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Abstract

This paper is concerned with a nonlocal dispersal susceptible–infected–recovered (SIR) epidemic
model adopted with the mass action infection mechanism. We mainly study the existence and
non-existence of traveling waves connecting the infection-free equilibrium state and the endemic
equilibrium state. The main difficulties lie in the fact that the semiflow generated here does
not admit the order-preserving property. Meanwhile, this new model brings some new challenges
due to the unboundedness of the nonlinear term. We overcome these difficulties to obtain the
boundedness of traveling waves with the speed c > cmin by some analysis techniques firstly and
then prove the existence of traveling waves by employing Lyapunov–LaSalle theorem and Lebesgue
dominated convergence theorem. By utilizing a approximating method, we study the existence of
traveling waves with the critical wave speed cmin. Our results on this new model may provide some
implications on disease modelling and controls.
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1. Introduction

In this paper, we investigate the following nonlocal dispersal SIR epidemic model with the
mass action infection mechanism:

∂

∂t
S(x, t) = dS(J1 ∗ S(x, t)− S(x, t)) + Λ− µS(x, t)− βS(x, t)I(x, t), (1.1)

∂

∂t
I(x, t) = dI(J2 ∗ I(x, t)− I(x, t))− µI(x, t) + βS(x, t)I(x, t)− γI(x, t), (1.2)

∂

∂t
R(x, t) = dR(J3 ∗R(x, t)−R(x, t)) + γI(x, t)− µR(x, t), (1.3)

where x ∈ R, t > 0 and dS , dI , dR, Λ, β, µ, γ are the positive constants. Here S(x, t), I(x, t)
and R(x, t) stand for the densities of susceptible, infective and removed individuals at position
x and time t, respectively. The parameters dS , dI , dR describe the spatial motility of each
class; the constant Λ > 0 represents the entering flux of the susceptible; γ > 0 is the recovery
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rate of the infective population; µ is a positive parameter representing the death rates for all
the susceptible, the infective, and the removed population. Moreover, Ji(y)(i = 1, 2, 3) denotes

the probability distribution of dispersal over distance y, J1 ∗ S(x, t) =

∫
R
J1(x − y)S(y, t)dy is

the rate at which the susceptible individuals are arriving at position x from all other places and

−S(x, t) =

∫
R
J1(x − y)S(x, t)dy is the rate at which they are leaving location x to travel to all

other sites. Thus, J1 ∗S(x, t)−S(x, t) can be interpreted as that the rate of susceptible individuals
at position x at time t depends on the influence of neighboring S(x, t) at all other positions y.
Simultaneously, J2 ∗ I(x, t) − I(x, t) and J3 ∗ R(x, t) − R(x, t) describe that the rates of infected
and removed individuals at position x at time t depend on the influence of neighboring I(x, t)
and R(x, t) at all other positions y, respectively. Meanwhile, throughout this paper, we give the
following assumptions on the kernel functions Ji:

(J) Ji ∈ C1(R), Ji(y) = Ji(−y) ≥ 0,

∫
R
Ji(y)dy = 1 and Ji is compactly supported, i = 1, 2, 3.

In the study of population dynamics and disease propagation, the reaction-diffusion equations
are often used to describe biological or physical evolution process. Since traveling wave solutions
can successfully predict several diseases spread, for example, see [2], the investigations on travel-
ing wave solutions for epidemic models with the random diffusion are attracting more and more
attention, see [4, 15, 19]. Nevertheless, these disease models may underestimate speeds of disease
propagation. Lutscher et al. [25] introduced integral operators instead of Laplacian operators
to solve such problems. Also, the nonlocal dispersal is better described as a long range process
rather than as a local one in many situations such as in population ecology, materials science,
phase transition, genetics, neurology and epidemiology. We can refer to [6, 8, 9, 42, 43, 44] for
more results on traveling wave solutions of the nonlocal dispersal problems. In modelling disease
dynamics, an infection mechanism needs to be assumed and adopted. There are various infection
mechanisms, such as the mass action βSI, see [26, 31], standard incidence mechanisms βSI/N ,
see [14] and saturated incidence mechanisms βIS

1+ζI , see [5, 15, 16, 39, 40], where β, ζ are positive
constants. Here, in this paper, we mainly consider the mass action infection mechanisms. We can
refer to [1, 3, 18, 20, 23, 24, 30, 41] for more details about the other infection mechanisms and the
nonlinear incidence rates.

Hosono and Ilyas [17] considered the Kermack-McKendrick equations

∂

∂t
S(x, t) = d1

∂2

∂x2
S(x, t)− βS(x, t)I(x, t), (1.4)

∂

∂t
I(x, t) = d2

∂2

∂x2
I(x, t) + βS(x, t)I(x, t)− γI(x, t), (1.5)

∂

∂t
R(x, t) = d3

∂2

∂x2
R(x, t) + γI(x, t), (1.6)

where x ∈ R, t > 0 and di is the rate of diffusion of each sub-population, i = 1, 2, 3. By using the
Schauder fixed point theorem, they proved the existence of traveling wave solution of this system
when d1 = 1. Moreover, they verified that for βS0 > γ and c > cmin := 2

√
d2(βS0 − γ), the

system (1.4)–(1.5) admits a traveling wave solution (S(x+ ct), I(x+ ct)) satisfying the boundary
conditions S(+∞) = S∞, S(−∞) = S0, S0 > S∞ and I(±∞) = 0. More works, we refer to
[5, 27, 32, 34, 35, 44].

Recently, Chen et al. [7] considered the following lattice dynamical system

dSn
dt

= (Sn+1 − 2Sn + Sn−1) + µ− µSn − βSnIn, n ∈ Z, (1.7)
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dIn
dt

= (In+1 − 2In + In−1)− µIn + βSnIn − γIn, n ∈ Z. (1.8)

They proved that for c ≥ cmin, there exists a bounded traveling wave solution (S(x+ ct), I(x+ ct))
of the system (1.7)–(1.8) such that 0 < S(·) < 1 and I(·) > 0 in R. Moreover, it holds

0 < lim inf
ξ→+∞

S(ξ) ≤ s∗ ≤ lim sup
ξ→+∞

S(ξ) < 1 and 0 < lim inf
ξ→+∞

I(ξ) ≤ i∗ ≤ lim sup
ξ→+∞

I(ξ) < +∞, (1.9)

where (s∗, i∗) the endemic equilibrium state. On the other hand, if c < cmin, there exists no
bounded traveling wave solution (S(x+ ct), I(x+ ct)) of the system (1.7)–(1.8). For more discrete
epidemic model, we refer to [12, 36].

Li et al. [22] investigated a nonlocal dispersal delayed SIR model with constant external
supplies and Holling-II incidence rate

∂

∂t
S(x, t) = d1(J ∗ S(x, t)− S(x, t)) +B − σS(x, t)− βS(x, t)I(x, t− τ)

1 + αI(x, t− τ)
, (1.10)

∂

∂t
I(x, t) = d2(J ∗ I(x, t)− I(x, t)) +

βS(x, t)I(x, t− τ)

1 + αI(x, t− τ)
− (µ+ γ)I(x, t), (1.11)

∂

∂t
R(x, t) = d3(J ∗R(x, t)−R(x, t)) + γI(x, t)− µR(x, t), (1.12)

where x ∈ R, t > 0 and τ > 0 is the time delay. By using Schauder fixed point theorem with upper-
lower solutions and employing the Lyapunov method, they obtained the existence of traveling
waves of the subsystem (1.10)–(1.11) for β > µ + γ and c > cmin. Meanwhile, when c = cmin,
by a limiting approach, the existence of traveling waves with exact asymptotic boundary behavior
is obtained. The non-existence of traveling wave solution for the subsystem (1.10)–(1.11) is also
established when 0 < c < cmin or β ≤ µ+ γ. More studies on SIR model of the same structure as
(1.10)–(1.12), we refer to [11, 22, 38].

Since equation (1.3) is decoupled with equations (1.1)–(1.2), we only consider subsystem (1.1)
and (1.2). Note that the corresponding ordinary differential equations of subsystem (1.1)–(1.2)
always has a disease-free equilibrium E0 = (Λ/µ, 0) and a unique endemic equilibrium E∗ = (s∗, i∗)
if the basic reproduction number R0 = βΛ

µ(µ+γ) > 1, where

s∗ =
µ+ γ

β
and i∗ =

βΛ− µ(µ+ γ)

β(µ+ γ)
.

A traveling wave solution of subsystem (1.1) and (1.2) is a special solution with the type

(S(x+ ct), I(x+ ct)) = (S(ξ), I(ξ)), ξ = x+ ct, (1.13)

where the parameter c is called the wave speed. Our aim is to study the traveling wave solutions
for subsystem (1.1) and (1.2) connecting E0 and E∗. Substituting (1.13) into (1.1) and (1.2), we
deduce the following wave profile system

cS′(ξ) = dS (J1 ∗ S(ξ)− S(ξ)) + Λ− µS(ξ)− βS(ξ)I(ξ), (1.14)

cI ′(ξ) = dI (J2 ∗ I(ξ)− I(ξ)) + βS(ξ)I(ξ)− (µ+ γ)I(ξ). (1.15)

Thus, the traveling wave solution of subsystem (1.1) and (1.2) connecting E0 and E∗ is a special
solution (S(ξ), I(ξ)) satisfying (1.14)–(1.15) and the asymptotic boundary conditions

lim
ξ→−∞

(S(ξ), I(ξ)) = (Λ/µ, 0), lim
ξ→+∞

(S(ξ), I(ξ)) = (s∗, i∗). (1.16)

Now, we state our main result on the existence and non-existence of traveling waves for the
system (1.1) and (1.2) in the following theorem.
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Theorem 1.1. There exists a positive constant cmin such that if R0 > 1 and c ≥ cmin, then the sys-
tem (1.14)–(1.15) has a nonnegative solution (S, I) satisfying the asymptotic boundary conditions
(1.16). Furthermore,

(i) 0 < S(·) < Λ/µ and 0 < I(·) < +∞ in R.
(ii) As ξ → −∞, I(ξ) = O(eλ1ξ) if c > cmin and I(ξ) = O(eλ0ξ) if c = cmin.

