).
47. Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host
abundance resulting from a new infectious disease. Proc. Natl.
Acad. Sci. 97 , 5303–5306 (2000).
48. Lloyd-Smith, J. O. et al. Should we expect population
thresholds for wildlife disease? Trends Ecol. Evol. 20 ,
511–519 (2005).
49. McCallum, H., Barlow, N. & Hone, J. How should pathogen
transmission be modelled? Trends Ecol. Evol. 16 ,
295–300 (2001).
50. Anderson, R. M. & May, R. M. Coevolution of hosts and parasites.Parasitology 85 , 411–426 (1982).
51. Boots, M., Hudson, P. J. & Sasaki, A. Large shifts in pathogen
virulence relate to host population structure. Science (80-. ).303 , 842–844 (2004).
52. CRESSLER, C. E., McLEOD, D. V., ROZINS, C., VAN DEN HOOGEN, J. &
DAY, T. The adaptive evolution of virulence: a review of theoretical
predictions and empirical tests. Parasitology 143 ,
915–930 (2016).
53. Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. Local
migration promotes competitive restraint in a host-pathogen ‘tragedy of
the commons’. Nature 442 , 75–78 (2006).
54. Levin, S. & Pimentel, D. Selection of Intermediate Rates of
Increase in Parasite-Host Systems. Am. Nat. 117 ,
308–315 (1981).
55. Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of
parasite virulence in a connected world. Nature 459 ,
983–986 (2009).
56. Lorch, J. M. et al. Experimental infection of bats with
Geomyces destructans causes white-nose syndrome. Nature480 , 376–379 (2011).
57. Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces
and allies reveals no close relatives of Pseudogymnoascus destructans,
comb. nov., in bat hibernacula of eastern North America. Fungal
Biol. 117 , 638–649 (2013).
58. Warnecke, L. et al. Inoculation of bats with European
Geomyces destructans supports the novel pathogen hypothesis for the
origin of white-nose syndrome. Proc. Natl. Acad. Sci.109 , 6999–7003 (2012).
59. Blehert, D. S. et al. Bat white-nose syndrome: An emerging
fungal pathogen? Science (80-. ). 323 , 227 (2009).
60. Langwig, K. E. et al. Host and pathogen ecology drive the
seasonal dynamics of a fungal disease, white-nose syndrome. Proc.
R. Soc. B 282 , 20142335 (2015).
61. Hoyt, J. R. et al. Cryptic connections illuminate pathogen
transmission within community networks. Nature 563 ,
710–713 (2018).
62. Langwig, K. E. et al. Mobility and infectiousness in the
spatial spread of an emerging fungal pathogen. J. Anim. Ecol.1–8 (2021) doi:10.1111/1365-2656.13439.
63. Frick, W. F. et al. An emerging disease causes regional
population collapse of a common North America bat species. Science
(80-. ). 329 , 679–682 (2010).
64. Fuller, N. W. et al. Disease recovery in bats affected by
white-nose syndrome. J. Exp. Biol. 223 , jeb211912
(2020).
65. Meteyer, C. U. et al. Recovery of Little Brown Bats (Myotis
Lucifugus) From Natural Infection With Geomyces Destructans, White-Nose
Syndrome. J. Wildl. Dis. 47 , 618–626 (2011).
66. Verant, M. L., Boyles, J. G., Waldrep Jr., W., Wibbelt, G. &
Blehert, D. S. Temperature-Dependent Growth of Geomyces destructans, the
Fungus That Causes Bat White-Nose Syndrome. PLoS One 7 ,
e46280 (2012).
67. Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of
Humidity on Development of Pseudogymnoascus destructans , the
Causal Agent of Bat White-Nose Syndrome. Northeast. Nat.24 , 54–64 (2017).
68. Grieneisen, L. E., Brownlee-Bouboulis, S. A., Johnson, J. S. &
Reeder, D. M. Sex and hibernaculum temperature predict survivorship in
white-nose syndrome affected little brown myotis (Myotis lucifugus).R. Soc. Open Sci. 2 , 140470 (2015).
