REFERENCES:
Ahmadian, M. R., Stege, P., Scheffzek, K., & Wittinghofer, A. (1997).
Confirmation of the arginine-finger hypothesis for the GAP-stimulated
GTP-hydrolysis reaction of Ras. Nat Struct Biol, 4 (9), 686-689.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9302992
Anastasaki, C., Woo, A. S., Messiaen, L. M., & Gutmann, D. H. (2015).
Elucidating the impact of neurofibromatosis-1 germline mutations on
neurofibromin function and dopamine-based learning. Hum Mol Genet,
24 (12), 3518-3528. doi:10.1093/hmg/ddv103
Baldo, F., Magnolato, A., Barbi, E., & Bruno, I. (2021). Selumetinib
side effects in children treated for plexiform neurofibromas: first case
reports of peripheral edema and hair color change. BMC Pediatrics,
21 (1), 67. doi:10.1186/s12887-021-02530-5
Bonneau, F., Lenherr, E. D., Pena, V., Hart, D. J., & Scheffzek, K.
(2009). Solubility survey of fragments of the neurofibromatosis type 1
protein neurofibromin. Protein Expr Purif, 65 (1), 30-37.
doi:10.1016/j.pep.2008.12.001
Burkitt Wright, E. M., Sach, E., Sharif, S., Quarrell, O., Carroll, T.,
Whitehouse, R. W., . . . Evans, D. G. (2013). Can the diagnosis of NF1
be excluded clinically? A lack of pigmentary findings in families with
spinal neurofibromatosis demonstrates a limitation of clinical
diagnosis. J Med Genet, 50 (9), 606-613.
doi:10.1136/jmedgenet-2013-101648
Carnes, R. M., Kesterson, R. A., Korf, B. R., Mobley, J. A., & Wallis,
D. (2019). Affinity purification of NF1 protein-protein interactors
identifies keratins and neurofibromin itself as binding partners.Genes, in press .
Cichowski, K., & Jacks, T. (2001). NF1 tumor suppressor gene function:
narrowing the GAP. Cell, 104 (11239415), 593-604. Retrieved from
http://www.hubmed.org/display.cgi?uids=11239415
Cichowski, K., Santiago, S., Jardim, M., Johnson, B. W., & Jacks, T.
(2003). Dynamic regulation of the Ras pathway via proteolysis of the NF1
tumor suppressor. Genes Dev, 17 (4), 449-454.
doi:10.1101/gad.1054703
Cui, Y., & Morrison, H. (2019). Construction of cloning-friendly
minigenes for mammalian expression of full-length human NF1 isoforms.Hum Mutat, 40 (2), 187-192. doi:10.1002/humu.23681
Dunzendorfer-Matt, T., Mercado, E. L., Maly, K., McCormick, F., &
Scheffzek, K. (2016). The neurofibromin recruitment factor Spred1 binds
to the GAP related domain without affecting Ras inactivation. Proc
Natl Acad Sci U S A, 113 (27), 7497-7502. doi:10.1073/pnas.1607298113
Frayling, I. M., Mautner, V. F., van Minkelen, R., Kallionpaa, R. A.,
Aktas, S., Baralle, D., . . . Upadhyaya, M. (2019). Breast cancer risk
in neurofibromatosis type 1 is a function of the type of NF1 gene
mutation: a new genotype-phenotype correlation. J Med Genet,
56 (4), 209-219. doi:10.1136/jmedgenet-2018-105599
Hirata, Y., Brems, H., Suzuki, M., Kanamori, M., Okada, M., Morita, R.,
. . . Yoshimura, A. (2016). Interaction between a Domain of the Negative
Regulator of the Ras-ERK Pathway, SPRED1 Protein, and the
GTPase-activating Protein-related Domain of Neurofibromin Is Implicated
in Legius Syndrome and Neurofibromatosis Type 1. J Biol Chem,
291 (7), 3124-3134. doi:10.1074/jbc.M115.703710
Hollstein, P. E., & Cichowski, K. (2013). Identifying the Ubiquitin
Ligase complex that regulates the NF1 tumor suppressor and Ras.Cancer Discov, 3 (8), 880-893. doi:10.1158/2159-8290.CD-13-0146
Kang, E., Kim, Y. M., Seo, G. H., Oh, A., Yoon, H. M., Ra, Y. S., . . .
