REFERENCES
1. Lakeman MM, van der Vaart CH, Laan E, Roovers JPW. The effect of
prolapse surgery on vaginal sensibility. The journal of sexual medicine.
2011;8(4):1239-45.
2. Weber MA, Lakeman MM, Laan E, Roovers JPW. The effects of vaginal
prolapse surgery using synthetic mesh on vaginal wall sensibility,
vaginal vasocongestion, and sexual function: a prospective single‐center
study. The journal of sexual medicine. 2014;11(7):1848-55.
3. Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, et al.
Vaginal degeneration following implantation of synthetic mesh with
increased stiffness. BJOG: An International Journal of Obstetrics &
Gynaecology. 2013;120(2):233-43.
4. Hympánová L, Rynkevic R, Román S, da Cunha MGM, Mazza E, Zündel M, et
al. Assessment of electrospun and ultra-lightweight polypropylene meshes
in the sheep model for vaginal surgery. European urology focus. 2018.
5. Birch C, Fynes MM. The role of synthetic and biological prostheses in
reconstructive pelvic floor surgery. Current Opinion in Obstetrics and
Gynecology. 2002;14(5):527-35.
6. Barone WR, Moalli PA, Abramowitch SD. Textile properties of synthetic
prolapse mesh in response to uniaxial loading. American journal of
obstetrics and gynecology. 2016;215(3):326. e1-. e9.
7. Kelly M, Macdougall K, Olabisi O, McGuire N. In vivo response to
polypropylene following implantation in animal models: a review of
biocompatibility. International urogynecology journal.
2017;28(2):171-80.
8. Jones KA, Shepherd JP, Oliphant SS, Wang L, Bunker CH, Lowder JL.
Trends in inpatient prolapse procedures in the United States,
1979–2006. American journal of obstetrics and gynecology.
2010;202(5):501. e1-. e7.
9. Reinier M, Groep G. Final Opinion on the use of meshes in
urogynecological surgery. SCENIHR-European Commission. 2016.
10. Diedrich CM, Roovers JP, Smit TH, Guler Z. Fully absorbable
poly-4-hydroxybutyrate implants exhibit more favorable cell-matrix
interactions than polypropylene. Materials Science and Engineering: C.
2020:111702.
11. Huisman GW, Skraly F, Martin DP, Peoples OP. Biological systems for
manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids.
Google Patents; 2001.
12. Nelson T, Kaufman E, Kline J, Sokoloff L. The extraneural
distribution of γ‐hydroxybutyrate. Journal of neurochemistry.
1981;37(5):1345-8.
13. Martin DP, Williams SF. Medical applications of
poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial.
Biochemical engineering journal. 2003;16(2):97-105.
14. Martin DP, Badhwar A, Shah DV, Rizk S, Eldridge SN, Gagne DH, et al.
Characterization of poly-4-hydroxybutyrate mesh for hernia repair
applications. journal of surgical research. 2013;184(2):766-73.
15. Couri BM, Lenis AT, Borazjani A, Paraiso MFR, Damaser MS. Animal
models of female pelvic organ prolapse: lessons learned. Expert review
of obstetrics & gynecology. 2012;7(3):249-60.
16. Young N, Rosamilia A, Arkwright J, Lee J, Davies-Tuck M, Melendez J,
et al. Vaginal wall weakness in parous ewes: a potential preclinical
model of pelvic organ prolapse. International Urogynecology Journal.
2017;28(7):999-1004.
17. Hympanova L, Rynkevic R, Zündel M, Gallego MR, Vange J, Callewaert
G, et al. Physiologic musculofascial compliance following reinforcement
with electrospun polycaprolactone-ureidopyrimidinone mesh in a rat
model. Journal of the mechanical behavior of biomedical materials.
2017;74:349-57.
18. Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M,
Deprest J. Shrinkage and biomechanical evaluation of lightweight
synthetics in a rabbit model for primary fascial repair. International
urogynecology journal. 2011;22(9):1099.
19. Hympanova L, Rynkevic R, Wach RA, Olejnik AK, Dankers PY, Arts B, et
al. Experimental reconstruction of an abdominal wall defect with
electrospun polycaprolactone-ureidopyrimidinone mesh conserves
compliance yet may have insufficient strength. Journal of the mechanical
behavior of biomedical materials. 2018;88:431-41.