69. Hopkins, S. R. et al. Continued preference for suboptimal
habitat reduces bat survival with white-nose syndrome. Nat.
Commun. 12 , 1–9 (2021).
70. Lilley, T. M., Anttila, J. & Ruokolainen, L. Landscape structure
and ecology influence the spread of a bat fungal disease. Funct.
Ecol. 32 , 2483–2496 (2018).
71. Dobony, C. A. et al. Little Brown Myotis Persist Despite
Exposure to White-Nose Syndrome. J. Fish Wildl. Manag.2 , 190–195 (2011).
72. Langwig, K. E. et al. Resistance in persisting bat
populations after white-nose syndrome invasion. Philos. Trans. R.
Soc. B 372 , 20160044 (2017).
73. Drees, K. P. et al. Phylogenetics of a fungal invasion:
origins and widespread dispersal of white-nose syndrome. MBio8 , e01941-17 (2017).
74. Palmer, J. M. et al. Molecular characterization of a
heterothallic mating system in Pseudogymnoascus destructans, the fungus
causing white-nose syndrome of bats. G3 Genes, Genomes, Genet.4 , 1755–1763 (2014).
75. Ren, P. et al. Clonal spread of Geomyces destructans among
bats, Midwestern and Southern United States. Emerg. Infect. Dis.18 , 883–885 (2012).
76. Hoyt, J. R. et al. Host persistence or extinction from
emerging infectious disease: insights from white-nose syndrome in
endemic and invading regions. Proc. R. Soc. B 283 ,
20152861 (2016).
77. Langwig, K. E. et al. Invasion dynamics of white-nose
syndrome fungus, midwestern United States, 2012–2014. Emerg.
Infect. Dis. 21 , 1023–1026 (2015).
78. Mcguire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose
syndrome increases torpid metabolic rate and evaporative water loss in
hibernating bats. Am. J. Physiol. Integr. Comp. Physiol.313 , R680–R686 (2017).
79. Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing
pathology of white-nose syndrome in bats suggests life-threatening
disruption of physiology. BMC Biol. 8 , 1–8 (2010).
80. Cryan, P. M. et al. Electrolyte Depletion in White-nose
Syndrome Bats. J. Wildl. Dis. 49 , 398–402 (2013).
81. Ehlman, S. M., Cox, J. J. & Crowley, P. H. Evaporative water loss,
spatial distributions, and survival in white-nose-syndrome-affected
little brown myotis: a model. J. Mammal. 94 , 572–583
(2013).
82. Verant, M. L. et al. White-nose syndrome initiates a cascade
of physiologic disturbances in the hibernating bat host. BMC
Physiol. 14 , 1–11 (2014).
83. Warnecke, L. et al. Pathophysiology of white-nose syndrome in
bats: a mechanistic model linking wing damage to mortality. Biol.
Lett. 9 , 20130177 (2013).
84. Willis, C. K. R., Menzies, A. K., Boyles, J. G. & Wojciechowski, M.
S. Evaporative Water Loss Is a Plausible Explanation for Mortality of
Bats from White-Nose. Integr. Comp. Biol. 51 , 364–373
(2011).
85. Hicks, A. C. et al. Environmental transmission of
Pseudogymnoascus destructans to hibernating little brown bats.bioRxiv (2021) doi:https://doi.org/10.1101/2021.07.01.450774.
86. Meteyer, C. U. et al. Histopathologic criteria to confirm
white-nose syndrome in bats. J. Vet. Diagnostic Investig.21 , 411–414 (2009).
87. Turner, G. G. et al. Nonlethal Screening of Bat-Wing Skin
With the Use of Ultraviolet Fluorescence To Detect Lesions Indicative of
White-Nose Syndrome. J. Wildl. Dis. 50 , 566–573 (2014).