If R0 > 1 and c ∈ (−∞, 0)∪(0, cmin), then there exists no nonnegative solution (S, I) of the system
(1.14)–(1.15) satisfying the asymptotic boundary conditions (1.16).

We point out that unlike in (1.10)–(1.12), the adoption of the mass action in (1.10)–(1.12)
makes the analysis more difficult and challenging than the analysis of (1.10)–(1.12) on the above
mentioned topics. For example, it can be easily to obtain the uniformly boundedness of I by
constructing a bounded upper solution of (1.10)–(1.12) while the upper solution for I in our
new model is unbounded and make the problem more complicated. Moreover, the Holling-II
incidence term I/(1+αI) assumes bounded infection force while the mass action term βSI implies
a unbounded infection force. Compared with the results in [7], we successfully obtain the existence
of the limits limξ→+∞ S(ξ) and limξ→+∞ I(ξ). On the other hand, our model (1.1)–(1.2) is more
complicated due to the effect of the nonlocal dispersal. Let us mention some main methods used in
the investigation of the existence of traveling wave solutions, such as, monotone iteration coupled
with upper-lower solutions [37], the general theory of traveling waves for monotone semiflows [21],
the geometric singular perturbation method [28], the shooting method [10] and connection index
theory [13]. Unfortunately, the lost of order-preserving property for system (1.1)–(1.2) makes these
classic methods fail to apply. Inspired by the work of [7, 36, 45], we construct an invariant cone
in a large but bounded domain with the initial functions being defined well and apply Schauder
fixed point theorem on this cone. Then, by passing to the unbounded domain with a limiting
argument, we have successfully obtained the existence of nontrivial traveling wave solutions of the
system (1.1)–(1.2). Here, we overcome some difficulties to give the boundedness of I by some
technical analysis. We should point out that the exact boundary behavior of S(ξ) and I(ξ) at
ξ = +∞ is obtained by Lyapunov–LaSalle invariance principle. Generally, the critical wave plays
a more important role than the non-critical waves in determining the evolution dynamics of the
system (1.1)–(1.2). By the approximating method, we also obtain the existence of traveling wave
solutions with the critical wave speed cmin for the system (1.1)–(1.2). Here, the difficulty is how
to prove the asymptotic boundary behavior of I at −∞. Finally, we make full use of the structure
of the system (1.1)–(1.2) and give the proof of the non-existence of traveling wave solutions when
c ∈ (−∞, 0) ∪ (0, cmin).

The organization of this paper is as follows. In Section 2, we first prove some useful lemmas,
which will be used in the proof of our main result. Then, we consider the boundedness of component
I. Finally, we establish the existence of traveling wave solutions of the system (1.1)–(1.2) for
c > cmin. Section 3 is devoted to the existence of critical waves of the system (1.1)–(1.2). In Section
4, we obtain the nonexistence of traveling wave solutions. The paper ends with the simulation and
a brief discussion in Section 5.

2. Existence of traveling wave solutions for c > cmin

Throughout this section, we always assume that R0 := βΛ
µ(µ+γ) > 1. Linearizing (1.15) at the

disease-free equilibrium E0 = (Λ/µ, 0) yields a corresponding characteristic equation as follows

f(λ, c) = dI

(∫
R
J2(y)e−λydy − 1

)
− cλ+ β

Λ

µ
− µ− γ.

By a direct calculation, utilizing (J), we obtain

f(0, c) = βΛ/µ− µ− γ > 0, f(λ,+∞) = −∞ for λ > 0,
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∂f(λ, c)

∂c
= −λ < 0 for λ > 0,

∂f(λ, c)

∂λ

∣∣∣
λ=0

= −c < 0,
∂2f(λ, c)

∂λ2
= dI

∫
R
J2(y)y2e−λydy > 0.

Lemma 2.1. Suppose that R0 := βΛ
µ(µ+γ) > 1. Then there exist two positive constants cmin and λ0

such that

f (λ0, cmin) = 0 and
∂

∂λ
f (λ0, cmin) = 0.

Furthermore, if 0 < c < cmin, then f (λ, c) > 0 for all λ > 0; if c > cmin, then f (λ, c) = 0 has
two positive real roots λ1 := λ1(c) and λ2 := λ2(c) with 0 < λ1 < λ0 < λ2 and f (λ, c) > 0 for
λ ∈ (0, λ1) ∪ (λ2,+∞); f (λ, c) < 0 for λ ∈ (λ1, λ2).

Next, we always assume that c > cmin in this section. Define

S(ξ) : =
Λ

µ
, S(ξ) := max

{
Λ

µ
− σeεξ, 0

}
,

I(ξ) : = eλ1ξ, I(ξ) := max
{

eλ1ξ −Me(λ1+η)ξ, 0
}
,

where ξ ∈ R and M,σ, ε and η are four positive constants to be determined in the following lemma.

Lemma 2.2. It holds that

cS
′
(ξ) ≥ dS(J1 ∗ S(ξ)− S(ξ)) + Λ− µS(ξ)− βS(ξ)I(ξ). (2.1)

The proof is trivial and omitted.

Lemma 2.3. The function I(ξ) = eλ1ξ satisfies

cI
′
(ξ) ≥ dI(J2 ∗ I(ξ)− I(ξ)) + βS(ξ)I(ξ)− (µ+ γ)I(ξ) (2.2)

for any ξ ∈ R.

Proof. It follows from the definition of I(ξ) that

dI(J2 ∗ I(ξ)− I(ξ))− cI ′(ξ) + βS(ξ)I(ξ)− (µ+ γ)I(ξ)

=eλ1ξ

[
dI

(∫
R
J2(y)e−λ1ydy − 1

)
− cλ1 +

βΛ

µ
− µ− γ

]
=eλ1ξf(λ1, c) = 0.

This finishes the proof.

Lemma 2.4. Let ε ∈ (0, λ1) be sufficiently small. Then, the function S(ξ) = max
{

Λ
µ − σeεξ, 0

}
satisfies

cS′(ξ) ≤ dS(J1 ∗ S(ξ)− S(ξ)) + Λ− µS(ξ)− βS(ξ)I(ξ) (2.3)

for any ξ 6= ξ1 := 1
ε ln Λ

σµ and σ > Λ
µ large enough.

Proof. When ξ ≥ ξ1, then the inequality (2.3) holds immediately because S(ξ) = 0 on [ξ1,+∞).
When ξ < ξ1, then

S(ξ) =
Λ

µ
− σeεξ and I(ξ) = eλ1ξ. (2.4)

It follows that

dS (J1 ∗ S(ξ)− S(ξ))− cS′(ξ) + Λ− µS(ξ)− βS(ξ)I(ξ)
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≥dS
(
−
∫
R
J1(y)σeε(ξ−y)dy + σeεξ

)
+ cσεeεξ + µσeεξ − β

(
Λ

µ
− σeεξ

)
eλ1ξ

≥eεξ
{
σ

[
−dS

(∫
R
J1(y)e−εydy − 1

)
+ cε+ µ

]
− βΛ

µ
e(λ1−ε)ξ

}
. (2.5)

Noting that

lim
ε→0

[
−dS

(∫
R
J1(y)e−εydy − 1

)
+ cε+ µ

]
= µ > 0,

we have for sufficiently small ε ∈ (0, λ1) that

− dS
(∫

R
J1(y)e−εydy − 1

)
+ cε+ µ > 0. (2.6)

As a consequence, by choosing

σ >
βΛ

µ

[
−dS

(∫
R
J1(y)e−εydy − 1

)
+ cε+ µ

] ,
we deduce from (2.5) and (2.6) that

dS (J1 ∗ S(ξ)− S(ξ))− cS′(ξ) + Λ− µS(ξ)− βS(ξ)I(ξ)

≥eεξ
{
σ

[
−dS

(∫
R
J1(y)e−εydy − 1

)
+ cε+ µ

]
− βΛ

µ

}
≥0.

The proof is completed.

Lemma 2.5. Assume that η ∈ (0,min{ε, λ2 − λ1}). Then, the function I(ξ) satisfies

cI ′(ξ) ≤ dI(J2 ∗ I(ξ)− I(ξ)) + βS(ξ)I(ξ)− (µ+ γ)I(ξ) (2.7)

for any ξ 6= ξ2 := − 1
η lnM and large enough M > 1.

Proof. For ξ > ξ2, then the inequality (2.7) holds immediately since I(ξ) = 0 on (ξ2,+∞).
For ξ < ξ2, choose M1 > 1 so large that − 1

η lnM1 + 1 = 1
ε ln Λ

σµ . Take M ≥ M1, then

S(ξ) = Λ
µ − σeεξ, I(ξ) = eλ1ξ −Me(λ1+η)ξ. It follows that

dI(J2 ∗ I(ξ)− I(ξ))− cI ′(ξ) + βS(ξ)I(ξ)− (µ+ γ)I(ξ)

≥dI
[∫

R
J2(y)

(
eλ1(ξ−y) −Me(λ1+η)(ξ−y)

)
dy −

(
eλ1ξ −Me(λ1+η)ξ

)]
− c
[
λ1eλ1ξ

−M(λ1 + η)e(λ1+η)ξ

]
+ β

(
Λ

µ
− σeεξ

)(
eλ1ξ −Me(λ1+η)ξ

)
− (µ+ γ)

(
eλ1ξ −Me(λ1+η)ξ

)
=− dIM

∫
R
J2(y)e(λ1+η)(ξ−y)dy + dIMe(λ1+η)ξ + cM(λ1 + η)e(λ1+η)ξ − βM Λ

µ
e(λ1+η)ξ

− βσe(λ1+ε)ξ +Mβσe(λ1+η+ε)ξ + (µ+ γ)Me(λ1+η)ξ

≥e(λ1+η)ξ
[
−Mf(λ1 + η, c)− βσe(ε−η)ξ

]
.

Let M > max
{

βσ
−f(λ1+η,c) ,M1

}
. Then

dI(J2 ∗ I(ξ)− I(ξ))− cI ′(ξ) + βS(ξ)I(ξ)− (µ+ γ)I(ξ) ≥ 0 for ξ ≤ ξ2.

