Figure 3. Modeled univariate relationships (means and 95% confidence intervals) for the four most important moderators of effect size across all intensity data (top row), and prevalence data (bottom row). Results from mixed‐effects models are sorted by study traits. Interaction type: consumptive or non-consumptive. Parasite type: macroparasite or microparasite. Predator-spreader identity: identified as a predator-spreader or not. The dashed line represents no relationship between condition and infection.
REFERENCES
Agboton, B. V., Hanna, R., Onzo, A., Vidal, S., & von Tiedemann, A. (2013). Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa.Experimental and Applied Acarology , 60, 205-217.
Barber-Meyer, S. M., White, P. J., & Mech, L. D. (2007). Survey of selected pathogens and blood parameters of northern Yellowstone elk: wolf sanitation effect implications. The American Midland Naturalist , 158, 369-381.
Baverstock, J., Clark, S. J., Alderson, P. G., & Pell, J. K. (2009). Intraguild interactions between the entomopathogenic fungus Pandora neoaphidis and an aphid predator and parasitoid at the population scale.Journal of invertebrate pathology , 102, 167-172.
Bertram, C. R., Pinkowski, M., Hall, S. R., Duffy, M. A., & Cáceres, C. E. (2013). Trait-mediated indirect effects, predators, and disease: test of a size-based model. Oecologia , 173, 1023-1032.
Borenstein, M., Higgins, J.P., Hedges, L.V. & Rothstein, H.R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity.Res. Synth. Methods, 8, 5–18.
Borer, E.T., Briggs, C.J. & Holt, R.D. (2007). Predators, parasitoids, and pathogens: a cross-cutting examination of intraguild predation theory.Ecology, 88, 2681–2688.
Brodeur, J. & Rosenheim, J.A. (2000). Intraguild interactions in aphid parasitoids.Entomol. Exp. Appl., 97, 93–108.
Brown, J.S., Kotler, B.P., Smith, R.J. & Wirtz, W.O. (1988). The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia, 76, 408–415.
Buss, N., & Hua, J. (2018). Parasite susceptibility in an amphibian host is modified by salinization and predators. Environmental Pollution , 236, 754-763.
Byers, J.E., Malek, A.J., Quevillon, L.E., Altman, I. & Keogh, C.L. (2015). Opposing selective pressures decouple pattern and process of parasitic infection over small spatial scale. Oikos, 124, 1511–1519.
Cáceres, C.E., Knight, C.J. & Hall, S.R. (2009). Predator–spreaders: predation can enhance parasite success in a planktonic host–parasite system. Ecology, 90, 2850–2858.
Chacón, J. M., Landis, D. A., & Heimpel, G. E. (2008). Potential for biotic interference of a classical biological control agent of the soybean aphid. Biological Control , 46, 216-225.
Chailleux, A., Wajnberg, E., Zhou, Y., Amiens-Desneux, E., & Desneux, N. (2014). New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey. Naturwissenschaften , 101, 1075-1083.
Chailleux, A., Droui, A., Bearez, P., & Desneux, N. (2017). Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta.Ecology and evolution , 7, 8329-8337.
Chesson, P. & Murdoch, W. (1986). Aggregation of Risk - Relationships Among Host-Parasitoid Models. Am. Nat., 127, 696–715.
Choisy, M. & Rohani, P. (2006). Harvesting can increase severity of wildlife disease epidemics. Proc. R. Soc. B Biol. Sci., 273, 2025–2034.
Colfer, R. G., & Rosenheim, J. A. (2001). Predation on immature parasitoids and its impact on aphid suppression. Oecologia , 126, 292-304.
Coors, A., & De Meester, L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology , 45, 1820-1828.
Creel, S., Schuette, P. & Christianson, D. (2014). Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community.Behav. Ecol., 25, 773–784.
Dobson, A.P. (1989). The population biology of parasitic helminths in animal populations. In:Applied mathematical ecology. Springer, pp. 145–175.
Duffy, M.A., Caceres, C.E. & Hall, S.R. (2019). Healthy herds or predator spreaders? Insights from the plankton into how predators suppress and spread disease.Wildl. Dis. Ecol. Link. Theory Data Appl., 458.
Duval, S. & Tweedie, R. (2000). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc., 95, 89–98.
Ekesi, S., Shah, P. A., Clark, S. J., & Pell, J. K. (2005). Conservation biological control with the fungal pathogen Pandora neoaphidis: implications of aphid species, host plant and predator foraging. Agricultural and Forest Entomology , 7, 21-30.