88. Auteri, G. G. & Knowles, L. L. Decimated little brown bats show
potential for adaptive change. Sci. Rep. 10 , 1–10
(2020).
89. Gignoux-Wolfsohn, S. A. et al. Genomic signatures of
evolutionary rescue in bats surviving white-nose syndrome. Mol.
Ecol. In press , (2021).
90. Valerio Garcia, M., Carlos Monteiro, A., Juan Pablo Szabo, M.,
Prette, N. & Henrique Bechara, G. MECHANISM OF INFECTION AND
COLONIZATION OF RHIPICEPHALUS SANGUINEUS EGGS BY MERTARHIZIUM ANISOPLIAE
AS REVEALED BY SCANNING ELEcTRON MICROSCOPY AND HISTOPATHOLOGY.Brazilian J. Microbiol. 36 , 368–372 (2005).
91. Ment, D. et al. The effect of temperature and relative
humidity on the formation of Metarhizium anisopliae chlamydospores in
tick eggs. Fungal Biol. 114 , 49–56 (2010).
92. Ben-Hamo, M., Muñoz-Garcia, A., Williams, J. B., Korine, C. &
Pinshow, B. Waking to drink: rates of evaporative water loss determine
arousal frequency in hibernating bats. J. Exp. Biol.216 , 573–577 (2013).
93. Thomas, D. W. & Cloutier, D. Evaporative Water Loss by Hibernating
Little Brown Bats, Myotis lucifugus. Physiol. Zool. 65 ,
443–456 (1992).
94. Reeder, D. M. et al. Frequent arousal from hibernation linked
to severity of infection and mortality in bats with white-nose syndrome.PLoS One 7 , e38920 (2012).
95. Perry, R. W. A review of factors affecting cave climates for
hibernating bats in temperate North America. Environ. Rev.21 , 28–39 (2013).
96. Ryan, C. C., Burns, L. E. & Broders, H. G. Changes in underground
roosting patterns to optimize energy conservation in hibernating bats.Can. J. Zool. 97 , 1064–1070 (2019).
97. Boyles, J. G., Johnson, J. S., Blomberg, A. & Lilley, T. M. Optimal
hibernation theory. Mamm. Rev. 50 , 91–100 (2020).
98. Boyles, J. G., Boyles, E., Dunlap, R. K., Johnson, S. A. & Brack
Jr, V. Long-term microclimate measurements add further evidence that
there is no ‘optimal’ temperature for bat hibernation. Mamm.
Biol. 86 , 9–16 (2017).
99. McKenzie, J. M., Price, S. J., Connette, G. M., Bonner, S. J. &
Lorch, J. M. Effects of snake fungal disease on short‐term survival,
behavior, and movement in free‐ranging snakes. Ecol. Appl.31 , e02251 (2021).
100. Lorch, J. M. et al. Experimental Infection of Snakes with
Ophidiomyces ophiodiicola Causes Pathological Changes That Typify Snake
Fungal Disease. MBio 6 , e01534-15 (2015).
101. Burns, G., Ramos, A. & Muchlinski, A. Fever Response in North
American Snakes. Source J. Herpetol. 30 , 133–139
(1996).
102. Bell, G. Evolutionary rescue and the limits of adaptation.Philos. Trans. R. Soc. B Biol. Sci. 368 , 20120080
(2013).
103. Auteri, G. G. & Knowles, L. L. Decimated little brown bats show
potential for adaptive change. Sci. Rep. 10 , (2020).
104. Lilley, T. M. et al. Genome-Wide Changes in Genetic
Diversity in a Population of Myotis lucifugus Affected by White-Nose
Syndrome. Genes, Genomes, Genet. 10 , 2007–2020 (2020).
105. Felsenstein, J. THE THEORETICAL POPULATION GENETICS OF VARIABLE
SELECTION AND MIGRATION. Annu. Rev. Genet. 10 , 253–280
(1976).