This completes the proof.
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Let A > max
{
− 1
ε ln Λ

σµ ,
1
η lnM

}
and

ΣA =

(φ(·), ψ(·)) ∈ C([−A,A],R2)

∣∣∣∣∣
φ(−A) = S(−A), ψ(−A) = I(−A),
S(ξ) ≤ φ(ξ) ≤ S(ξ) for ξ ∈ [−A,A],
I(ξ) ≤ ψ(ξ) ≤ I(ξ) for ξ ∈ [−A,A].

 .

It is easy to see that ΣA is a closed, convex subset of C([−A,A],R2). For any (φ(·), ψ(·)) ∈ ΣA,
define

φ̂(ξ) =

φ(A), ξ > A,
φ(ξ), |ξ| ≤ A,
S(ξ), ξ < −A,

ψ̂(ξ) =

ψ(A), ξ > A,
ψ(ξ), |ξ| ≤ A,
I(ξ), ξ < −A.

Thus, we consider the following initial value problem

cS′(ξ) = dS

∫
R
J1(y)φ̂(ξ − y)dy + Λ− (dS + µ)S(ξ)− βS(ξ)ψ(ξ), (2.8)

cI ′(ξ) = dI

∫
R
J2(y)ψ̂(ξ − y)dy + βφ(ξ)ψ(ξ)− (dI + µ+ γ)I(ξ), (2.9)

S(−A) = S(−A), I(−A) = I(−A). (2.10)

According to the standard ODE theory, we can obtain that (2.8)–(2.10) admit a unique solution
(SA(ξ), IA(ξ)) satisfying (SA(·), IA(·)) ∈ C1([−A,A]) × C1([−A,A]). Now, we define an operator
G := (G1,G2) : ΣA −→ C([−A,A]) by

G1[φ(·), ψ(·)](ξ) = SA(ξ), G2[φ(·), ψ(·)](ξ) = IA(ξ), ξ ∈ [−A,A].

Now, we prove that the operator G is completely continuous.

Lemma 2.6. The operator G : ΣA −→ ΣA is completely continuous.

Proof. We can easily obtain that G(ΣA) ⊆ ΣA from Lemmas 2.2–2.5. Since SA(ξ), IA(ξ) ∈
C1([−A,A]), the compactness of the operator G = (G1,G2) follows from the definition of ΣA
and the Arzela-Ascoli theorem.

Now, we prove the continuity of G = (G1,G2). Let (φi(·), ψi(·)) ∈ ΣA, i = 1, 2 and assume
that

G1[φi(·), ψi(·)](ξ) = SiA(ξ), G2[φi(·), ψi(·)](ξ) = IiA(ξ).

Since∫
R
J1(y)φ̂i(ξ−y)dy =

∫ −A
−∞

J1(ξ−y)S(y)dy+

∫ A

−A
J1(ξ−y)φi(y)dy+

∫ +∞

A

J1(ξ−y)φi(A)dy, i = 1, 2,

we can get that∣∣∣∣∫
R
J1(y)φ̂1(ξ − y)dy −

∫
R
J1(y)φ̂2(ξ − y)dy

∣∣∣∣ ≤ 2 max
τ∈[−A,A]

∣∣φ1(τ)− φ2(τ)
∣∣ .

Similarly, we have that∣∣∣∣∫
R
J2(y)ψ̂1(ξ − y)dy −

∫
R
J2(y)ψ̂2(ξ − y)dy

∣∣∣∣ ≤ 2 max
τ∈[−A,A]

∣∣ψ1(τ)− ψ2(τ)
∣∣ .

Additionally, we know that

SA(ξ) =S(−A) exp

{
−1

c

∫ ξ

−A
(dS + µ+ βψ(τ)) dτ

}
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+
1

c

∫ ξ

−A
exp

{
−
∫ ξ

ζ

(dS + µ+ βψ(τ)) dτ

}[
dSJ1 ∗ ψ̂(ζ) + Λ

]
dζ, (2.11)

and

IA(ξ) =I(−A) exp

{
−dI + µ+ γ

c
(ξ +A)

}
+

1

c

∫ ξ

−A
exp

{
−dI + µ+ γ

c
(ξ − ζ)

}[
dIJ2 ∗ ψ̂(ζ) + βφ(ζ)ψ(ζ)

]
dζ. (2.12)

Moreover,∣∣∣(dIJ2 ∗ ψ̂1(ζ) + βφ1(ζ)ψ1(ζ)
)
−
(
dIJ2 ∗ ψ̂2(ζ) + βφ2(ζ)ψ2(ζ)

)∣∣∣
≤2dI max

ξ∈[−A,A]

∣∣ψ1(ξ)− ψ2(ξ)
∣∣+ β

∣∣φ1(ξ)
∣∣ ∣∣ψ1(ξ)− ψ2(ξ)

∣∣+ β
∣∣ψ2(ξ)

∣∣ ∣∣φ1(ξ)− φ2(ξ)
∣∣

≤βeλ1A max
ξ∈[−A,A]

∣∣φ1(ξ)− φ2(ξ)
∣∣+

(
2dI +

βΛ

µ

)
max

ξ∈[−A,A]

∣∣ψ1(ξ)− ψ2(ξ)
∣∣ . (2.13)

Consequently, we infer from (2.11)–(2.13) that G is continuous. This finishes the proof.

Based on the previous discussion, Schauder fixed point theorem implies that there exists
(SA, IA) ∈ ΣA such that (SA(ξ), IA(ξ)) = G[SA, IA](ξ) for all ξ ∈ [−A,A]. Next, our aim is to
obtain the existence of traveling waves of (1.1)–(1.2) by letting A tend to infinity. Before doing
this, we must give some prior estimates for SA(ξ) and IA(ξ) in the space C1,1([−B,B]), where

C1,1([−B,B]) =
{
ω ∈ C1([−B,B])|ω and ω′are Lipschitz continuous

}
with the norm

||ω||C1,1([−B,B]) = max
ζ∈[−B,B]

|ω(ζ)|+ max
ζ∈[−B,B]

|ω′(ζ)|+ sup
ζ1,ζ2∈[−B,B],ζ1 6=ζ2

|ω′(ζ1)− ω′(ζ2)|
ζ1 − ζ2

.

Then, we have the following theorem.

Theorem 2.1. For given B > 0, there exists a constant C](B) such that

||SA||C1,1([−B,B]) ≤ C](B), ||IA||C1,1([−B,B]) ≤ C](B),

for any A > max
{
− 1
ε ln Λ

σµ ,
1
η lnM,B + %1, B + %2

}
, where %i is the radius of suppJi, i = 1, 2.

Proof. From the above discussion, we know that (SA, IA) satisfies

cS′A(ξ) = dSJ1 ∗ ŜA(ξ) + Λ− (dS + µ)SA(ξ)− βSA(ξ)IA(ξ), (2.14)

cI ′A(ξ) = dIJ2 ∗ ÎA(ξ) + βSA(ξ)IA(ξ)− (dI + µ+ γ)IA(ξ) (2.15)

for ξ ∈ [−B,B], where

ŜA(ξ) =

SA(A), ξ > A,
SA(ξ), |ξ| ≤ A,
S(ξ), ξ < −A,

ÎA(ξ) =

IA(A), ξ > A,
IA(ξ), |ξ| ≤ A,
I(ξ), ξ < −A.

8



Since 0 ≤ SA(ξ) ≤ Λ/µ, 0 ≤ IA(ξ) ≤ eλ1ξ, then from (2.14) and (2.15), we get

|S′A(ξ)| ≤
(
2dS + µ+ βI(B)

)
Λ/µ+ Λ

c
,

and

|I ′A(ξ)| ≤

(
dI

∫
R
J2(y)e−λ1ydy + dI + µ+ γ + βΛ/µ

)
I(B)

c
,

for ξ ∈ [−B,B]. Thus, there exists a positive constant C1(B) such that

||SA||C1([−B,B]) ≤ C1(B) and ||IA||C1([−B,B]) ≤ C1(B). (2.16)

Next, we will prove that S′A(ξ) and I ′A(ξ) are Lipschitz continuous. For any ξ, ζ ∈ [−B,B],
it follows from (2.16) that

|SA(ξ)− SA(ζ)| ≤ C1(B)|ξ − ζ| and |IA(ξ)− IA(ζ)| ≤ C1(B)|ξ − ζ|. (2.17)

From (2.14), we obtain that

c (S′A(ξ)− S′A(ζ)) =dS

(
J1 ∗ ŜA(ξ)− J1 ∗ ŜA(ζ)

)
− (dS + µ) (SA(ξ)− SA(ζ))− (βSA(ξ)IA(ξ)− βSA(ζ)IA(ζ)) . (2.18)

Let LJi be the Lipschitz constant of Ji, i = 1, 2. Since∣∣∣J1 ∗ ŜA(ξ)− J1 ∗ ŜA(ζ)
∣∣∣

=

∣∣∣∣∣
∫ ξ+%1

ξ−%1
J1(ξ − y)ŜA(y)dy −

∫ ζ+%1

ζ−%1
J1(ζ − y)ŜA(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ+%1

ζ+%1

J1(ξ − y)ŜA(y)dy −
∫ ξ−%1

ζ−%1
J1(ζ − y)ŜA(y)dy +

∫ ζ+%1

ξ−%1
(J1(ξ − y)− J1(ζ − y)) ŜA(y)dy

∣∣∣∣∣
≤2Λ

µ
||J1||L∞(R)|ξ − ζ|+

∣∣∣∣∣
(∫ ζ−%1

ξ−%1
+

∫ ζ+%1

ζ−%1

)
(J1(ξ − y)− J1(ζ − y)) ŜA(y)dy

∣∣∣∣∣
≤2Λ

µ

(
2||J1||L∞(R) + %1LJ1

)
|ξ − ζ|, (2.19)

and

|βSA(ξ)IA(ξ)− βSA(ζ)IA(ζ)| =β |SA(ξ) (IA(ξ)− IA(ζ)) + (SA(ξ)− SA(ζ)) IA(ζ)|
=β
(
Λ/µ+ I(B)

)
C1(B)|ξ − ζ|, (2.20)

we infer that

|S′A(ξ)− S′A(ζ)| ≤ 1

c

{
2dSΛ

µ

(
2||J1||L∞(R) + %1LJ1

)
+
[
µ+ dS + β

(
Λ/µ+ I(B)

)]
C1(B)

}
|ξ − ζ|.