Ezenwa, V.O. (2004). Host social behavior and parasitic infection: a multifactorial approach.Behav. Ecol., 15, 446–454.
Ezenwa, V.O. & Jolles, A.E. (2011). From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Oxford University Press.
Ferguson, K. I., & Stiling, P. (1996). Non-additive effects of multiple natural enemies on aphid populations. Oecologia , 108, 375-379.
Goertz, D. R., & Hoch, G. (2013). Effects of the ant F ormica fusca on the transmission of microsporidia infecting gypsy moth larvae.Entomologia experimentalis et applicata , 147, 251-261.
Groner, M. L., & Relyea, R. A. (2015). Predators reduce B atrachochytrium dendrobatidis infection loads in their prey.Freshwater Biology , 60, 1699-1704.
Haislip, N. A., Hoverman, J. T., Miller, D. L., & Gray, M. J. (2012). Natural stressors and disease risk: does the threat of predation increase amphibian susceptibility to ranavirus?. Canadian Journal of Zoology , 90, 893-902.
Halstead, N. T., Hoover, C. M., Arakala, A., Civitello, D. J., De Leo, G. A., Gambhir, M., … & Rohr, J. R. (2018). Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nature communications , 9, 1-10.
Harvey, C. T., & Eubanks, M. D. (2005). Intraguild predation of parasitoids by Solenopsis invicta: a non‐disruptive interaction.Entomologia Experimentalis et Applicata , 114, 127-135.
Hassell, M.P. (1982). Patterns of parasitism by insect parasitoids in patchy environments.Ecol. Entomol., 7, 365–377.
Hatcher, M.J., Dick, J.T.A. & Dunn, A.M. (2006). How parasites affect interactions between competitors and predators. Ecol. Lett., 9, 1253–1271.
Hawlena, D., Abramsky, Z. & Bouskila, A. (2010). Bird predation alters infestation of desert lizards by parasitic mites. Oikos, 119, 730–736.
Heimpel, G.E., Rosenheim, J.A. & Mangel, M. (1997). Predation on adult Aphytis parasitoids in the field. Oecologia, 110, 346–352.
Hethcote, H.W., Wang, W., Han, L. & Ma, Z. (2004). A predator–prey model with infected prey.Theor. Popul. Biol., 66, 259–268.
Higgins, J.P. & Thompson, S.G. (2002). Quantifying heterogeneity in a meta-analysis.Stat. Med., 21, 1539–1558.
Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M.,et al. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci., 112, 12764–12769.
Hofmeester, T. R., Jansen, P. A., Wijnen, H. J., Coipan, E. C., Fonville, M., Prins, H. H., et al. (2017). Cascading effects of predator activity on tick-borne disease risk. Proceedings of the Royal Society B: Biological Sciences , 284, 20170453.
Holt, R. & Lawton, J. (1994). The Ecological Consequences of Shared Natural Enemies.Annu. Rev. Ecol. Syst., 25, 495–520.
Holt, R.D. & Polis, G.A. (1997). A theoretical framework for intraguild predation. Am. Nat., 149, 745–764.
Holt, R.D. & Roy, M. (2007). Predation can increase the prevalence of infectious disease.Am. Nat., 169, 690–699.
Hudson, P.J., Dobson, A.P. & Newborn, D. (1992a). Do parasites make prey vulnerable to predation? Red grouse and parasites. J. Anim. Ecol., 681–692.
Hudson, P.J., Newborn, D. & Dobson, A.P. (1992b). Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in red grouse. I. Monitoring and parasite reduction experiments. J. Anim. Ecol., 477–486.
Jansen, M., De Meester, L., Cielen, A., Buser, C. C., & Stoks, R. (2011). The interplay of past and current stress exposure on the water flea Daphnia. Functional Ecology , 25, 974-982.
Jolles, A.E., Ezenwa, V.O., Etienne, R.S., Turner, W.C. & Olff, H. (2008). Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology, 89, 2239–2250.
Jones, E.I. & Dornhaus, A. (2011). Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behav. Ecol. Sociobiol., 65, 1505–1511.
Kaneko, S. (2007). Predator and parasitoid attacking ant-attended aphids: effects of predator presence and attending ant species on emerging parasitoid numbers. Ecological Research , 22, 451-458.