106. García-Ramos, G. & Kirkpatrick, M. GENETIC MODELS OF ADAPTATION
AND GENE FLOW IN PERIPHERAL POPULATIONS. Evolution (N. Y).51 , 21–28 (1997).
107. Hendry, A. P., Day, T. & Taylor, E. B. Population mixing and the
adaptive divergence of quantitative traits in discrete populations: a
theoretical framework for empirical tests. Evolution (N. Y).55 , 459–466 (2001).
108. Wright, S. Evolution and the Genetics of Populations, Volume
2: The Theory of Gene Frequencies . (University of Chicago Press, 1969).
109. Johnson, L. N. L. et al. Population Genetic Structure Within
and among Seasonal Site Types in the Little Brown Bat (Myotis lucifugus)
and the Northern Long-Eared Bat (M. septentrionalis). PLoS One10 , e0126309 (2015).
110. Talbot, B., Vonhof, M. J., Broders, H. G., Fenton, M. B. &
Keyghobadi, N. Population structure in two geographically sympatric and
congeneric ectoparasites (Cimex adjunctus and cimex lectularius) in the
North American great lakes region. Can. J. Zool. 95 ,
901–907 (2017).
111. Talbot, B., Vonhof, M. J., Broders, H. G., Fenton, B. &
Keyghobadi, N. Range-wide genetic structure and demographic history in
the bat ectoparasite Cimex adjunctus. BMC Evol. Biol.16 , 1–13 (2016).
112. Burns, L. E., Frasier, T. R. & Broders, H. G. Genetic connectivity
among swarming sites in the wide ranging and recently declining little
brown bat (Myotis lucifugus). Ecol. Evol. 4 , 4130–4149
(2014).
113. Wilder, A. P., Kunz, T. H. & Sorenson, M. D. Population genetic
structure of a common host predicts the spread of white-nose syndrome,
an emerging infectious disease in bats. Mol. Ecol. 24 ,
5495–5506 (2015).
114. Davy, C. M., Martinez-Nunez, F., Willis, C. K. R. & Good, S. V.
Spatial genetic structure among bat hibernacula along the leading edge
of a rapidly spreading pathogen. Conserv. Genet. 16 ,
1013–1024 (2015).
115. Miller-Butterworth, C. M., Vonhof, M. J., Rosenstern, J., Turner,
G. G. & Russell, A. L. Genetic Structure of Little Brown Bats (Myotis
lucifugus) Corresponds with Spread of White-Nose Syndrome among
Hibernacula. J. Hered. 105 , 354–364 (2014).
116. Price, S. J. et al. Effects of historic and projected
climate change on the range and impacts of an emerging wildlife disease.Glob. Chang. Biol. 25 , 2648–2660 (2019).
117. Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. &
Harvell, C. D. Climate Change and Infectious Diseases: From Evidence to
a Predictive Framework. Science (80-. ). 341 , 514–519
(2013).
118. Parratt, S. R., Numminen, E. & Laine, A.-L. Infectious Disease
Dynamics in Heterogeneous Landscapes. Annu. Rev. Ecol. Evol.
Syst. 47 , 283–306 (2016).
119. Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., Mccallum, H. I.
& Briggs, C. J. Integral Projection Models for host-parasite systems
with an application to amphibian chytrid fungus. Methods Ecol.
Evol. 7 , 1182–1194 (2016).
120. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic
variation. Trends Ecol. Evol. 23 , 38–44 (2008).
121. Wolinska, J. & King, K. C. Environment can alter selection in
host–parasite interactions. Trends Parasitol. 25 ,
236–244 (2009).
122. Muller, L. K. et al. Bat white-nose syndrome: a real-time
TaqMan polymerase chain reaction test targeting the intergenic spacer
region of Geomyces destructans . Mycologia 105 ,
253–259 (2013).
123. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting
linear mixed-effects models using lme4. J. Stat. Softw.67 , 1–48 (2015).