Lee, B. H. (2020). Phenotype categorization of neurofibromatosis type I
and correlation to NF1 mutation types. J Hum Genet, 65 (2), 79-89.
doi:10.1038/s10038-019-0695-0
Koczkowska, M., Callens, T., Chen, Y., Gomes, A., Hicks, A. D., Sharp,
A., . . . Messiaen, L. M. (2019). Clinical spectrum of individuals with
pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276 and
p.Lys1423: genotype-phenotype study in neurofibromatosis type 1.Hum Mutat . doi:10.1002/humu.23929
Koczkowska, M., Callens, T., Gomes, A., Sharp, A., Chen, Y., Hicks, A.
D., . . . Messiaen, L. M. (2018). Expanding the clinical phenotype of
individuals with a 3-bp in-frame deletion of the NF1 gene
(c.2970_2972del): an update of genotype-phenotype correlation.Genet Med . doi:10.1038/s41436-018-0269-0
Koczkowska, M., Chen, Y., Callens, T., Gomes, A., Sharp, A., Johnson,
S., . . . Messiaen, L. M. (2018). Genotype-Phenotype Correlation in NF1:
Evidence for a More Severe Phenotype Associated with Missense Mutations
Affecting NF1 Codons 844-848. Am J Hum Genet, 102 (1), 69-87.
doi:10.1016/j.ajhg.2017.12.001
Korf, B. R., Henson, J. W., & Stemmer-Rachamimov, A. (2005). Case
records of the Massachusetts General Hospital. Case 13-2005. A
48-year-old man with weakness of the limbs and multiple tumors of spinal
nerves. N Engl J Med, 352 (17), 1800-1808.
doi:10.1056/NEJMcpc059008
Leier, A., Bedwell, D. M., Chen, A. T., Dickson, G., Keeling, K. M.,
Kesterson, R. A., . . . Wallis, D. (2020). Mutation-Directed
Therapeutics for Neurofibromatosis Type I. Mol Ther Nucleic Acids,
20 , 739-753. doi:10.1016/j.omtn.2020.04.012
Lin, Y. C., Boone, M., Meuris, L., Lemmens, I., Van Roy, N., Soete, A.,
. . . Callewaert, N. (2014). Genome dynamics of the human embryonic
kidney 293 lineage in response to cell biology manipulations. Nat
Commun, 5 , 4767. doi:10.1038/ncomms5767
McGillicuddy, L. T., Fromm, J. A., Hollstein, P. E., Kubek, S.,
Beroukhim, R., De Raedt, T., . . . Cichowski, K. (2009). Proteasomal and
genetic inactivation of the NF1 tumor suppressor in gliomagenesis.Cancer Cell, 16 (1), 44-54. doi:10.1016/j.ccr.2009.05.009
Messiaen, L. M., Callens, T., Roux, K., Mortier, G. R., Paepe, A. D.,
Abramowicz, M., . . . Wallace, M. R. (1999). Exon 10b of the NF1 gene
represented a mutational hotspot and harbors a recurrent missense
mutation y489c associated with aberrant splicing. Genetics In
Medicine, 1 , 248. doi:10.1097/00125817-199909000-00002
Rojnueangnit, K., Xie, J., Gomes, A., Sharp, A., Callens, T., Chen, Y.,
. . . Messiaen, L. (2015). High Incidence of Noonan Syndrome Features
Including Short Stature and Pulmonic Stenosis in Patients carrying NF1
Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.Hum Mutat, 36 (11), 1052-1063. doi:10.1002/humu.22832
Ruggieri, M., Polizzi, A., Spalice, A., Salpietro, V., Caltabiano, R.,
D’Orazi, V., . . . Nicita, F. (2015). The natural history of spinal
neurofibromatosis: a critical review of clinical and genetic features.Clin Genet, 87 (5), 401-410. doi:10.1111/cge.12498
Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein,