King, R.B. (2002). Predicted and observed maximum prey size - snake size allometry.Funct. Ecol., 16, 766–772.
Koprivnikar, J., & Urichuk, T. M. (2017). Time-lagged effect of predators on tadpole behaviour and parasite infection. Biology letters , 13, 20170440.
Krebs, C.J., Boonstra, R., Kenney, A.J. & Gilbert, B.S. (2018). Hares and small rodent cycles: a 45-year perspective on predator-prey dynamics in the Yukon boreal forest. Aust. Zool., 39, 724–732.
Krebs, C.J., Boutin, S., Boonstra, R., Sinclair, A.R.E., Smith, J.N.M., Dale, M.R.T.,et al. (1995). Impact of Food and Predation on the Snowshoe Hare Cycle. Science, 269, 1112–1115.
Kuris, A.M. (2003). Evolutionary ecology of trophically transmitted parasites. J. Parasitol., 89, S96–S100.
Lafferty, K.D. (1999). The evolution of trophic transmission. Parasitol. Today, 15, 111–115.
Laws, A. N., Frauendorf, T. C., Gomez, J. E., & Algaze, I. M. (2009). Predators mediate the effects of a fungal pathogen on prey: an experiment with grasshoppers, wolf spiders, and fungal pathogens.Ecological Entomology , 34, 702-708.
Logiudice, K. (2003). Trophically transmitted parasites and the conservation of small populations: raccoon roundworm and the imperiled Allegheny woodrat.Conserv. Biol., 17, 258–266.
Malek, J. C., & Byers, J. E. (2016). Predator effects on host-parasite interactions in the eastern oyster Crassostrea virginica. Marine Ecology Progress Series , 556, 131-141.
Marino Jr, J. A., & Werner, E. E. (2013). Synergistic effects of predators and trematode parasites on larval green frog (Rana clamitans) survival. Ecology , 94, 2697-2708.
Marino Jr, J. A., Holland, M. P., & Werner, E. E. (2016). Competition and host size mediate larval anuran interactions with trematode parasites. Freshwater Biology , 61, 621-632.
Martin, C. H., & Johnsen, S. (2007). A field test of the Hamilton–Zuk hypothesis in the Trinidadian guppy (Poecilia reticulata).Behavioral Ecology and Sociobiology , 61, 1897-1909.
Memmott, J., Godfray, H. C. J., & Bolton, B. (1993). Predation and parasitism in a tropical herbivore community. Depredación y parasitismo en una comunidad herbívora tropical. Ecological Entomology. , 18, 348-352.
Michonneau, F., Brown, J.W. & Winter, D.J. (2016). rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol., 7, 1476–1481.
Mohammed, A. A. (2018). Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae.BioControl , 63, 277-287.
Moore, J. (2002).Parasites and the behavior of animals. Oxford University Press on Demand.
Naselli, M., Biondi, A., Tropea Garzia, G., Desneux, N., Russo, A., Siscaro, G., et al. (2017). Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci., 73, 1352–1357.
Nilsson, P.A. & Brönmark, C. (2000). Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory.Oikos, 88, 539–546.
O’Connor, J. A., Dudaniec, R. Y., & Kleindorfer, S. (2010). Parasite infestation and predation in Darwin’s small ground finch: contrasting two elevational habitats between islands. Journal of Tropical Ecology , 285-292.
Orlofske, S. A., Jadin, R. C., Hoverman, J. T., & Johnson, P. T. (2014). Predation and disease: understanding the effects of predators at several trophic levels on pathogen transmission. Freshwater Biology , 59, 1064-1075.
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., et al.(2018). caper: Comparative Analyses of Phylogenetics and Evolution in R.
Ostfeld, R.S. & Holt, R.D. (2004). Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ., 2, 13–20.
Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D. & Dobson, A.P. (2003). Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett., 6, 797–802.
Pagel, M. (1999). Inferring the historical patterns of biological evolution.Nature, 401, 877–884.
Paradis, E. & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Patterson, J.E. & Ruckstuhl, K.E. (2013). Parasite infection and host group size: a meta-analytical review. Parasitology, 140, 803–813.
Peacock, S. J., Krkošek, M., Bateman, A. W., & Lewis, M. A. (2015). Parasitism and food web dynamics of juvenile Pacific salmon.Ecosphere , 6, 1-16.
Pedersen, A.B. & Fenton, A. (2007). Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol., 22, 133–139.
