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Abstract. In this paper, we use the concept of q-calculus in geometric function theory. For some α, α ∈ [0, 1), we

consider normalized analytic functions f such that f ′(z)/dqf(z) lies in half-plane {w : Re w > α} for all z, |z| < 1.
Here dq is the Jackson q-derivative operator well-known in the q-calculus theory. The paper is devoted to the coefficient

problems of such functions for real and for complex numbers q. Coefficient bounds are of particular interest, because

of them some geometrical properties of the function can be obtained.

1. Introduction

Quantum calculus (q-calculus) began with Frank Hilton Jackson in the early twentieth century and aroused the
interest of many researchers as the relationship between mathematics and physics. It has many applications in
various areas of mathematics such as number theory, combinatorics, orthogonal polynomials or basic hypergeometric
functions. In geometric function theory, q-calculus is used to study q-analogs of subclasses of analytic functions.
Researchers use operators of q-calculus to define and analyze subclasses of analytic functions. Finding estimates
of function coefficients is particularly important because it reveals the geometric properties of these functions. For
example, estimating a second function coefficient in the class of univalent functions gives the growth and the distortion
properties. Coefficient problems for functions belonging to classes related to q-theory of functions are discussed, for
instance, in [1, 2, 6, 7, 8, 11, 12, 13, 14, 15].

In the sequel we will use the following well-known definitions and notations. Let C be the open complex plane and
D be the unit disc, D := {z ∈ C : |z| < 1} . Let H denote the class of analytic functions in D. Let A be the subclass
of H consisting of functions normalized by f(0) = 0, f ′(0) = 1, i.e.

(1.1) f(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Jackson in [4, 5] introduced and studied the q-derivative (q-difference operator), 0 ≤ q ≤ 1, as

(1.2) dqf(z) =

 (f(qz)− f(z)) /(qz − z) when z 6= 0, 0 ≤ q < 1,
f ′(0) when z = 0,
f ′(z) when q = 1.

Thus, from (1.2) for a function f given by (1.1) we have

(1.3) dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1, where [n]q =

n−1∑
k=0

qk, n = 2, 3, . . . .

We have also

(1.4) dqf(z) =
1

z
{f(z) ∗ hq(z)} =

1

z

{
f(z) ∗ z

(1− qz)(1− z)

}
,

where ∗ denotes the convolution or Hadamard product of power series. For the generalization of Jackson’s q-derivative,
instead of a real number q we may consider a complex number ζ, |ζ| ≤ 1. Namely, in [9] the following generalization
of (1.4) for ζ ∈ C, |ζ| ≤ 1 was defined

(1.5) dζf(z) =
1

z
{f(z) ∗ hζ(z)} =

1

z

{
f(z) ∗ z

(1− ζz)(1− z)

}
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(see also [10]). The above function hζ has the form

hζ(z) =
z

(1− ζz)(1− z)
=

∞∑
n=1

[n]ζz
n, z ∈ D, where

[n]ζ =

n−1∑
k=0

ζk =
1− ζn

1− ζ
, n = 2, 3, . . .

and it is starlike for all complex numbers ζ, |ζ| ≤ 1. It is easy to check that if ζ = 1, then the function hζ becomes
the well-known Koebe function

h1(z) =
z

(1− z)2
=

∞∑
n=1

nzn, z ∈ D.

Making use of the operator dζ defined in (1.5), we introduce the subclass R(ζ, α) of the class A for 0 ≤ α < 1.
Definition. Let f ∈ A. For a given complex number ζ, |ζ| ≤ 1, we say that f is in the class R(ζ, α), 0 ≤ α < 1, if

(1.6) Re

{
f ′(z)

dζf(z)

}
> α, z ∈ D,

where the operator dζ is defined in (1.5).
Remark 1. It is easy to see that R(1, α) = A.
Remark 2. For the function h(z) = z/(1− z), we have

Re

{
h′(z)

dζh(z)

}
= Re

{
1− ζz
1− z

}
>

1 + |ζ|
2

, z ∈ D,

so for a given ζ, |ζ| ≤ 1, the function h ∈ R(ζ, (1 + |ζ|)/2).
Remark 3. For f given by (1.1) condition (1.6) becomes

(1.7) Re

{
1 +

∑∞
n=2 nanz

n−1

1 +
∑∞
n=2[n]ζanzn−1

}
> α, z ∈ D.

