References
Albery G.F., Kirkpatrick L., Firth J.A., Bansal S. (2021) Unifying spatial and social network analysis in disease ecology. Journal of Animal Ecology 90:45-61. DOI: https://doi.org/10.1111/1365-2656.13356.
Altizer S., Nunn C.L., Thrall P.H., Gittleman J.L., Antonovics J., Cunningham A.A., Dobson A.P., Ezenwa V., Jones K.E., Pedersen A.B. (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annual Review of Ecology, Evolution, and Systematics 34:517-547.
Andrzejewski R., Jezierski W. (1978). Management of a wild boar population and its effects on commercial land. Acta Theriologica 23:309-339.
Archie E.A., Moss C.J., Alberts S.C. (2006) The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proceedings of the Royal Society B: Biological Sciences 273:513-522. DOI: 10.1098/rspb.2005.3361.
Archie E.A., Hollister-Smith J.A., Poole J.H., Lee P.C., Moss C.J., Maldonado J.E., Fleischer R.C., Alberts S.C. (2007) Behavioural inbreeding avoidance in wild African elephants. Molecular Ecology 16:4138-4148. DOI: 10.1111/j.1365-294X.2007.03483.x.
Bartoń K., 2020: MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn
Bates, D., M. Maechler, B. Bolker, S. Walker, 2015: Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 1-48. DOI: 10.18637/jss.v067.i01
Benton C.H., Delahay R.J., Robertson A., McDonald R.A., Wilson A.J., Burke T.A., Hodgson D. (2016) Blood thicker than water: kinship, disease prevalence and group size drive divergent patterns of infection risk in a social mammal. Proceedings of the Royal Society of London B: Biological Sciences 283. DOI: 10.1098/rspb.2016.0798.
Biosa D., Grignolio S., Sica N., Pagon N., Scandura M., Apollonio M. (2015) Do relatives like to stay closer? Spatial organization and genetic relatedness in a mountain roe deer population. Journal of Zoology:n/a-n/a. DOI: 10.1111/jzo.12214.
Blanchong J.A., Scribner K.T., Kravchenko A.N., Winterstein S.R. (2007) TB-infected deer are more closely related than non-infected deer. Biology Letters 3:104-106. DOI: doi:10.1098/rsbl.2006.0547.
Blome S., Gabriel C., Beer M. (2013) Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173:122-130. DOI: http://dx.doi.org/10.1016/j.virusres.2012.10.026.
Carter K.D., Seddon J.M., Frère C.H., Carter J.K., Goldizen A.W. (2013) Fission–fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Animal Behaviour 85:385-394. DOI: 10.1016/j.anbehav.2012.11.011.
Chenais E., Ståhl K., Guberti V., Depner K. (2018) Identification of Wild Boar–Habitat Epidemiologic Cycle in African Swine Fever Epizootic. Emerging Infectious Diseases 24:810-812. DOI: 10.3201/eid2404.172127.
Cukor J., Linda R., Václavek P., Mahlerová K., Šatrán P., Havránek F. (2020) Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transboundary and Emerging Diseases 67(3): 1068-1073.
Delahay R.J., Langton S., Smith G.C., Clifton-Hadley R.S., Cheeseman C.L. (2000) The spatio-temporal distribution of Mycobacterium bovis (bovine tuberculosis) infection in a high-density badger population. Journal of Animal Ecology 69:428-441. DOI: https://doi.org/10.1046/j.1365-2656.2000.00406.x.
Dellicour S., Desmecht D., Paternostre J., Malengreaux C., Licoppe A., Gilbert M., Linden A. (2020) Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. Journal of Applied Ecology 57:1619-1629. DOI: 10.1111/1365-2664.13649.
Dougherty E.R., Seidel D.P., Carlson C.J., Spiegel O., Getz W.M. (2018) Going through the motions: incorporating movement analyses into disease research. Ecology Letters 21:588-604. DOI: https://doi.org/10.1111/ele.12917.
Fischer M., Hühr J., Blome S., Conraths F.J., Probst C. (2020) Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV “Estonia 2014” Isolate. Viruses 12:1118.
Gabor T.M., Hellgren E.C., Van den Bussche R.A., Silvy N.J. (1999) Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. Journal of Zoology 247:311-322. DOI: 10.1111/j.1469-7998.1999.tb00994.x.
Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., Pridotkas G., Fernandez-Pinero J., Briones V., Arias M. (2017) Experimental Infection of Domestic Pigs with African Swine Fever Virus Lithuania 2014 Genotype II Field Isolate. Transboundary and Emerging Diseases 64:300-304. DOI: 10.1111/tbed.12346.
