REFERENCES
1. Lakeman MM, van der Vaart CH, Laan E, Roovers JPW. The effect of prolapse surgery on vaginal sensibility. The journal of sexual medicine. 2011;8(4):1239-45.
2. Weber MA, Lakeman MM, Laan E, Roovers JPW. The effects of vaginal prolapse surgery using synthetic mesh on vaginal wall sensibility, vaginal vasocongestion, and sexual function: a prospective single‐center study. The journal of sexual medicine. 2014;11(7):1848-55.
3. Liang R, Abramowitch S, Knight K, Palcsey S, Nolfi A, Feola A, et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG: An International Journal of Obstetrics & Gynaecology. 2013;120(2):233-43.
4. Hympánová L, Rynkevic R, Román S, da Cunha MGM, Mazza E, Zündel M, et al. Assessment of electrospun and ultra-lightweight polypropylene meshes in the sheep model for vaginal surgery. European urology focus. 2018.
5. Birch C, Fynes MM. The role of synthetic and biological prostheses in reconstructive pelvic floor surgery. Current Opinion in Obstetrics and Gynecology. 2002;14(5):527-35.
6. Barone WR, Moalli PA, Abramowitch SD. Textile properties of synthetic prolapse mesh in response to uniaxial loading. American journal of obstetrics and gynecology. 2016;215(3):326. e1-. e9.
7. Kelly M, Macdougall K, Olabisi O, McGuire N. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility. International urogynecology journal. 2017;28(2):171-80.
8. Jones KA, Shepherd JP, Oliphant SS, Wang L, Bunker CH, Lowder JL. Trends in inpatient prolapse procedures in the United States, 1979–2006. American journal of obstetrics and gynecology. 2010;202(5):501. e1-. e7.
9. Reinier M, Groep G. Final Opinion on the use of meshes in urogynecological surgery. SCENIHR-European Commission. 2016.
10. Diedrich CM, Roovers JP, Smit TH, Guler Z. Fully absorbable poly-4-hydroxybutyrate implants exhibit more favorable cell-matrix interactions than polypropylene. Materials Science and Engineering: C. 2020:111702.
11. Huisman GW, Skraly F, Martin DP, Peoples OP. Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids. Google Patents; 2001.
12. Nelson T, Kaufman E, Kline J, Sokoloff L. The extraneural distribution of γ‐hydroxybutyrate. Journal of neurochemistry. 1981;37(5):1345-8.
13. Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochemical engineering journal. 2003;16(2):97-105.
14. Martin DP, Badhwar A, Shah DV, Rizk S, Eldridge SN, Gagne DH, et al. Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications. journal of surgical research. 2013;184(2):766-73.
15. Couri BM, Lenis AT, Borazjani A, Paraiso MFR, Damaser MS. Animal models of female pelvic organ prolapse: lessons learned. Expert review of obstetrics & gynecology. 2012;7(3):249-60.
16. Young N, Rosamilia A, Arkwright J, Lee J, Davies-Tuck M, Melendez J, et al. Vaginal wall weakness in parous ewes: a potential preclinical model of pelvic organ prolapse. International Urogynecology Journal. 2017;28(7):999-1004.
17. Hympanova L, Rynkevic R, Zündel M, Gallego MR, Vange J, Callewaert G, et al. Physiologic musculofascial compliance following reinforcement with electrospun polycaprolactone-ureidopyrimidinone mesh in a rat model. Journal of the mechanical behavior of biomedical materials. 2017;74:349-57.
18. Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J. Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. International urogynecology journal. 2011;22(9):1099.
19. Hympanova L, Rynkevic R, Wach RA, Olejnik AK, Dankers PY, Arts B, et al. Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. Journal of the mechanical behavior of biomedical materials. 2018;88:431-41.
20. Deeken CR, Matthews BD. Characterization of the mechanical strength, resorption properties, and histologic characteristics of a fully absorbable material (poly-4-hydroxybutyrate—PHASIX Mesh) in a porcine model of hernia repair. ISRN surgery. 2013;2013.
21. Roman S, Urbánková I, Callewaert G, Lesage F, Hillary C, Osman NI, et al. Evaluating alternative materials for the treatment of stress urinary incontinence and pelvic organ prolapse: a comparison of the in vivo response to meshes implanted in rabbits. The Journal of urology. 2016;196(1):261-9.
22. Feola A, Endo M, Urbankova I, Vlacil J, Deprest T, Bettin S, et al. Host reaction to vaginally inserted collagen containing polypropylene implants in sheep. American journal of obstetrics and gynecology. 2015;212(4):474. e1-. e8.
23. Hjort H, Mathisen T, Alves A, Clermont G, Boutrand J. Three-year results from a preclinical implantation study of a long-term resorbable surgical mesh with time-dependent mechanical characteristics. Hernia. 2012;16(2):191-7.
24. Liang R, Knight K, Abramowitch S, Moalli PA. Exploring the basic science of prolapse meshes. Current opinion in obstetrics & gynecology. 2016;28(5):413.
25. Nolfi AL, Brown BN, Liang R, Palcsey SL, Bonidie MJ, Abramowitch SD, et al. Host response to synthetic mesh in women with mesh complications. American journal of obstetrics and gynecology. 2016;215(2):206. e1-. e8.
26. Sand PK, Koduri S, Lobel RW, Winkler HA, Tomezsko J, Culligan PJ, et al. Prospective randomized trial of polyglactin 910 mesh to prevent recurrence of cystoceles and rectoceles. American journal of obstetrics and gynecology. 2001;184(7):1357-64.
27. De Tayrac R, Deffieux X, Gervaise A, Chauveaud-Lambling A, Fernandez H. Long-term anatomical and functional assessment of trans-vaginal cystocele repair using a tension-free polypropylene mesh. International Urogynecology Journal. 2006;17(5):483-8.
28. Ramanah R, Mairot J, Clement M-C, Parratte B, Maillet R, Riethmuller D. Evaluating the porcine dermis graft InteXen® in three-compartment transvaginal pelvic organ prolapse repair. International urogynecology journal. 2010;21(9):1151-6.
29. Armitage S, Seman EI, Keirse MJ. Use of surgisis for treatment of anterior and posterior vaginal prolapse. Obstetrics and gynecology international. 2012;2012.
30. Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, et al. Deterioration in biomechanical properties of the vagina following implantation of a high‐stiffness prolapse mesh. BJOG: An International Journal of Obstetrics & Gynaecology. 2013;120(2):224-32.
31. Brodbeck WG, MacEwan M, Colton E, Meyerson H, Anderson JM. Lymphocytes and the foreign body response: lymphocyte enhancement of macrophage adhesion and fusion. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2005;74(2):222-9.
32. Cima LG. Polymer substrates for controlled biological interactions. Journal of cellular biochemistry. 1994;56(2):155-61.
33. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta biomaterialia. 2012;8(3):978-87.
34. Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials. 2017;112:95-107.
35. Vashaghian M, Zandieh-Doulabi B, Smit T, Roovers J-P. Characterizing electrospun PLGA/PCL matrices for reconstructive pelvic surgery: A role of fiber diameter in new matrix formation and fibrosis.
36. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature medicine. 2012;18(7):1028.
37. Burden N, Chapman K, Sewell F, Robinson V. Pioneering better science through the 3Rs: an introduction to the national centre for the replacement, refinement, and reduction of animals in research (NC3Rs). Journal of the American Association for Laboratory Animal Science. 2015;54(2):198-208.