Utilizing (2.15), we have

c (I ′A(ξ)− I ′A(ζ)) =dI

(
J2 ∗ ÎA(ξ)− J2 ∗ ÎA(ζ)

)
9



− (dI + µ+ γ) (IA(ξ)− IA(ζ)) + (βSA(ξ)IA(ξ)− βSA(ζ)IA(ζ)) . (2.21)

In view of∣∣∣J2 ∗ ÎA(ξ)− J2 ∗ ÎA(ζ)
∣∣∣

=

∣∣∣∣∣
∫ ξ+%2

ξ−%2
J2(ξ − y)ÎA(y)dy −

∫ ζ+%2

ζ−%2
J2(ζ − y)ÎA(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ ξ+%2

ζ+%2

J2(ξ − y)ÎA(y)dy −
∫ ξ−%2

ζ−%2
J2(ζ − y)ÎA(y)dy +

∫ ζ+%2

ξ−%2
(J2(ξ − y)− J2(ζ − y)) ÎA(y)dy

∣∣∣∣∣
≤
[
3I(B + %2)||J2||L∞(R) + I(B − %2)||J2||L∞(R)

]
|ξ − ζ|+

∣∣∣∣∣
∫ ξ+%2

ξ−%2
(J2(ξ − y)− J2(ζ − y)) ÎA(y)dy

∣∣∣∣∣
≤
[
3I(B + %2)||J2||L∞(R) + I(B − %2)||J2||L∞(R) + 2%2I(B + %2)LJ2

]
|ξ − ζ|, (2.22)

it follows from (2.17) and (2.20)–(2.22) that

|I ′A(ξ)− I ′A(ζ)| ≤C1(B)

c

[
β
(
Λ/µ+ I(B)

)
+ (dI + µ+ γ)

]
|ξ − ζ|

+
1

c

[
3I(B + %2)||J2||L∞(R) + I(B − %2)||J2||L∞(R) + 2%2I(B + %2)LJ2

]
|ξ − ζ|.

Consequently, the proof of this theorem is completed.

By Theorem 2.1, we have the following theorem.

Theorem 2.2. If R0 > 1, then for any c > cmin, there exists a pair of functions (S(ξ), I(ξ)) which
satisfy (1.14)–(1.15) on R. Moreover,

0 < S(ξ) <
Λ

µ
and I(ξ) > 0 on R. (2.23)

Proof. We choose a sequence {An}+∞n=1 satisfying An > max
{
− 1
ε ln Λ

σµ ,
1
η lnM,B + %1, B + %2

}
such that An → +∞ as n→ +∞. Obviously, there exists some (SAn , IAn) ∈ ΣAn for each n such
that Theorem 2.1 holds. According to the estimates in Theorem 2.1, there exists a subsequence
{Ank} by diagonal extraction such that limk→+∞Ank = +∞ and

SAnk (ξ)→ S(ξ) and IAnk (ξ)→ I(ξ) in C1
loc(R) as k → +∞, (2.24)

satisfying

cS′Ank
(ξ) = dSJ1 ∗ ŜAnk (ξ) + Λ− (dS + µ)SAnk (ξ)− βSAnk (ξ)IAnk (ξ), (2.25)

cI ′Ank
(ξ) = dIJ2 ∗ ÎAnk (ξ) + βSAnk (ξ)IAnk (ξ)− (dI + µ+ γ)IAnk (ξ), (2.26)

and
S(ξ) ≤ SAnk (ξ) ≤ S(ξ), I(ξ) ≤ IAnk (ξ) ≤ I(ξ) for ξ ∈ (−Ank , Ank), (2.27)

where (S(·), I(·)) ∈ C1(R)× C1(R). It follows from (J) and the Lebesgue dominated convergence
theorem that

lim
k→+∞

∫
R
J1(ξ − y)ŜAnk (y)dy =

∫
R
J1(ξ − y)S(y)dy = J1 ∗ S(ξ), (2.28)
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and

lim
k→+∞

∫
R
J2(ξ − y)ÎAnk (y)dy =

∫
R
J2(ξ − y)I(y)dy = J2 ∗ I(ξ). (2.29)

Furthermore, passing to limits in (2.25) and (2.26), we can obtain from (2.24), (2.28) and (2.29)
that (S, I) satisfies (1.14) and (1.15).

To obtain (2.23), we employ the contradiction argument. Assume that there is a constant
ξ0 ∈ R such that I(ξ0) = 0. Due to I(ξ) = I(ξ) ≥ 0, ξ ∈ R, then ξ0 is the minimal point of I(ξ),

which implies that I ′(ξ0) = 0. It follows that

∫
R
J2(y)I(ξ0 − y)dy = 0, which contradicts to that

I(ξ) > 0 for ξ < ξ2. Thus, I(ξ) > 0 in R.
Suppose that there exists some ξ so that S(ξ) = 0. Then, S′(ξ) = 0. Meanwhile, S(ξ) at ξ = ξ

satisfies

0 = cS′(ξ) = dS

(∫
R
J1(y)S(ξ − y)dy − S(ξ)

)
+ Λ− µS(ξ)− βS(ξ)I(ξ) ≥ Λ.

This contradiction leads to the inequality S(ξ) > 0 in R. Also, if there exists ξ̃ ∈ R such that

S(ξ̃) = Λ/µ, then

0 = cS′(ξ̃) = dS

(∫
R
J1(y)S(ξ̃ − y)dy − S(ξ̃)

)
+ Λ− µS(ξ̃)− βS(ξ̃)I(ξ̃) ≤ −βΛI(ξ̃)/µ.

This is impossible since I(ξ) > 0 in R. The proof of this theorem is finished.

In order to show the convergence of the traveling wave solutions toward the endemic equilib-
rium E∗ = (s∗, i∗) at ξ = +∞, we construct a suitable Lyapunov functional. First, we need to
derive the boundedness property of the solution I(ξ) of system (1.1)–(1.2).

Lemma 2.7. Let M > 0 and N > 0 be real numbers. Then, there exists a constant C† =
C†(M,N) > 0 such that, for any continuous functions P (·) and Q(·) with P (·) ≥ M and Q(·) ≥
−N for all ξ ∈ R and for any positive function W (·) ∈ C1(R) satisfying

W ′(ξ) ≥ P (ξ)

∫
R
Ji(y)W (ξ − y)dy +Q(ξ)W (ξ) for all ξ ∈ R, i = 1, 2, (2.30)

it holds ∫
R
Ji(y)W (ξ − y)dy ≤ C†(M,N)W (ξ) for all ξ ∈ R, i = 1, 2, (2.31)

Proof. We derive from (2.30) that for i = 1, 2

W ′(ξ) +NW (ξ) ≥ P (ξ)

∫
R
Ji(y)W (ξ − y)dy +Q(ξ)W (ξ) +NW (ξ) ≥ 0 for all ξ ∈ R. (2.32)

It follows that W (ξ)eNξ is increasing in R and so

W (ξ − y) ≤W (ξ)eNy for any y ∈ [0,+∞). (2.33)

From (2.32), we deduce that

(
eNξW (ξ)

)′ ≥ P (ξ)eNξ
∫
R
Ji(y)W (ξ − y)dy ≥MeNξ

∫
R
Ji(y)W (ξ − y)dy (2.34)
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for all ξ ∈ R. Choose %̃i > 0 satisfies 2%̃i < %i. Integrating the inequality (2.34) from −∞ to ξ and
using the fact that W (ξ)eNξ is increasing, we obtain that

eNξW (ξ) ≥M
∫ ξ

−∞
eNζ

∫
R
Ji(y)W (ζ − y)dydζ = M

∫
R

eNyJi(y)

∫ ξ

−∞
eN(ζ−y)W (ζ − y)dζdy

≥M
∫
R

eNyJi(y)

∫ ξ

ξ−%̃i
eN(ζ−y)W (ζ − y)dζdy

≥M%̃i

∫
R
Ji(y)eN(ξ−%̃i)W (ξ − %̃i − y)dy, ξ ∈ R (2.35)

which implies that ∫ 0

−∞
Ji(y)W (ξ − %̃i − y)dy ≤ eN%̃i

M%̃i
W (ξ), ξ ∈ R. (2.36)

Furthermore, we can conclude from (2.35) that

eNξW (ξ) ≥M%̃i

∫
R

eNyJi(y)eN(ξ−%̃i−y)W (ξ − %̃i − y)dy

≥M%̃i

∫ −2%̃i

−∞
eNyJi(y)eN(ξ−%̃i−y)W (ξ − %̃i − y)dy

≥M%̃i

∫ −2%̃i

−∞
eNyJi(y)eN(ξ+%̃i)W (ξ + %̃i)dy, ξ ∈ R (2.37)

which means that

W (ξ + %̃i) ≤
1

M%̃ieN%̃i
∫ −2%̃i
−∞ eNyJi(y)dy

W (ξ), ξ ∈ R. (2.38)

It follows from (2.36) and (2.38) that∫
R
Ji(y)W (ξ − y)dy ≤

∫ 0

−∞
Ji(y)W (ξ − y)dy +

∫ +∞

0

Ji(y)W (ξ − y)dy

≤ 1

M%̃ieN%̃i
∫ −2%̃i
−∞ eNyJi(y)dy

∫ 0

−∞
Ji(y)W (ξ − %̃i − y)dy +W (ξ)

∫ +∞

0

Ji(y)eNydy

≤

(
1

M2%̃2
i

∫ −2%̃i
−∞ eNyJi(y)dy

+

∫ +∞

0

Ji(y)eNydy

)
W (ξ), ξ ∈ R.

If we choose C†(M,N) = 1

M2%̃2i
∫−2%̃i
−∞ eNyJi(y)dy

+
∫ +∞

0
Ji(y)eNydy, then, the proof of this lemma is

finished.

Lemma 2.8. Let {(cn, Sn, In)} be a sequence of traveling wave solution of system (1.1)–(1.2)
and cn ∈ (cmin, cmin + 1). If {ξn}+∞n=1 is a sequence of real numbers such that In(ξn) → +∞ as
n→ +∞, then limn→+∞ Sn(ξn) = 0.