Grear D.A., Samuel M.D., Scribner K.T., Weckworth B.V., Langenberg J.A. (2010) Influence of genetic relatedness and spatial proximity on chronic wasting disease infection among female white-tailed deer. Journal of Applied Ecology 47:532-540. DOI: 10.1111/j.1365-2664.2010.01813.x.
Goudet J. (1995). fstat (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485-486.
Hirsch B.T., Prange S., Hauver S.A., Gehrt S.D. (2013) Genetic relatedness does not predict racoon social network structure. Animal Behaviour 85:463-470. DOI: http://dx.doi.org/10.1016/j.anbehav.2012.12.011.
Hoffman J.I., Forcada J., Trathan P.N., Amos W. (2007) Female fur seals show active choice for males that are heterozygous and unrelated. Nature 445:912-914. DOI: 10.1038/nature05558.
Kaminski G., Brandt S., Baubet E., Baudoin C. (2005) Life-history patterns in female wild boars (Sus scrofa): mother-daughter postweaning associations. Canadian Journal of Zoology 83:474-480. DOI: 10.1139/z05-019.
Keuling O., Lauterbach K., Stier N., Roth M. (2010) Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research 56:159-167. DOI: 10.1007/s10344-009-0296-x.
Lange M., Thulke H.-H. (2016) Elucidating transmission parameters of African swine fever through wild boar carcasses by combining spatio-temporal notification data and agent-based modelling. Stochastic Environmental Research and Risk Assessment:1-13. DOI: 10.1007/s00477-016-1358-8.
Manly B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology. 2nd edn. London: Chapman and Hall.
Mejía-Salazar M.F., Goldizen A.W., Menz C.S., Dwyer R.G., Blomberg S.P., Waldner C.L., Cullingham C.I., Bollinger T.K. (2017) Mule deer spatial association patterns and potential implications for transmission of an epizootic disease. Plos One 12:e0175385.
Morelle K., Jezek M., Licoppe A., Podgorski T. (2019) Deathbed choice by ASF-infected wild boar can help find carcasses. Transboundary and Emerging Diseases 66:1821-1826. DOI: 10.1111/tbed.13267.
Morelle K., Bubnicki J., Churski M., Gryz J., Podgórski T., Kuijper D.P.J. (2020) Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Frontiers in Veterinary Science 7. DOI: 10.3389/fvets.2020.00378.
Nakagawa S., Johnson P.C.D., Schielzeth H. (2017) The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface 14:20170213. DOI: doi:10.1098/rsif.2017.0213.
Nurmoja I., Schulz K., Staubach C., Sauter-Louis C., Depner K., Conraths F.J., Viltrop A. (2017) Development of African swine fever epidemic among wild boar in Estonia - two different areas in the epidemiological focus. Scientific Reports 7:12562. DOI: 10.1038/s41598-017-12952-w.
Peakall R., Smouse P. E. (2006). genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288-295.
Pepin K.M., VerCauteren K.C. (2016) Disease-emergence dynamics and control in a socially-structured wildlife species. Scientific Reports 6:25150. DOI: 10.1038/srep25150
Pepin K.M., Golnar A., Podgórski T. (2021) Social structure defines spatial transmission of African swine fever in wild boar. Journal of The Royal Society Interface 18:20200761. DOI: doi:10.1098/rsif.2020.0761.
Pepin K.M., Golnar A.J., Abdo Z., Podgórski T. (2020) Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecology and Evolution 10:2846-2859. DOI: 10.1002/ece3.6100.
Pepin K.M., Davis A.J., Beasley J., Boughton R., Campbell T., Cooper S.M., Gaston W., Hartley S., Kilgo J.C., Wisely S.M., Wyckoff C., VerCauteren K.C. (2016) Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7:e01230. DOI: 10.1002/ecs2.1230.
Pietschmann J., Guinat C., Beer M., Pronin V., Tauscher K., Petrov A., Keil G., Blome S. (2015) Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology 160:1657-1667. DOI: 10.1007/s00705-015-2430-2.
Podgorski T., Bas G., Jedrzejewska B., Sonnichsen L., Sniezko S., Jedrzejewski W., Okarma H. (2013) Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. Journal of Mammalogy 94:109-119. DOI: 10.1644/12-mamm-a-038.1.
Podgórski T., Śmietanka K. (2018) Do wild boar movements drive the spread of African Swine Fever? Transboundary and Emerging Diseases 65:1588-1596. DOI: doi:10.1111/tbed.12910.
