References
1. Burkhardt B, Zimmermann M, Oschlies I, et al. The impact of age and
gender on biology, clinical features and treatment outcome of
non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol .
2005;131(1):39-49.
2. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the
World Health Organization classification of lymphoid neoplasms.Blood . 2016;127(20):2375-2390.
3. Molyneux EM, Rochford R, Griffin B, et al. Burkitt’s lymphoma.Lancet . 2012;379(9822):1234-1244.
4. Woessmann W, Zimmermann M, Meinhardt A, et al. Progressive or
relapsed Burkitt lymphoma or leukemia in children and adolescents after
BFM-type first-line therapy. Blood . 2020;135(14):1124-1132.
5. Woessmann W, Seidemann K, Mann G, et al. The impact of the
methotrexate administration schedule and dose in the treatment of
children and adolescents with B-cell neoplasms: a report of the BFM
Group Study NHL-BFM95. Blood . 2005;105(3):948-958.
6. Minard-Colin V, Aupérin A, Pillon M, et al. Rituximab for High-Risk,
Mature B-Cell Non-Hodgkin’s Lymphoma in Children. N Engl J Med .
2020;382(23):2207-2219.
7. Burkhardt B, Taj M, Garnier N, et al. Treatment and Outcome Analysis
of 639 Relapsed Non-Hodgkin Lymphomas in Children and Adolescents and
Resulting Treatment Recommendations. Cancers (Basel) . 2021;13(9).
8. Pishko A, Nasta SD. The role of novel immunotherapies in non-Hodgkin
lymphoma. Transl Cancer Res . 2017;6(1):93-103.
9. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II window study
on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s
lymphoma and Burkitt leukemia. J Clin Oncol .
2010;28(19):3115-3121.
10. Hampson G, Ward TH, Cummings J, et al. Validation of an ELISA for
the determination of rituximab pharmacokinetics in clinical trials
subjects. J Immunol Methods . 2010;360(1-2):30-38.
11. Zhuang Y, Xu W, Shen Y, Li J. Fcγ receptor polymorphisms and
clinical efficacy of rituximab in non-Hodgkin lymphoma and chronic
lymphocytic leukemia. Clin Lymphoma Myeloma Leuk .
2010;10(5):347-352.
12. Kapellos TS, Bonaguro L, Gemünd I, et al. Human Monocyte Subsets and
Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol .
2019;10:2035.
13. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and
characterization of a novel monocyte subpopulation in human peripheral
blood. Blood . 1989;74(7):2527-2534.
14. Zawada AM, Schneider JS, Michel AI, et al. DNA methylation profiling
reveals differences in the 3 human monocyte subsets and identifies
uremia to induce DNA methylation changes during differentiation.Epigenetics . 2016;11(4):259-272.
15. Foell D, Wittkowski H, Kessel C, et al. Proinflammatory S100A12 can
activate human monocytes via Toll-like receptor 4. Am J Respir
Crit Care Med . 2013;187(12):1324-1334.
16. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA.
Proinflammatory activities of S100: proteins S100A8, S100A9, and
S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol .
2003;170(6):3233-3242.
17. Merkt W, Lorenz HM, Watzl C. Rituximab induces phenotypical and
functional changes of NK cells in a non-malignant experimental setting.Arthritis Res Ther . 2016;18(1):206.
18. Beum PV, Kennedy AD, Taylor RP. Three new assays for rituximab based
on its immunological activity or antigenic properties: analyses of sera
and plasmas of RTX-treated patients with chronic lymphocytic leukemia
and other B cell lymphomas. J Immunol Methods .
2004;289(1-2):97-109.
19. Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of
serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the
treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma.AnnOncol . 1998;9(9):995-1001.
20. Illidge TM, Bayne M, Brown NS, et al. Phase 1/2 study of
fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect
of prior rituximab dosing and tumor burden on subsequent
radioimmunotherapy. Blood . 2009;113(7):1412-1421.
21. Burkhardt B, Yavuz D, Zimmermann M, et al. Impact of Fc
gamma-receptor polymorphisms on the response to rituximab treatment in
children and adolescents with mature B cell lymphoma/leukemia. Ann
Hematol . 2016;95(9):1503-1512.