Proof. Assume that there is a subsequence of {ξn}+∞n=1 (still denoted by {ξn}+∞n=1 ) such that
In(ξn) → +∞ as n → +∞ and Sn(ξn) ≥ δ for any n ∈ N and some constant δ > 0. It fol-
lows from 0 < Sn < Λ/µ and (1.14) that S′n(ξn) ≤ (dS + µ) Λ/(µcmin) for any ξ ∈ R. Thus,

Sn(ξ) = Sn(ξn)− S′n(ξ̃n)(ξn − ξ) ≥
δ

2
for any ξ ∈ [ξn − `, ξn] ,
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where ξ̃n ∈ (ξ, ξn) and ` = µδcmin/[2(dS + µ)Λ]. On the other hand, it follows from Lemma 2.7
and (1.15) that there is a constant L independently of n ∈ N such that |I ′n(ξ)/In(ξ)| ≤ L for any
ξ ∈ R. Thus,

In(ξn)

In(ξ)
= exp

∫ ξn

ξ

I ′n(s)

In(s)
ds ≤ eL` for any ξ ∈ [ξn − `, ξn].

Then, minξ∈[ξn−`,ξn] In(ξ) ≥ e−L`In(ξn) → +∞ as n → +∞. It follows from (1.14) and (2.23)
that

max
ξ∈[ξn−`,ξn]

S′n(ξ) ≤ (dS + µ)Λ

µcmin
− βδ

2(cmin + 1)
min

ξ∈[ξn−`,ξn]
In(ξ)→ −∞ as n→ +∞.

We can conclude that there exists a constant N0 > 0 such that

S′n(ξ) < − Λ

µ`
for ∀n ≥ N0, ∀ξ ∈ [ξn − `, ξn]. (2.39)

Then, we infer from (2.23) and (2.39) that Sn(ξn) < 0 for n ≥ N0, a contradiction to the fact that
Sn(ξ) > 0 in R. This completes the proof.

Lemma 2.9. If lim supξ→+∞ I(ξ) = +∞, then limξ→+∞ I(ξ) = +∞.

Proof. We claim that limξ→+∞ I(ξ) = +∞ by a contradiction argument. If lim infξ→+∞ I(ξ) <
+∞, there exists a point sequence {ξn}+∞n=1 such that limn→+∞ I(ξn) = lim infξ→+∞ I(ξ) = Iinf <
+∞. Without loss of generality, we can suppose that I(ξn) ∈ (0, Iinf + 1) for all n ∈ N. Now,
for each n, we choose a point κn ∈ [ξn, ξn+1] such that I(κn) = supξ∈[ξn,ξn+1] I(ξ). It follows from

lim supξ→+∞ I(ξ) = +∞ that limn→+∞ I(κn) = +∞. We may assume I(κn) ≥ (Iinf + 1)eL%2 ,
where %2 = diamsuppJ2 and L = supξ∈R |I ′(ξ)/I(ξ)|. Since

I(κn)

I(ξ)
= exp

{∫ κn

ξ

I ′(ζ)

I(ζ)
dζ

}
≤ eL|κn−ξ| ≤ eL%2 if |ξ − κn| ≤ %2, (2.40)

which means that I(ξ) ≥ Iinf + 1 for all ξ ∈ [κn − %2, κn + %2] and I(κn − y) ≤ I(κn) for all
y ∈ suppJ2. Consequently, we deduce that [κn−%2, κn+%2] ⊆ (ξn, ξn+1) and I ′(κn) = 0. Utilizing
the equation (1.15), we obtain

0 = cI ′(κn) = dI (J2 ∗ I(κn)− I(κn)) + βS(κn)I(κn)− (µ+ γ)I(κn) ≤ [βS(κn)− (µ+ γ)] I(κn).

We infer from Lemma 2.8 that limn→+∞ S(κn) = 0, which leads to a contradiction. Hence, the
claim of this lemma is shown.

Proposition 2.1. ([46, Proposition 3.7]). Assume that c > 0 and B(·) is a continuous function
and B(±∞) := limξ→±∞B(ξ). Let Z(·) be a measurable function satisfying

cZ(ξ) = Di

∫
R
Ji(y)e−

∫ ξ
ξ−y Z(s)dsdy +B(ξ), ξ ∈ R, i = 1, 2.

Then, Z is uniformly bounded and continuous. Moreover, ν± := limξ→±∞ Z(ξ) exist and are real
number roots of the characteristic equation

cν = Di

∫
R
Ji(y)e−νydy +B(±∞), i = 1, 2.

Theorem 2.3. The function I is bounded.
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Proof. We assume on the contrary that lim supξ→+∞ I(ξ) = +∞. Lemmas 2.8 and 2.9 yield
limξ→+∞ I(ξ) = +∞ and limξ→+∞ S(ξ) = 0. Dividing (1.15) by I and setting Z(ξ) = I ′(ξ)/I(ξ),
we have

cZ(ξ) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Z(s)dsdy + βS(ξ)− (dI + µ+ γ). (2.41)

Since limξ→+∞ S(ξ) = 0, Proposition 2.1 implies that limξ→+∞ Z(ξ) exists and satisfies the fol-
lowing equation

cν = dI

∫
R
J2(y)e−νydy − (dI + µ+ γ). (2.42)

Set f1(ν, c) = dI

∫
R
J2(y)e−νydy − cν − (dI + µ+ γ). An easy calculation gives

f1(0, c) = −µ− γ < 0,
∂f1

∂ν
|ν=0 = −c < 0, and

∂2f1

∂ν2
(ν, c) = dI

∫
R
J2(y)y2e−λydy > 0.

We infer from the above inequalities and f1(+∞, c) = +∞ that equation (2.42) has a unique
positive solution ν̂. In view of limξ→+∞ I(ξ) = +∞, we have limξ→+∞ Z(ξ) = ν̂ > 0. Noting that

dI

∫
R
J2(y)e−λiydy − cλi − dI − µ− γ = −βΛ

µ
< 0, i = 1, 2,

then we get λ1 < λ2 < ν̂. Hence, there exists a positive constant ξ̂ large enough and C0 such that
I(ξ) ≥ C0 exp

(
λ2+ν̂

2 ξ
)

for all ξ ≥ ξ̂. On the other hand, by the construction of S, we know that
I(ξ) ≤ eλ1ξ. Thus, we get a contradiction and complete the proof.

Now, we will utilize the Lyapunov–LaSalle theorem to prove the asymptotic behavior (S(ξ), I(ξ))
as ξ → +∞.
The proof of Theorem 1.1 for c > cmin. From Theorems 2.2 and 2.3, it remains to show that
limξ→+∞(S(ξ), I(ξ)) = (s∗, i∗). Let

g(y) = y − 1− ln y in (0,+∞),

and

Ψ+
i (y) =

∫ +∞

y

Ji(x)dx in [0,+∞), Ψ−i (y) =

∫ y

−∞
Ji(x)dx in (−∞, 0], i = 1, 2.

Direct calculations yield

g(y) = y − 1− ln y ≥ 0 in (0,+∞), g(y) = y − 1− ln y = 0 if and only if y = 1.

Moreover,

Ψ+
i (0) = Ψ−i (0) =

1

2
,

d

dy
Ψ+
i (y) = −Ji(y),

d

dy
Ψ−i (y) = Ji(y), i = 1, 2. (2.43)

Now, we consider the Lyapunov functional V(S, I) : R+ −→ R as follows

V(S, I)(ξ) := cs∗g

(
S(ξ)

s∗

)
+ ci∗g

(
I(ξ)

i∗

)
+ dSs

∗US(S)(ξ) + dI i
∗UI(I)(ξ), (2.44)

where

US(S)(ξ) =

∫ +∞

0

Ψ+
1 (y)g

(
S(ξ − y)

s∗

)
dy −

∫ 0

−∞
Ψ−1 (y)g

(
S(ξ − y)

s∗

)
dy

14



UI(I)(ξ) =

∫ +∞

0

Ψ+
2 (y)g

(
I(ξ − y)

i∗

)
dy −

∫ 0

−∞
Ψ−2 (y)g

(
I(ξ − y)

i∗

)
dy.

In view of 0 < S(ξ) < Λ/µ and 0 < I(ξ) < K for some constant K > 0 and any ξ ≥ 0, we infer
that there exists m ∈ R such that m ≤ V(S, I)(ξ) < +∞ for any ξ ≥ 0. Differentiating the equality
(2.44), we get

d

dξ
V(S, I)(ξ) =

(
1− s∗

S(ξ)

)
cS′(ξ) +

(
1− i∗

I(ξ)

)
cI ′(ξ) + dSs

∗ d

dξ
US(S)(ξ) + dI i

∗ d

dξ
UI(I)(ξ)

=

(
1− s∗

S(ξ)

)(
dS

∫
R
J1(y)S(ξ − y)dy − dSS(ξ)

)
+ dSs

∗ d

dξ
US(S)(ξ)︸ ︷︷ ︸

Θ1

+

(
1− i∗

I(ξ)

)(
dI

∫
R
J2(y)I(ξ − y)dy − dII(ξ)

)
+ dI i

∗ d

dξ
UI(I)(ξ)︸ ︷︷ ︸

Θ2

(2.45)

+

(
1− s∗

S(ξ)

)
(Λ− µS(ξ)− βS(ξ)I(ξ)) +

(
1− i∗

I(ξ)

)
(βS(ξ)I(ξ)− (µ+ γ)I(ξ))︸ ︷︷ ︸

Θ3

.