20. Deeken CR, Matthews BD. Characterization of the mechanical strength,
resorption properties, and histologic characteristics of a fully
absorbable material (poly-4-hydroxybutyrate—PHASIX Mesh) in a porcine
model of hernia repair. ISRN surgery. 2013;2013.
21. Roman S, Urbánková I, Callewaert G, Lesage F, Hillary C, Osman NI,
et al. Evaluating alternative materials for the treatment of stress
urinary incontinence and pelvic organ prolapse: a comparison of the in
vivo response to meshes implanted in rabbits. The Journal of urology.
2016;196(1):261-9.
22. Feola A, Endo M, Urbankova I, Vlacil J, Deprest T, Bettin S, et al.
Host reaction to vaginally inserted collagen containing polypropylene
implants in sheep. American journal of obstetrics and gynecology.
2015;212(4):474. e1-. e8.
23. Hjort H, Mathisen T, Alves A, Clermont G, Boutrand J. Three-year
results from a preclinical implantation study of a long-term resorbable
surgical mesh with time-dependent mechanical characteristics. Hernia.
2012;16(2):191-7.
24. Liang R, Knight K, Abramowitch S, Moalli PA. Exploring the basic
science of prolapse meshes. Current opinion in obstetrics & gynecology.
2016;28(5):413.
25. Nolfi AL, Brown BN, Liang R, Palcsey SL, Bonidie MJ, Abramowitch SD,
et al. Host response to synthetic mesh in women with mesh complications.
American journal of obstetrics and gynecology. 2016;215(2):206. e1-. e8.
26. Sand PK, Koduri S, Lobel RW, Winkler HA, Tomezsko J, Culligan PJ, et
al. Prospective randomized trial of polyglactin 910 mesh to prevent
recurrence of cystoceles and rectoceles. American journal of obstetrics
and gynecology. 2001;184(7):1357-64.
27. De Tayrac R, Deffieux X, Gervaise A, Chauveaud-Lambling A, Fernandez
H. Long-term anatomical and functional assessment of trans-vaginal
cystocele repair using a tension-free polypropylene mesh. International
Urogynecology Journal. 2006;17(5):483-8.
28. Ramanah R, Mairot J, Clement M-C, Parratte B, Maillet R, Riethmuller
D. Evaluating the porcine dermis graft InteXen® in three-compartment
transvaginal pelvic organ prolapse repair. International urogynecology
journal. 2010;21(9):1151-6.
29. Armitage S, Seman EI, Keirse MJ. Use of surgisis for treatment of
anterior and posterior vaginal prolapse. Obstetrics and gynecology
international. 2012;2012.
30. Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, et
al. Deterioration in biomechanical properties of the vagina following
implantation of a high‐stiffness prolapse mesh. BJOG: An International
Journal of Obstetrics & Gynaecology. 2013;120(2):224-32.
31. Brodbeck WG, MacEwan M, Colton E, Meyerson H, Anderson JM.
Lymphocytes and the foreign body response: lymphocyte enhancement of
macrophage adhesion and fusion. Journal of Biomedical Materials Research
Part A: An Official Journal of The Society for Biomaterials, The
Japanese Society for Biomaterials, and The Australian Society for
Biomaterials and the Korean Society for Biomaterials. 2005;74(2):222-9.
32. Cima LG. Polymer substrates for controlled biological interactions.
Journal of cellular biochemistry. 1994;56(2):155-61.
33. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, et al.
Macrophage phenotype as a predictor of constructive remodeling following
the implantation of biologically derived surgical mesh materials. Acta
biomaterialia. 2012;8(3):978-87.
34. Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage
phenotype at the biomaterial interface via IL-4 eluting coatings are
associated with improved implant integration. Biomaterials.
2017;112:95-107.
35. Vashaghian M, Zandieh-Doulabi B, Smit T, Roovers J-P. Characterizing
electrospun PLGA/PCL matrices for reconstructive pelvic surgery: A role
of fiber diameter in new matrix formation and fibrosis.
36. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic
translation for fibrotic disease. Nature medicine. 2012;18(7):1028.
37. Burden N, Chapman K, Sewell F, Robinson V. Pioneering better science
through the 3Rs: an introduction to the national centre for the
replacement, refinement, and reduction of animals in research (NC3Rs).
Journal of the American Association for Laboratory Animal Science.
2015;54(2):198-208.