REFERENCES
  1. Jin Y, Yang H, Ji, W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses . 2020;12:372.
  2. Sidiq Z, Hanif M, Dwivedi KK, Chopra KK. Benefits and limitations of serological assays in COVID-19 infection. Indian J Tuberc . 2020;67:S163-S166.
  3. Venter M, Richter K. Towards effective diagnostic assays for COVID-19: a review. J Clin Pathol . 2020;73:370-377.
  4. Albert E, Torres I, Bueno F, et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin Microbiol Infect . 2021;27: 472.e7-472.e10.
  5. Farias LPG, Fonseca EKUN, Strabelli DG, et al. Imaging findings in COVID-19 pneumonia. Clinics (Sao Paulo) . 2020;75:e2027.
  6. Halacli B, Kaya A, Topeli A. Critically-ill COVID-19 patient.Turk J Med Sci . 2020;50:585-591.
  7. Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations.Lancet Respir Med . 2020;8:506-517.
  8. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med . 2020;58:1021-1028.
  9. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500-510.
  10. Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning-based artificial intelligence in tumor pathology.Cancer Commun (Lond) . 2020;40:154-166.
  11. Alakus TB, Turkoglu I. Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals . 2020;140:110120.
Table 1 . Patients’ demographic data with respect to thoracic CT involvement