Along the solution (S(ξ), I(ξ)), we obtain that

d

dξ
US(S)(ξ) =

∫ +∞

0

Ψ+
1 (y)

d

dξ
g

(
S(ξ − y)

s∗

)
dy −

∫ 0

−∞
Ψ−1 (y)

d

dξ
g

(
S(ξ − y)

s∗

)
dy

=−
∫ +∞

0

Ψ+
1 (y)

d

dy
g

(
S(ξ − y)

s∗

)
dy +

∫ 0

−∞
Ψ−1 (y)

d

dy
g

(
S(ξ − y)

s∗

)
dy

=−Ψ+
1 (y)g

(
S(ξ − y)

s∗

) ∣∣∣+∞
0
−
∫ +∞

0

J1(y)g

(
S(ξ − y)

s∗

)
dy

+ Ψ−1 (y)g

(
S(ξ − y)

s∗

) ∣∣∣0
−∞
−
∫ 0

−∞
J1(y)g

(
S(ξ − y)

s∗

)
dy

=g

(
S(ξ)

s∗

)
−
∫
R
J1(y)g

(
S(ξ − y)

s∗

)
dy. (2.46)

It follows from (2.46) that

Θ1 =

(
1− s∗

S(ξ)

)(
dS

∫
R
J1(y)S(ξ − y)dy − dSS(ξ)

)
+ dSs

∗ d

dξ
US(S)(ξ)

=

(
1− s∗

S(ξ)

)(
dS

∫
R
J1(y)S(ξ − y)dy − dSS(ξ)

)
+ dSs

∗
(
g

(
S(ξ)

s∗

)
−
∫
R
J1(y)g

(
S(ξ − y)

s∗

)
dy

)
=dS

∫
R
J1(y)S(ξ − y)dy − dSS(ξ)− dSs∗

∫
R
J1(y)

S(ξ − y)

S(ξ)
dy + dSs

∗

+ dSs
∗
(
S(ξ)

s∗
− 1− ln

S(ξ)

s∗

)
− dSs∗

∫
R
J1(y)

(
S(ξ − y)

s∗
− 1− ln

S(ξ − y)

s∗

)
dy

=− dSs∗
∫
R
J1(y)g

(
S(ξ − y)

S(ξ)

)
dy. (2.47)

In a similar way, we get

Θ2 = −dI i∗
∫
R
J2(y)g

(
I(ξ − y)

I(ξ)

)
dy. (2.48)
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Using the facts that Λ = µs∗ + βs∗i∗ and βs∗ = µ+ γ, we deduce that

Θ3 =

(
1− s∗

S(ξ)

)
(µs∗ − µS(ξ) + βs∗i∗ − βS(ξ)I(ξ)) +

(
1− i∗

I(ξ)

)
(βS(ξ)I(ξ)− βs∗I(ξ))

=− (S(ξ)− s∗)2

S(ξ)
(µ+ βi∗) + β (S(ξ)− s∗) (i∗ − I(ξ)) + β (I(ξ)− i∗) (S(ξ)− s∗)

=− (S(ξ)− s∗)2

S(ξ)
(µ+ βi∗) . (2.49)

It follows from (2.45) and (2.47)-(2.49) that

d

dξ
V(S, I)(ξ) =− dSs∗

∫
R
J1(y)g

(
S(ξ − y)

S(ξ)

)
dy

− dI i∗
∫
R
J2(y)g

(
I(ξ − y)

I(ξ)

)
dy − (S(ξ)− s∗)2

S(ξ)
(µ+ βi∗) ≤ 0 for ξ ≥ 0, (2.50)

which indicates that V(S, I)(·) is non-increasing for ξ ≥ 0. Now, choose an increasing sequence
{ξn}+∞n=0 such that ξn →∞ as n→ +∞ and let Sn(ξ) = S(ξ+ξn), In(ξ) = I(ξ+ξn). Since {Sn}+∞n=0

and {In}+∞n=0 are uniformly bounded in C1,1(R), up to extraction a subsequence, we can assume that
there exist two nonnegative functions Š(·) and Ǐ(·) such that Sn(·)→ Š(·), In(·)→ Ǐ(·) in C0

loc(R)
as n → +∞. Furthermore, since V(S, I) is bounded from below and non-increasing in ξ, then for
large n, m ≤ V(Sn, In)(ξ) ≤ V(S, I)(ξ+ ξn) ≤ V(S, I)(ξ). Consequently, there exists some $ ∈ R1

such that limn→+∞ V(Sn, In)(ξ) = limξ+ξn→+∞ V(S, I)(ξ + ξn) = $, ∀ξ ∈ R. We infer from
Lebesgue dominated convergence theorem that $ = limn→+∞ V(Sn, In)(ξ) = V(Š, Ǐ)(ξ), ∀ξ ∈ R.
Therefore, d

dξV(Š, Ǐ)(ξ) = 0, ∀ξ ≥ 0. By the classical Lyapunov–LaSalle invariance principle,

solutions limit to M, the largest invariant subset in
{

(S(ξ), I(ξ))| d
dξV(S, I)(ξ) = 0

}
. We note

that d
dξV(S, I)(ξ) is only zero if S(ξ) = s∗, I(ξ) ≡ Č for some constant Č. In particular, from

(1.14)-(1.15), this requires that for any solution in M we have S(ξ) = s∗, I(ξ) = i∗ for all
ξ, and so M consists of the single point E∗. It follows that Š = s∗, Ǐ = i∗, which implies
limξ→+∞(S(ξ), I(ξ)) = E∗ = (s∗, i∗). The proof is completed.

3. Existence of travelling wave solutions for c = cmin

In this section, we intend to prove the existence of traveling wave solution of system (1.1)-(1.2)
with c = cmin by the approximating method. Choose a strictly decreasing sequence {cn}+∞n=1 ⊆
(cmin, cmin + 1) such that limn→+∞ cn = cmin. Let (cn, Sn, In) be a traveling wave solution of sys-
tem (1.1)-(1.2) satisfying the asymptotic boundary conditions (1.16). Then, we have the following
result.

Lemma 3.1. It holds lim supn→+∞ ||In(·)||L∞(R) < +∞.

Proof. For contradiction, we may assume that ||In(·)||L∞(R) → +∞ as n → +∞. Since In(·) is
bounded in R for each n, then there exists ξn ∈ R such that In(ξn) ≥ n/(n+ 1)||In(·)||L∞(R). It is

not difficult to see that In(ξn) → +∞ as n → +∞. Now, we define S̃n(ξ) = Sn(ξ + ξn), Ĩn(ξ) =
In(ξ + ξn)/In(ξn). Then, for each n ∈ N, (S̃n(·), Ĩn(·)) satisfies

cnS̃
′
n(ξ) = dS

(∫
R
J1(y)S̃n(ξ − y)dy − S̃n(ξ)

)
+ Λ− µS̃n(ξ)− βS̃n(ξ)Ĩn(ξ)In(ξn), (3.1)

cnĨ
′
n(ξ) = dI

(∫
R
J2(y)Ĩn(ξ − y)dy − Ĩn(ξ)

)
+ βS̃n(ξ)Ĩn(ξ)− (µ+ γ)Ĩn(ξ). (3.2)
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From (1.15), we know that

I ′n(ξ) ≥ dI
cmin + 1

∫
R
J2(y)In(ξ − y)dy − dI + µ+ γ

cmin
In(ξ).

It derives from Lemma 2.7 that |I ′n(ξ)/In(ξ)| is globally bounded in R. In view of

Ĩn(ξ) = In(ξ + ξn)/In(ξn) = exp

∫ ξ+ξn

ξn

I ′n(s)

In(s)
ds,

we deduce that supn∈N ||Ĩn(·)||L∞(K) < +∞ for any compact set K ⊆ R. Moreover, In(· + ξn) →
+∞ in C0

loc(R) as n→ +∞. According to Lemma 2.8, we have S̃n(·)→ 0 in C0
loc(R) as n→ +∞.

On the other hand,

Ĩ ′n(ξ) =
I ′n(ξ + ξn)

In(ξn)
=
I ′n(ξ + ξn)

In(ξ + ξn)
· Ĩn(ξ).

Therefore, supn∈N ||Ĩ ′n(·)||L∞(K) < +∞ for any compact set K ⊆ R. Furthermore, each Ĩn(·)
satisfies

cnĨ
′′
n(ξ) = dI

(∫
R
J2(y)Ĩ ′n(ξ − y)dy − Ĩ ′n(ξ)

)
+ βS̃′n(ξ)Ĩn(ξ) + βS̃n(ξ)Ĩ ′n(ξ)− (µ+ γ)Ĩ ′n(ξ).

Thus, we also conclude that supn∈N ||Ĩ ′′n(·)||L∞(K) < +∞ for any compact set K ⊆ R. Hence,

from Arzela–Ascoli theorem, some sequence {Ĩnk(ξ)} exists, still denoted by {Ĩn(ξ)}, such that
Ĩn(·)→ Ĩ∞(·) in C1

loc(R) as n→ +∞ and Ĩ∞(·) satisfies

cminĨ
′
∞(ξ) = dI

(∫
R
J2(y)Ĩ∞(ξ − y)dy − Ĩ∞(ξ)

)
− (µ+ γ)Ĩ∞(ξ) in R, (3.3)

Here we use the fact that S̃n(·) → 0 in C0
loc(R) as n → +∞. Now, we claim that Ĩ∞(ξ) > 0

for all ξ ∈ R. Otherwise, there exists some ξ∗ ∈ R such that Ĩ∞(ξ∗) = 0. Then, Ĩ ′∞(ξ∗) = 0.

It follows from (3.3) that

∫
R
J2(y)Ĩ∞(ξ∗ − y)dy = 0, which means Ĩ∞(·) ≡ 0 in R. Note that

Ĩ∞(0) = limn→+∞ Ĩn(0) = 1, this leads to a contradiction. Thus, the claim holds. It is noticed
that In(ξ+ξn) ≤ ||In(·)||L∞(R) ≤

(
1 + 1

n

)
In(ξn), i.e. Ĩn(ξ) ≤ 1+1/n. Letting n→ +∞, we obtain

Ĩ∞(·) ≤ 1 in R, which indicates that Ĩ∞(0) = 1 is the global maximum of Ĩ∞. Consequently, it
holds 0 ≤ −(µ+ γ) < 0, this is impossible. Thus, we infer that lim supξ→+∞ ||In(·)||L∞(R) < +∞
and this lemma is proved.

Lemma 3.2. There exists σ > 0 such that for any traveling wave solution (cn, Sn, In), it holds
I ′n(ξ) > 0 if In(ξ) ≤ σ for any ξ ∈ R.