In this paper we discuss the coefficients problems in the class R(ζ, α) for real and for complex ζ.

2. Coefficient bounds in the class R(ζ, α)

Theorem 2.1. Assume that |ζ| ≤ 1 and α ∈ [0, 1). If f is given by (1.1) and belongs to the class R(ζ, α), then

(2.1) |ak|2 ≤
1

|k − [k]ζ |2
k−1∑
n=1

{
|(1− 2α)[n]ζ + n|2 − |n− [n]ζ |2

}
|an|2

for all k = 2, 3, . . . .

Proof. We have
f ′(z)

dζf(z)
=

1 + (1− 2α)w(z)

1− w(z)

for some w ∈ H such that |w(z)| < 1 in D, w(0) = 0. This gives

∞∑
n=1

nanz
n−1 −

∞∑
n=1

[n]ζanz
n−1 = w(z)

{
(1− 2α)

∞∑
n=1

[n]ζanz
n−1 +

∞∑
n=1

nanz
n−1

}
with a1 = 1. Therefore, we can write

k∑
n=1

(n− [n]ζ)anz
n−1 +

∞∑
n=k+1

bnz
n−1 = w(z)

k−1∑
n=1

{(1− 2α)[n]ζ + n} anzn−1

for some bn, k + 1 ≤ n, where bn can be expressed in terms of the coefficients of f and w. This gives∣∣∣∣∣
k∑

n=1

(n− [n]ζ)anz
n−1 +

∞∑
n=k+1

bnz
n−1

∣∣∣∣∣
2

=

∣∣∣∣∣w(z)

k−1∑
n=1

{(1− 2α)[n]ζ + n} anzn−1

∣∣∣∣∣
2

≤

∣∣∣∣∣
k−1∑
n=1

{(1− 2α)[n]ζ + n} anzn−1

∣∣∣∣∣
2

,(2.2)

where
k∑

n=1

(n− [n]ζ)anz
n−1 +

∞∑
n=k+1

bnz
n−1 :=

∞∑
n=1

dnz
n
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is an analytic function in the unit disc. Making use of the known formula (see, for instance [3])∫ 2π

0

∣∣∣∣∣
∞∑
n=1

dn(reiθ)n

∣∣∣∣∣
2

dθ = 2π

∞∑
n=1

|dn|2r2n

and integrating on z = reiθ, 0 < r < 1, 0 ≤ θ < 2π, both sides of (2.2), we obtain

k∑
n=1

|n− [n]ζ |2|an|2r2(n−1) +

∞∑
n=k+1

|bn|2r2(n−1) ≤
k−1∑
n=1

|(1− 2α)[n]ζ + n|2 |an|2r2(n−1)

which upon letting r → 1 gives

k∑
n=1

|n− [n]ζ |2 |an|2 ≤
k−1∑
n=1

|(1− 2α)[n]ζ + n|2 |an|2

and this leads to the desired result (2.1). �

Corollary 2.2. Assume that |ζ| ≤ 1 and α ∈ [0, 1). If f is given by (1.1) and belongs to the class R(ζ, α), then

(2.3) |a2| ≤
2(1− α)

|1− ζ|
.

The result is sharp.

Proof. From Theorem 2.1, we have (2.1) for k = 2:

|a2|2 ≤
1

|2− [2]ζ |2
{
|(1− 2α)[1]ζ + 1|2 − |1− [1]ζ |2

}
|a1|2 =

|2− 2α|2

|1− ζ|2
.

To show that (2.3) is sharp we will show that the function

(2.4) fζ(z) = z +
2(1− α)

1− ζ
z2 + · · · =

∞∑
k=1

ckz
k,

where

(2.5) c1 = 1, ck =

∏k−1
n=1{(1− 2α)[n]ζ + n}∏k

n=2{n− [n]
ζ
}

, k = 2, 3, . . .

is in the class R(ζ, α). From (2.5), we obtain

(2.6) ck = ck−1
(1− 2α)[k − 1]ζ + (k − 1)

k − [k]ζ
, k = 2, 3, . . . .