22. Golay J, Introna M. Mechanism of action of therapeutic monoclonal
antibodies: promises and pitfalls of in vitro and in vivo assays.Arch Biochem Biophys . 2012;526(2):146-153.
23. Lee CS, Ashton-Key M, Cogliatti S, et al. Expression of the
inhibitory Fc gamma receptor IIB (FCGR2B, CD32B) on follicular lymphoma
cells lowers the response rate to rituximab monotherapy (SAKK 35/98).Br J Haematol . 2015;168(1):145-148.
24. Danielou-Lazareth A, Henry G, Geromin D, et al. At diagnosis,
diffuse large B-cell lymphoma patients show impaired rituximab-mediated
NK-cell cytotoxicity. Eur J Immunol . 2013;43(5):1383-1388.
25. Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES.
Macrophage-Mediated Trogocytosis Leads to Death of Antibody-Opsonized
Tumor Cells. Mol Cancer Ther . 2016;15(8):1879-1889.
26. Beum PV, Peek EM, Lindorfer MA, et al. Loss of CD20 and bound CD20
antibody from opsonized B cells occurs more rapidly because of
trogocytosis mediated by Fc receptor-expressing effector cells than
direct internalization by the B cells. J Immunol .
2011;187(6):3438-3447.
27. Golay J, Da Roit F, Bologna L, et al. Glycoengineered CD20 antibody
obinutuzumab activates neutrophils and mediates phagocytosis through
CD16B more efficiently than rituximab. Blood .
2013;122(20):3482-3491.
28. Foell D, Frosch M, Sorg C, Roth J. Phagocyte-specific
calcium-binding S100 proteins as clinical laboratory markers of
inflammation. Clin Chim Acta . 2004;344(1-2):37-51.
29. Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins.Curr Mol Med . 2013;13(1):24-57.
30. Markowitz J, Carson WE, 3rd. Review of S100A9 biology and its role
in cancer. Biochim Biophys Acta . 2013;1835(1):100-109.
31. Vogl T, Pröpper C, Hartmann M, et al. S100A12 is expressed
exclusively by granulocytes and acts independently from MRP8 and MRP14.J Biol Chem . 1999;274(36):25291-25296.
32. Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: From basic
science to clinical application. Pharmacol Ther .
2016;167:120-131.
33. Roth J, Goebeler M, Sorg C. S100A8 and S100A9 in inflammatory
diseases. Lancet . 2001;357(9261):1041.
34. Meijer B, Gearry RB, Day AS. The role of S100A12 as a systemic
marker of inflammation. Int J Inflam . 2012;2012:907078.
35. Zhou Z, Li Z, Sun Z, et al. S100A9 and ORM1 serve as predictors of
therapeutic response and prognostic factors in advanced extranodal NK/T
cell lymphoma patients treated with pegaspargase/gemcitabine. Sci
Rep . 2016;6:23695.
36. Davies JC, Midgley A, Carlsson E, et al. Urine and serum S100A8/A9
and S100A12 associate with active lupus nephritis and may predict
response to rituximab treatment. RMD Open . 2020;6(2).
37. Anink J, Van Suijlekom-Smit LW, Otten MH, et al. MRP8/14 serum
levels as a predictor of response to starting and stopping anti-TNF
treatment in juvenile idiopathic arthritis. Arthritis Res Ther .
2015;17(1):200.
38. Wittkowski H, Frosch M, Wulffraat N, et al. S100A12 is a novel
molecular marker differentiating systemic-onset juvenile idiopathic
arthritis from other causes of fever of unknown origin. Arthritis
Rheum . 2008;58(12):3924-3931.
39. Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human
natural killer cells and T-lymphocytes. Cancer Immunol
Immunother . 2016;65(4):441-452.
40. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of
action and resistance. Oncogene . 2003;22(47):7359-7368.
41. Chattopadhyay PK, Betts MR, Price DA, et al. The cytolytic enzymes
granyzme A, granzyme B, and perforin: expression patterns, cell
distribution, and their relationship to cell maturity and bright CD57
expression. J Leukoc Biol . 2009;85(1):88-97.