Podgórski T., Scandura M., Jędrzejewska B. (2014a) Next of kin next door – philopatry and socio-genetic population structure in wild boar. Journal of Zoology 294:190-197. DOI: 10.1111/jzo.12167.
Podgórski T., Apollonio M., Keuling O. (2018) Contact rates in wild boar populations: Implications for disease transmission. The Journal of Wildlife Management 82:1210-1218. DOI: doi:10.1002/jwmg.21480.
Podgórski T., Borowik T., Łyjak M., Woźniakowski G. (2020) Spatial epidemiology of African swine fever: Host, landscape and anthropogenic drivers of disease occurrence in wild boar. Preventive Veterinary Medicine 177:104691. DOI: https://doi.org/10.1016/j.prevetmed.2019.104691.
Podgórski T., Lusseau D., Scandura M., Sönnichsen L., Jędrzejewska B. (2014b) Long-Lasting, Kin-Directed Female Interactions in a Spatially Structured Wild Boar Social Network. Plos One 9:e99875.
Poteaux C., Baubet E., Kaminski G., Brandt S., Dobson F.S., Baudoin C. (2009) Socio-genetic structure and mating system of a wild boar population. Journal of Zoology 278:116-125. DOI: 10.1111/j.1469-7998.2009.00553.x.
Prévot C., Licoppe A. (2013) Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium. European Journal of Wildlife Research 59:1-9. DOI: 10.1007/s10344-013-0732-9.
Probst C., Globig A., Knoll B., Conraths F.J., Depner K. (2017) Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. Royal Society Open Science 4:170054. DOI: 10.1098/rsos.170054.
Probst C., Gethmann J., Amendt J., Lutz L., Teifke J. P., Conraths F. J. (2020) Estimating the Postmortem Interval of Wild Boar Carcasses. Veterinary Sciences 7:6.
Queller D.C., Goodnight K.F. (1989). Estimating realtedness using genetic markers. Evolution 43:258-275. DOI: https://doi.org/10.1111/j.1558-5646.1989.tb04226.x.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Raymond M., Rousset F. (1995). Population genetics software for exact tests and ecumenicism. Journal of Heredity. 86, 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
Rice W. (1989). Analysing tables of statistical tests. Evolution 43, 223-225.
Riley S. (2007) Large-Scale Spatial-Transmission Models of Infectious Disease. Science 316:1298-1301. DOI: 10.1126/science.1134695.
Sah P., Mann J., Bansal S. (2018) Disease implications of animal social network structure: A synthesis across social systems. Journal of Animal Ecology 87:546-558. DOI: https://doi.org/10.1111/1365-2656.12786.
Taylor R.A., Podgórski T., Simons R.R.L., Ip S., Gale P., Kelly L.A., Snary E.L. (2021) Predicting spread and effective control measures for African swine fever—Should we blame the boars? Transboundary and Emerging Diseases 68:397-416. DOI: https://doi.org/10.1111/tbed.13690.
Vander Wal E., Paquet P.C., AndrÉS J.A. (2012) Influence of landscape and social interactions on transmission of disease in a social cervid. Molecular Ecology 21:1271-1282. DOI: 10.1111/j.1365-294X.2011.05431.x.
VanderWaal K.L., Ezenwa V.O. (2016) Heterogeneity in pathogen transmission: mechanisms and methodology. Functional Ecology 30:1606-1622. DOI: https://doi.org/10.1111/1365-2435.12645.
Woźniakowski G., Kozak E., Kowalczyk A., Łyjak M., Pomorska-Mól M., Niemczuk K., Pejsak Z. (2016) Current status of African swine fever virus in a population of wild boar in eastern Poland (2014-2015). Archives of Virology 161:189-195. DOI: 10.1007/s00705-015-2650-5.
Yang A., Schlichting P., Wight B., Anderson W.M., Chinn S.M., Wilber M.Q., Miller R.S., Beasley J.C., Boughton R.K., VerCauteren K.C., Wittemyer G., Pepin K.M. (2020) Effects of Social Structure and Management on Risk of Disease Establishment in Wild Pigs. Journal of Animal Ecology n/a. DOI: https://doi.org/10.1111/1365-2656.13412.
Zuur A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M. (2009) (Eds.) Mixed Effects Models and Extensions in Ecology with R. 574 pp. Springer-Verlag New York.
Table 2. Coefficients of the models explaining variation in ASF infection risk. Each model is formulated to test predictions of the hypothesis H3 outlined in Table 1 (model 1 and 2: P3.1; model 3: P3.2; model 4: P3.3.