Therefore

lim
k→∞

∣∣∣∣ ckck−1

∣∣∣∣ = lim
k→∞

∣∣∣∣ (1− 2α)[k − 1]ζ + k − 1

k − [k]ζ

∣∣∣∣ = 1

hence the series (2.4) converges in D. Relation (2.6) implies that

ckz
k−1 = ck−1z

k−1 (1− 2α)[k − 1]ζ + (k − 1)

k − [k]ζ
, k = 2, 3, . . .

or that

{k − [k]ζ} ckzk−1 = ck−1z
k−1 {(1− 2α)[k − 1]ζ + (k − 1)} , k = 2, 3, . . . .

This gives
∞∑
k=1

{k − [k]ζ} ckzk−1 =

∞∑
k=2

ck−1 {(1− 2α)[k − 1]ζ + (k − 1)} zk−1

or
∞∑
k=1

kckz
k−1 −

∞∑
k=1

[k]ζckz
k−1 = z

{
(1− 2α)

∞∑
k=1

[k]ζckz
k−1 +

∞∑
k=1

kckz
k−1

}
which is equivalent to

f ′ζ(z)− dζfζ(z) = z
{

(1− 2α)dζfζ(z) + f ′ζ(z)
}
.

This may be rewritten in the form
f ′ζ(z)

dζfζ(z)
=

1 + (1− 2α)z

1− z
,

which proves that fζ ∈ R(ζ, α). �
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If we try to use Theorem 2.1 to find bounds for |a3|, there is a problem. This is because applying formula (2.1)
gives

|a3|2 ≤

{
|(1− 2α)[1]ζ + 1|2 − |1− [1]ζ |2

}
|a1|2

|3− [3]ζ |2
+

{
|(1− 2α)[2]ζ + 2|2 − |2− [2]ζ |2

}
|a2|2

|3− [3]ζ |2

=
4(1− α)2

|2− ζ − ζ2|2
+

{
|(1− 2α)(1 + ζ) + 2|2 − |1− ζ|2

}
|a2|2

|2− ζ − ζ2|2
(2.7)

and the expression
{
|(1− 2α)(1 + ζ) + 2|2 − |1− ζ|2

}
has not established sign for complex numbers ζ. In general, the

formula (2.1) contains

{
|(1− 2α)[n]ζ + n|2 − |n− [n]ζ |2

}
which my be negative or nonnegative. Some difficulties follows also from the complicated formulas for real and
imaginary parts of [n]ζ . Namely, for ζ = ρeiα, we have

Re{[n]ζ} = 1 + ρ cosα+ . . .+ ρn−1 cos(n− 1)α =
1− ρ cosα− ρn cosnα+ ρn+1 cos(n− 1)α

1− 2ρ cosα+ ρ2

and

Im{[n]ζ} = ρ sinα+ . . .+ ρn−1 sin(n− 1)α =
ρ sinα− ρn sinnα+ ρn+1 sin(n− 1)α

1− 2ρ cosα+ ρ2
.

These difficulties does not occur in the case when ζ is a real number. For this reason, in the next results, we consider
real q instead of complex ζ.

Lemma 2.3. Assume that q ∈ (0, 1] and α ∈ [0, 1). If f is given by (1.1) and belongs to the class R(q, α), then we
have the following coefficient relations

1

|k − [k]q|2
k−1∑
n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2 ≤

∏k−1
n=1 |(1− 2α)[n]q + n|2∏k

n=2 |n− [n]q|2
(2.8)

for all k = 2, 3, . . . .

Proof. For k = 2 we have

1

|2− [2]q|2
1∑

n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2 =

|(1− 2α)[1]q + 1|2

|2− [2]q|2

=

∏1
n=1 |(1− 2α)[n]q + n|2∏2

n=2 |n− [n]q|2
.