A., Schmitz, F., & Wittinghofer, A. (1997). The Ras-RasGAP complex:
structural basis for GTPase activation and its loss in oncogenic Ras
mutants. Science, 277 (5324), 333-338. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/9219684
Sermon, B. A., Lowe, P. N., Strom, M., & Eccleston, J. F. (1998). The
importance of two conserved arginine residues for catalysis by the ras
GTPase-activating protein, neurofibromin. J Biol Chem, 273 (16),
9480-9485. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/9545275
Sherekar, M., Han, S. W., Ghirlando, R., Messing, S., Drew, M., Rabara,
D., . . . Esposito, D. (2019). Biochemical and structural analyses
reveal that the tumor suppressor neurofibromin (NF1) forms a
high-affinity dimer. J Biol Chem . doi:10.1074/jbc.RA119.010934
Stowe, I. B., Mercado, E. L., Stowe, T. R., Bell, E. L., Oses-Prieto, J.
A., Hernandez, H., . . . McCormick, F. (2012). A shared molecular
mechanism underlies the human rasopathies Legius syndrome and
Neurofibromatosis-1. Genes Dev, 26 (13), 1421-1426.
doi:10.1101/gad.190876.112
Tabata, M. M., Li, S., Knight, P., Bakker, A., & Sarin, K. Y. (2020).
Phenotypic heterogeneity of neurofibromatosis type 1 in a large
international registry. JCI Insight, 5 (16).
doi:10.1172/jci.insight.136262
Tan, M., Zhao, Y., Kim, S. J., Liu, M., Jia, L., Saunders, T. L., . . .
Sun, Y. (2011). SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for
vascular and neural development by targeting NF1 for degradation.Dev Cell, 21 (6), 1062-1076. doi:10.1016/j.devcel.2011.09.014
Trevisson, E., Morbidoni, V., Forzan, M., Daolio, C., Fumini, V.,
Parrozzani, R., . . . Clementi, M. (2019). The Arg1038Gly missense
variant in the NF1 gene causes a mild phenotype without neurofibromas.Mol Genet Genomic Med, 7 (5), e616. doi:10.1002/mgg3.616
Upadhyaya, M., Huson, S. M., Davies, M., Thomas, N., Chuzhanova, N.,
Giovannini, S., . . . Messiaen, L. (2007). An absence of cutaneous
neurofibromas associated with a 3-bp inframe deletion in exon 17 of the
NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1
genotype-phenotype correlation. Am J Hum Genet, 80 (1), 140-151.
doi:10.1086/510781
Wallis, D., Li, K., Lui, H., Hu, K., Chen, M. J., Li, J., . . .
Kesterson, R. A. (2018). Neurofibromin (NF1) genetic variant
structure-function analyses using a full-length mouse cDNA. Hum
Mutat, 39 , 816-821. doi:10.1002/humu.23421
Yan, W., Markegard, E., Dharmaiah, S., Urisman, A., Drew, M., Esposito,
D., . . . Simanshu, D. K. (2020). Structural Insights into the
SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin
Interaction by Oncogenic EGFR. Cell Rep, 32 (3), 107909.
doi:10.1016/j.celrep.2020.107909
Zheng, Z. Y., Anurag, M., Lei, J. T., Cao, J., Singh, P., Peng, J., . .
. Chang, E. C. (2020). Neurofibromin Is an Estrogen Receptor-alpha
Transcriptional Co-repressor in Breast Cancer. Cancer Cell,
37 (3), 387-402 e387. doi:10.1016/j.ccell.2020.02.003
Acknowledgements: This work was partially supported through the
Gilbert Family Foundation’s Gene Therapy Initiative grant numbers:
563676 to DMB and 563624 to DW.