Penczykowski, R. M., Hall, S. R., Civitello, D. J., & Duffy, M. A. (2014). Habitat structure and ecological drivers of disease.Limnology and Oceanography , 59, 340-348.
Pérez-Jvostov, F., Hendry, A. P., Fussmann, G. F., & Scott, M. E. (2012). Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia , 170, 77-88.
Raffel, T. R., Hoverman, J. T., Halstead, N. T., Michel, P. J., & Rohr, J. R. (2010). Parasitism in a community context: trait‐mediated interactions with competition and predation. Ecology , 91, 1900-1907.
Ramírez-Ahuja, M. d. L., Rodríguez-Leyva, E., Lomeli-Flores, J. R., Torres-Ruiz, A., & Guzmán-Franco, A. W. (2017). Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid, Bactericera cockerelli. Biological Control , 106, 9-15.
Reeve, B. C., Crespi, E. J., Whipps, C. M., & Brunner, J. L. (2013). Natural stressors and ranavirus susceptibility in larval wood frogs (Rana sylvatica). EcoHealth , 10, 190-200.
Roux, O., Vantaux, A., Roche, B., Yameogo, K. B., Dabiré, K. R., Diabaté, A., et al. (2015). Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proceedings of the Royal Society B: Biological Sciences , 282, 20152430.
Roy, H. E., Pell, J. K., Clark, S. J., & Alderson, P. G. (1998). Implications of predator foraging on aphid pathogen dynamics.Journal of Invertebrate Pathology , 71, 236-247.
Roy, M. & Holt, R.D. (2008). Effects of predation on host–pathogen dynamics in SIR models.Theor. Popul. Biol., 73, 319–331.
Shaw, D.J. & Dobson, A.P. (1995). Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology, 111, S111–S133.
Sokolow, S. H., Huttinger, E., Jouanard, N., Hsieh, M. H., Lafferty, K. D., Kuris, A. M., et al. (2015). Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proceedings of the National Academy of Sciences , 112, 9650-9655.
Spieler, M. (2003). Risk of predation affects aggregation size: a study with tadpoles of Phrynomantis microps (Anura: Microhylidae). Anim. Behav., 65, 179–184.
Stephenson, J. F., Van Oosterhout, C., Mohammed, R. S., & Cable, J. (2015). Parasites of Trinidadian guppies: evidence for sex‐and age‐specific trait‐mediated indirect effects of predators.Ecology , 96, 489-498.
Strauss, A.T., Shocket, M.S., Civitello, D.J., Hite, J.L., Penczykowski, R.M., Duffy, M.A., et al. (2016). Habitat, predators, and hosts regulate disease in Daphnia through direct and indirect pathways. Ecol. Monogr., 86, 393–411.
Szuroczki, D. & Richardson, J.M. (2012). The behavioral response of larval amphibians (Ranidae) to threats from predators and parasites. PLoS One, 7, e49592.
Szuroczki, D., & Richardson, J. M. (2018). Correction: The Behavioral Response of Larval Amphibians (Ranidae) to Threats from Predators and Parasites. PloS one , 13, e0203252.
Tallian, A., Ordiz, A., Metz, M.C., Milleret, C., Wikenros, C., Smith, D.W., et al.(2017). Competition between apex predators? Brown bears decrease wolf kill rate on two continents. Proc. R. Soc. B Biol. Sci., 284, 20162368.
Tan, X., Hu, N., Zhang, F., Ramirez-Romero, R., Desneux, N., Wang, S., & Ge, F. (2016). Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Scientific Reports , 6, 1-9.
Thiemann, G. W., & Wassersug, R. J. (2000). Patterns and consequences of behavioural responses to predators and parasites in Rana tadpoles.Biological Journal of the Linnean Society , 71, 513-528.
Tompkins, D.M. & Begon, M. (1999). Parasites can regulate wildlife populations.Parasitol. Today, 15, 311–313.
Trandem, N., Berdinesen, R., Pell, J. K., & Klingen, I. (2016). Interactions between natural enemies: Effect of a predatory mite on transmission of the fungus Neozygites floridana in two-spotted spider mite populations. Journal of invertebrate pathology , 134, 35-37.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. J. Stat. Softw., 36, 1–48.
Yin, M., Laforsch, C., Lohr, J. N., & Wolinska, J. (2011). Predator‐induced defense makes Daphnia more vulnerable to parasites.Evolution: International Journal of Organic Evolution , 65, 1482-1488.