Now, assume that (2.8) holds for integer s, s ≥ 2. It is easy to see that

|(1− 2α)[s]q + s|2 − |s− [s]q|2 ≥ 0
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for all integer s, s ≥ 2. From this and from (2.1), we obtain

1

|(s+ 1)− [s+ 1]q|2
s∑

n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2

=

∑s−1
n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2 +

{
|(1− 2α)[s]q + s|2 − |s− [s]q|2

}
|as|2

|(s+ 1)− [s+ 1]q|2

≤

∑s−1
n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2

|(s+ 1)− [s+ 1]q|2

+

{
|(1− 2α)[s]q + s|2 − |s− [s]q|2

}
|(s+ 1)− [s+ 1]q|2

∑s−1
n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2

|s− [s]q|2

=
|(1− 2α)[s]q + s|2

|(s+ 1)− [s+ 1]q|2

∑s−1
n=1

{
|(1− 2α)[n]q + n|2 − |n− [n]q|2

}
|an|2

|s− [s]q|2

≤ |(1− 2α)[s]q + s|2

|(s+ 1)− [s+ 1]q|2

∏s−1
n=1 |(1− 2α)[n]q + n|2∏s

n=2 |n− [n]q|2

=

∏s
n=1 |(1− 2α)[n]q + n|2∏s+1

n=2 |n− [n]q|2
.

Therefore, by the induction, (2.8) holds for all k = 2, 3, . . . . �

Theorem 2.4. Assume that q ∈ (0, 1] and α ∈ [0, 1). If f is given by (1.1) and belongs to the class R(q, α), then

(2.9) |ak| ≤
∏k−1
n=1 ((1− 2α)[n]q + n)∏k

n=2 (n− [n]q)

for all k = 2, 3, . . . . The result is sharp.

Proof. From inequalities (2.1) and (2.8), we immediately get that (2.9) holds in the class R(q, α). To show that (2.9)
is sharp, it is enough to prove that the function gq such that

(2.10) gq(z) =

∞∑
k=1

bkz
k, b1 = 1, bk =

∏k−1
n=1{(1− 2α)[n]q + n}∏k

n=2{n− [n]q}
, k = 2, 3, . . .

is in the class R(q, α). From (2.10), we obtain recurrence relation

(2.11) (k − [k]q)bk = {(1− 2α)[k − 1]q + k − 1} bk−1, k = 2, 3, . . . .

Because

lim
k→∞

∣∣∣∣ bkbk−1

∣∣∣∣ = lim
k→∞

∣∣∣∣ (1− 2α)[k − 1]q + k − 1

k − [k]q

∣∣∣∣ = 1,

hence the series (2.10) converges in D. Condition (2.11) implies that

∞∑
n=1

nbnz
n−1 −

∞∑
n=1

[n]qbnz
n−1 =

{
(1− 2α)

∞∑
n=1

[n]qbnz
n +

∞∑
n=1

nbnz
n

}
or that

g′q(z)− dqgq(z) = z(1− 2α)dqgq(z) + zg′q(z).

From this, we have
g′q(z)

dqgq(z)
=

1 + (1− 2α)z

1− z
,

which proves that gq ∈ R(q, α). �

We have proved Theorem 2.1 for a complex parameter ζ, while Theorem 2.4 only for a real parameter q. It is
because of difficulties with a complex version of Lemma 2.3.
Open problem. Does the bound (2.9) hold when q is a complex number?

This question can be written in the following conjecture.
Conjecture. Assume that |ζ| ≤ 1 and α ∈ [0, 1). If f is given by (1.1) and belongs to the class R(ζ, α), then

(2.12) |ak| ≤
∏k−1
n=1 |(1− 2α)[n]ζ + n|∏k

n=2

∣∣n− [n]
ζ

∣∣ , k = 2, 3, . . . .
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From Corollary 2.2, for k = 2 the bound (2.12) holds and is sharp. If ζ is a real number, then the bound (2.12)
holds and is sharp by Theorem 2.4.

3. Conclusion

In the geometric function theory, the q-derivative allows us to extend the well-known classes of analytic functions.
If in the definition of the class of functions we replace the derivative f ′ of the function f by the q-derivative dqf ,
we get the generalization of this class. In this way, many new classes of functions have been created recently. In
this paper, using convolution and taking complex numbers q, we have defined a certain operator that can be called a
generalization of Jackson’s derivative. Then using this operator, we have defined the new class of functions. For this
newly-defined class, we have discussed the coefficient problems and we have set an open problem to solve.
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