Proof. Without loss of generality, we assume that there exists a point sequence {ξn}+∞n=1 such
that limn→+∞ In(ξn) = 0 and I ′n(ξn) ≤ 0 for all n ∈ N. Denoting S̃n(ξ) = Sn(ξ + ξn) and
Ĩn(ξ) = In(ξ + ξn), then (S̃n(·), Ĩn(·)) satisfies

cnS̃
′
n(ξ) = dS

(∫
R
J1(y)S̃n(ξ − y)dy − S̃n(ξ)

)
+ Λ− µS̃n(ξ)− βS̃n(ξ)Ĩn(ξ), (3.4)

cnĨ
′
n(ξ) = dI

(∫
R
J2(y)Ĩn(ξ − y)dy − Ĩn(ξ)

)
+ βS̃n(ξ)Ĩn(ξ)− (µ+ γ)Ĩn(ξ). (3.5)

Applying Lemma 2.7 to (1.15), we obtain that |I ′n(ξ)/In(ξ)| are globally bounded in R. Therefore,
Ĩn(·)→ 0 in C0

loc(R) as n→ +∞. Furthermore, we have Ĩn(·)→ 0 in C1
loc(R) as n→ +∞. On the
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other hand, by Lemma 3.1, we know that ||Ĩn(·)||C1(R) < +∞. Moreover, we deduce from (3.4)

that S̃′n(·) and S̃′′n(·) are uniformly bounded in R. Hence, up to extraction a sequence, there exists
a function S̃∞(·) ∈ C1(R) such that S̃n(·)→ S̃∞(·) in C1

loc(R) as n→ +∞, we have

cminS̃
′
∞(ξ) = dS

(∫
R
J1(y)S̃∞(ξ − y)dy − S̃∞(ξ)

)
+ Λ− µS̃∞(ξ). (3.6)

Let Sinf = infξ∈R S̃∞(ξ) and choose a sequence {ζn} such that S̃∞(ζn)→ Sinf as n→ +∞. Setting

Ŝn(ξ) = S̃∞(ξ + ζn), we may assume that Ŝn(·) → Ŝ∞(·) in C1
loc(R) as n → +∞ for a function

Ŝ∞(·) ∈ C1(R) solving

cminŜ
′
∞(ξ) = dS

∫
R
J1(y)

(
Ŝ∞(ξ − y)− Ŝ∞(ξ)

)
dy + Λ− µŜ∞(ξ). (3.7)

Note that Sinf ≤ Ŝ∞(·) ≤ Λ/µ for ξ ∈ R. It follows from Ŝ∞(0) = Sinf that

Λ− µSinf = −dS
∫
R
J1(y)

(
Ŝ∞(−y)− Ŝ∞(0)

)
dy ≤ 0,

which implies Sinf ≥ Λ/µ. As a consequence, we infer that S̃∞(·) ≡ Λ/µ for ξ ∈ R. Now, define

În(ξ) = In(ξ + ξn)/In(ξn), we know from the proof of Lemma 3.1 that

sup
n∈N
||În(·)||L∞(K) < +∞, sup

n∈N
||Î ′n(·)||L∞(K) < +∞, sup

n∈N
||Î ′′n(·)||L∞(K) < +∞

for any compact set K ⊆ R and

cnÎ
′
n(ξ) = dI

∫
R
J2(y)

(
În(ξ − y)− În(ξ)

)
dy + βS̃n(ξ)În(ξ)− (µ+ γ) În(ξ). (3.8)

Then, from Arzela–Ascoli theorem, up to extraction a subsequence, we have În(·) → Î∞(·) in
C1
loc(R), which satisfies

cminÎ
′
∞(ξ) = dI

∫
R
J2(y)

(
Î∞(ξ − y)− Î∞(ξ)

)
dy +

(
βΛ

µ
− µ− γ

)
Î∞(ξ). (3.9)

Moreover, Î∞(·) > 0 in R. Letting Z(ξ) = Î ′∞(ξ)/Î∞(ξ), it follows from (3.9) that

cminZ(ξ) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Z(s)dsdy − dI +

βΛ

µ
− µ− γ. (3.10)

We infer from Proposition 2.1 that limξ→±∞ Z(ξ) exists and satisfies the equation

cminλ = dI

∫
R
J2(y)e−λydy − dI +

βΛ

µ
− µ− γ. (3.11)

It is easy to see that (3.11) has a unique positive root, then we conclude that limξ→±∞ Z(ξ) > 0.

Since Z(0) = Î ′∞(0)/Î∞(0) = limn→+∞ I ′n(ξn)/In(ξn) ≤ 0. Thus, the continuous function Z(·) has
a minimum Z(ξ∗) = Zmin in R. By differentiating (3.10), one gets

cminZ
′(ξ) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Z(s)ds (Z(ξ − y)− Z(ξ)) dy.

It follows that Z(ξ) ≡ Z(ξ∗). Hence, limξ→±∞ Z(ξ) = Z(ξ∗) ≤ Z(0) ≤ 0, which leads to a
contradiction. The claim of this lemma is holds.
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The proof of Theorem 1.1 for c = cmin. For σ > 0 in Lemma 3.2, we can choose σ > 0 small enough
such that 0 < σ < i∗. In view of limξ→−∞ In(ξ) = 0 and In(·) > 0 in R for any n ∈ N, there exists

ξn ∈ R such that In(ξn) = σ for each n. Set S̆n(ξ) = Sn(ξ + ξn), Ĭn(ξ) = In(ξ + ξn). It follows
from Lemma 3.1 that Ĭn(·) are uniformly bounded in R and so ||S̆n(·)||C2(R) and ||Ĭn(·)||C2(R)

are all uniformly bounded in R. Thus, by Arzela-Ascoli theorem, there exists (S∗(·), I∗(·)) ∈
C1(R) × C1(R) such that S̆n(·) → S∗(·) and Ĭn(·) → I∗(·) in C1

loc(R) as n → +∞. Moreover,
(S∗(·), I∗(·)) satisfies

cminS
′
∗(ξ) = dS

∫
R
J1(y) (S∗(ξ − y)− S∗(y)) dy + Λ− µS∗(ξ)− βS∗(ξ)I∗(ξ), (3.12)

cminI
′
∗(ξ) = dI

∫
R
J2(y) (I∗(ξ − y)− I∗(ξ)) dy + βS∗(ξ)I∗(ξ)− (µ+ γ) I∗(ξ). (3.13)

Furthermore, 0 ≤ S∗(·) ≤ Λ/µ, 0 ≤ I∗(·) < +∞ in R and I∗(0) = σ.
Below, we divide three steps to complete the proof.
Step 1. 0 < S∗(·) < Λ/µ and I∗(·) > 0 in R.
Assume for contrary that ξ̃∗ such that I∗(ξ̃∗) = 0. Then, I ′∗(ξ̃∗) = 0. It follows from (3.13) that∫

R
J2(y)

(
I∗(ξ̃∗ − y)− I∗(ξ̃∗)

)
dy = 0. Hence, I∗(ξ) ≡ I∗(ξ̃∗) = 0. This contradicts to I∗(0) = σ >

0. Consequently, I∗(·) > 0 in R. As in the proof of Theorem 2.2, we can show that 0 < S∗(·) < Λ/µ
in R.

Step 2. The asymptotic behavior of S∗(·) and I∗(·) as ξ → −∞.
Since I∗(0) = σ, Lemma 3.2 implies that I ′∗(·) > 0 in (−∞, 0]. Therefore, the limit limξ→−∞ I∗(ξ)

exists and i := limξ→−∞ I∗(ξ). It follows that i ∈ [0, σ). If i > 0, set (S∗)n(ξ) = S∗(ξ + ξ∗n) and
(I∗)n(ξ) = I∗(ξ + ξ∗n) for any ξ∗n → −∞ as n → +∞. Up to extraction a subsequence, we have
(I∗)n(·) → i and (S∗)n(·) → (S∗)∞(·) for some function (S∗)∞(·) ∈ C1(R) in C1

loc(R). Moreover,
(S∗)∞(·) satisfies 0 = β(S∗)∞(ξ)i − (µ + γ)i, which indicates (S∗)∞(ξ) = (µ + γ)/β. In a simi-
lar way, we infer that i = limξ→−∞ I∗(ξ) = (Λ− µ(S∗)∞(ξ)) /β(S∗)∞(ξ) = i∗ < σ, which leads
to a contradiction. Consequently, limξ→−∞ I∗(ξ) = 0. As in the proof of Lemma 3.2, we get
limξ→−∞ S∗(ξ) = Λ/µ. Finally, from (3.13), we obtain that

cmin
I ′∗(ξ)

I∗(ξ)
= dI

∫
R
J2(y)

I∗(ξ − y)

I∗(ξ)
dy + βS∗(ξ)− (dI + µ+ γ) .

In view of limξ→−∞ S∗(ξ) = Λ/µ, it follows from Proposition 2.1 that limξ→−∞ I ′∗(ξ)/I∗(ξ) = ν∗,
where ν∗ satisfies

cminν∗ = dI

∫
R
J2(y)e−ν∗ydy + βΛ/µ− (dI + µ+ γ) .

According to Lemma 2.1, ν∗ = λ0. Thus, we infer that I∗(ξ) = O(eλ0ξ) as ξ → −∞.
Step 3. The asymptotic behavior of S∗(·) and I∗(·) as ξ → +∞.
By replacing c to cmin in the proof c > cmin, we obtain the desire result.

4. Non-existence of traveling wave solutions

Theorem 4.1. Suppose R0 > 1. Then, the system (1.14)–(1.15) has no non-trivial and non-
negative solution (S(x+ct), I(x+ct)) satisfying the asymptotic boundary conditions (1.16) for any
c < cmin and c 6= 0.

Proof. Suppose for the contrary that (S(x+ ct), I(x+ ct)) is a pair of positive solution of (1.14)–
(1.15). Moreover, condition (1.16) holds. We infer from Lemma 2.7 and

c
I ′(ξ)

I(ξ)
≥ dI

∫
R
J2(ξ)e

∫ ξ−y
ξ

I′(s)
I(s)

dsdy − (dI + µ+ γ)
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that

∫
R
J2(ξ)e

∫ ξ−y
ξ

I′(s)/I(s)dsdy is bounded in R and so is I ′(ξ)/I(ξ). For any sequence {ξn}

converging to −∞, define Sn(ξ) = S(ξ+ ξn), In(ξ) = I(ξ+ ξn)/I(ξn). Obviously, (Sn, In) satisfies

cI ′n(ξ) = dI

∫
R
J2(y) (In(ξ − y)− In(ξ)) dy + βSn(ξ)In(ξ)− (µ+ γ)In(ξ).

It follows from S(−∞) = Λ/µ that limn→+∞ Sn(ξ) = Λ/µ locally uniformly in R. In view of
I ′n(ξ)/In(ξ) is bounded in L∞(R), we obtain that In(ξ) are locally uniformly bounded in R. There-
fore, I ′n(ξ) and I ′′n(ξ) are locally uniformly bounded in R too. By Arzela–Ascoli theorem, we infer
that, up to extraction a subsequence, In(ξ) → I−∞(ξ) in C1

loc(R) as n → +∞, where I−∞(ξ) is a
nonnegative function and satisfies

cI ′−∞(ξ) = dI

∫
R
J2(y) (I−∞(ξ − y)− I−∞(ξ)) dy +

(
βΛ

µ
− µ− γ

)
I−∞(ξ). (4.1)

Moreover, I−∞(·) ≥ 0 in R and I−∞(0) = 1. As proof in Lemma 3.1, we have I−∞(·) > 0 in R.
Let Z(ξ) = I ′−∞(ξ)/I−∞(ξ). By Proposition 2.1, the limit limξ→±∞ Z(ξ) exist and are the roots
of the equation

cλ = dI

∫
R
J2(y)e−λydy − dI +

βΛ

µ
− γ − µ.

But when 0 < c < cmin, the above equation has no root in R, which leads to a contradiction.
For the case c < 0. Denote Ŝ(ξ) = S(−ξ), Î(ξ) = I(−ξ). Then, (Ŝ(+∞), Î(+∞)) = (Λ/µ, 0)

and Î satisfies

Î ′(ξ) ≥ dI
|c|

∫
R
J2(y)Î(ξ − y)dy − dI + µ+ γ

|c|
Î(ξ).

Applying Lemma 2.7 again, we infer that Î ′(ξ)/Î(ξ) is bounded in R. Since Î(·) > 0 in R and

Î(+∞) = 0, we can choose a sequence {ξ̂n}+∞n=1 satisfying ξ̂n → +∞ as n → +∞ such that

Î ′(ξ̂n) ≤ 0. Set Ŝn(ξ) = Ŝ(ξ + ξ̂n), În(ξ) = Î(ξ + ξ̂n)/Î(ξ̂n). By Arzela–Ascoli theorem, there
exists some Î∞ ∈ C1(R) such that În(ξ)→ Î∞(ξ) in C1

loc(R). Moreover, Î∞ satisfies (4.1) with |c|
and I−∞ instead of c and Î∞, respectively. It is not difficult to get that Î∞(0) = 1 and Î ′∞(0) ≤ 0.
Denote Ẑ(ξ) = Î ′∞(ξ)/Î∞(ξ). Then Ẑ(ξ) satisfies

|c|Ẑ(ξ) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Ẑ(s)dsdy − dI +

βΛ

µ
− µ− γ. (4.2)

It follows from Proposition 2.1 that Ẑ(±∞) exist and satisfy

|c|Ẑ(±∞) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Ẑ(±∞)dsdy − dI +

βΛ

µ
− µ− γ. (4.3)

We only consider the case c < −cmin, for this case, (4.3) has two positive roots. Consequently,
limξ→±∞ Ẑ(ξ) > 0. By differentiating the equation (4.2), one gets that

|c|Ẑ ′(ξ) = dI

∫
R
J2(y)e−

∫ ξ
ξ−y Ẑ(s)ds

(
Ẑ(ξ − y)− Ẑ(ξ)

)
dy. (4.4)

If Ẑ(ξ) has a minimum Ẑ(ξ̂0) in R, then Ẑ(ξ) ≡ Ẑ(ξ̂0). Thus,

inf
ξ∈R

Ẑ(ξ) ≥ min

{
lim

ξ→−∞
Ẑ(ξ), lim

ξ→+∞
Ẑ(ξ)

}
> 0.

In particularly, Î ′∞(0) > 0. This contradicts to Î ′∞(0) ≤ 0. The proof is completed.
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5. Simulation and discussion

Recently, great attention has been paid to the existence and non-existence of traveling wave
solutions in epidemic models with spatial diffusion. The basic idea is that epidemic models de-
scribed by reaction diffusion systems can give rise to a moving zone of transition from an infective
state to a disease-free state. The existence and non-existence of non-trivial traveling wave solutions
indicate whether or not the disease can spread. In this paper, we have investigated the existence
and nonexistence of traveling wave solutions for a nonlocal dispersal SIR model with mass ac-
tion infection mechanism. From Theorem 1.1, we infer that whether the disease can spread or
not depends on R0 and cmin. Here the minimal wave speed cmin is determined by the following
equations

f(λ, c) = 0,
∂f(λ, c)

∂λ
= 0,

where

f(λ, c) = dI

(∫
R
J2(y)e−λydy − 1

)
− cλ+

βΛ

µ
− µ− γ.

For simplicity, we choose the nonlocal kernel functions Ji(x) = Jρ(x) = 1
ρJ(xρ ), i = 1, 2, where

J(x) =

C 1√
4πρ2

e
− x2

4ρ2 , x ∈ [−3ρ2, 3ρ2],

0, x ∈ R\[−3ρ2, 3ρ2],
(5.1)

where C is a constant to ensure that
∫
R J(x)dx = 1. In the biological environment, the parameter ρ

in (5.1) measures the nonlocal dispersal distance and reflects the diffusive ability of the individuals.
Note that the function

H(ρ) := dI

∫
R
Jρ(y)e−λydy = dI

∫
R+

J(y)(eλρy + e−λρy)dy

is strictly increasing on R+. Then, for any ρ1, ρ2 ∈ R+ with ρ1 < ρ2,

fρ1(λ, c) =dI

∫
R
Jρ1(x)(e−λx1 − 1)dx− cλ+

βΛ

µ
− µ− γ

<dI

∫
R
Jρ2(x)(e−λx1 − 1)dx− cλ+

βΛ

µ
− µ− γ = fρ2(λ, c),

which implies that the graph of λ → f(λ, c) moves upwards as ρ increasing. Thus, the minimal
wave speed cmin is an increasing function of the diffusion distance ρ. Similarly, we can obtain that
the minimal cmin is also an increasing function of the diffusion rate dI and transmission rate β,
and is a decreasing function of the recovery rate γ.

Biologically speaking, it implies that the stronger diffusive ability, larger diffusion rate and
bigger transmission rate will increase the minimal wave speed. However, the bigger recovery rate
will decrease the minimal wave speed.

Here, we should note that cmin is an increasing function of the diffusion rate dI and diffusion
ability ρ, but, these two parameters have some different effect to the minimal wave speed. With
the help of the software MATLAB, we can plot the picture of cmin(dI , ρ) with the two parameters
dI and ρ (see Figure 1). Here, dI is the diffusion rate and ρ is the diffusion ability of the kernel
function (3ρ2 can be explained as the diffusion distance due to the Gaussian kernel function). From
the Figure 1, we see that cmin(dI , ρ) is an increasing function with respect to the parameters dI , ρ.
However, cmin(dI , ρ) is growing much faster with the diffusion ability ρ than the diffusion rate dI .
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Biologically speaking, it implies that if we want to get a small minimal wave speed, making the
diffusion ability weaker is a much more efficient way.

diffusion ability 

0
4

20

40

43

60

c
min

(d
I
, )

3

diffusion rate d
I

80

2
2

1 1

Figure 1: Minimal wave speed cmin(d, ρ) with the parameters βΛ
µ − µ− γ = 1 .

Next, we consider system (1.1) and (1.2) with the Neumann boundary condition and initial
data, S(x, 0) = Λ

µ

[
1− 1

4

(
1 + tanh x

6

)2]
+ s∗, x ∈ Ω,

I(x, 0) = i∗
[
1− 1

4

(
1− tanh x

6

)2]
, x ∈ Ω,

(5.2)

where we assume Ω = [−300, 300] for simplicity. To demonstrate the existence of travelling wave
solutions of the system (1.1) and (1.2), we choose the parameters as dS = dI = 1, ρ = 1, λ =
104, β = 5 ∗ 10−6, γ = 0.2, µ = 0.1. It is easy to show that system (1.1) and (1.2) has two steady
states E0 = (105, 0) and E∗ = (60000, 13333) and the basic reproduction number R0 = βΛ

µ(µ+γ) =
5
3 > 1. From the Lemmas 2.1, we can obtain that the minimal wave speed cmin = 1.421. It follows
from Theorem 1.1 that if R0 > 1 and c > cmin, the system (1.1) and (1.2) has a traveling wave
(S(x+ ct), I(x+ ct)) connecting the E0 and E∗. The existence of the travelling wave solutions of
the system (1.1) and (1.2) can be observed in Figure 2 – 3.
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Figure 2: The left picture denotes the solution S of the system (1.1)–(1.2) with Neumann boundary

conditions and initial data (5.2). From (a) to (f), the solution S(x, t) plots at times t = 0, 2, 4, 10, 40, 80

and behaves as a traveling wave solution and travels from right to left.
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Figure 3: The left picture denotes the solution I of the system (1.1)–(1.2) with Neumann boundary

conditions and initial data (5.2). From (a) to (f), the solution I(x, t) plots at times t = 0, 2, 4, 10, 40, 80

and behaves as a traveling wave solution and travels from right to left.

From the biological considerations, threshold dynamics play an important role in the control
strategies of the disease transmission. Here, the minimal wave speed cmin and the basic reproduc-
tion number R0 are two extremely important parameters in the model (1.1)–(1.2), which describes
the disease transmission qualitatively. Biological speaking, the existence and non-existence of the
travelling wave solutions reveal whether the disease can spread or not. From Theorem 1.1, it can be
seen that if R0 > 1 and c ≥ cmin, then system (1.1)–(1.2) has a traveling wave solution connecting
the infection-free steady state E0 and endemic steady state E∗, which implies that the disease
can spread from the infection-free state to endemic steady state. If R0 > 1 and c ∈ (0, cmin),
there exists no traveling wave solution of the system (1.1)–(1.2), which implies that even if the
reproduction number R0 > 1, the disease cannot spread from the infection-free state to endemic
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steady state as long as the wave speed c ∈ (0, cmin).
Finally, we remark that there are quite a few spaces to deserve further investigations. For ex-

ample, we can study the asymptotic speed of propagation, the uniqueness and stability of traveling
wave solutions in such model. We leave these as our further study.
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