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Abstract 24 

Understanding catchment controls on catchment solute export is a prerequisite for water 25 

quality management. StorAge Selection (SAS) functions encapsulate essential information about 26 

catchment functioning in terms of discharge selection preference and solute export dynamics. 27 

However, they lack information on the spatial origin of solutes when applied at the catchment 28 

scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we 29 

parameterized SAS functions in a spatially explicit way to understand the internal catchment 30 

responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied 31 

in a nested mesoscale catchment (457 km²), consisting of a mountainous partly forested, partly 32 

agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural 33 

subcatchment. The model captured flow and nitrate concentration dynamics not only at the 34 

catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing 35 

dynamics and nitrate export among headwater and lowland subcatchments. The headwater 36 

subcatchment has high seasonal variation in subsurface mixing schemes and younger water in 37 

discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing 38 

and much older water in discharge. Consequently, nitrate concentration in discharge from the 39 

headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment 40 

is stable in time. The temporally varying responses of headwater and lowland subcatchments 41 

alternates the dominant contribution to nitrate export in high and low-flow periods between 42 

subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling 43 

provides useful information about internal catchment functioning, helping to develop or evaluate 44 

spatial management practices.   45 
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1 Introduction 46 

Agricultural practices have been identified as the main cause of poor water quality in 47 

many areas worldwide. High nitrate (N-NO3) concentrations are commonly found in 48 

groundwater and surface water in areas with intensive agriculture (Randall & Mulla, 2001; 49 

Thorburn et al., 2003). Groundwater and surface water with high nitrate concentrations can 50 

negatively affect human health and the ecosystem (Boeykens et al., 2017; Knobeloch et al., 51 

2000). In Europe, despite implemented regulations on agricultural practices (e.g., Council 52 

Directive 91/676/EEC), high nitrate concentrations in groundwater and surface water in many 53 

areas have persisted for several decades (European Commission, 2018; Knoll et al., 2019). To 54 

further develop and evaluate such regulations, understanding how catchments retain and release 55 

water and solutes (e.g., nitrate) plays an important role, especially for mesoscale catchments (101 56 

– 104 km2, Breuer et al., 2008) since management is often implemented at this scale (European 57 

Environment Agency, 2012). 58 

At the mesoscale, catchments characteristics (e.g., land use, management practices, soil, 59 

topography, geological settings, and climatic conditions) are often heterogeneous (Dupas et al., 60 

2020; Ebeling et al., 2021; Wollschläger et al., 2017). These characteristics were found to be 61 

linked to archetypal catchment solute export regimes (Ebeling et al., 2021; Musolff et al., 2015, 62 

2017). However, in highly heterogeneous catchments, the internal (subcatchment) responses 63 

could be significantly different from the integrated catchment response, such that the integrated 64 

catchment response cannot be used to infer subcatchment behavior (Ehrhardt et al., 2019; 65 

Lassaletta et al., 2009; Scanlon et al., 2010; Winter et al., 2021). Therefore, effective spatial 66 

management of nutrient export in mesoscale catchments calls for an understanding of 67 

subcatchment functioning and its spatial integration.  68 

In recent years, the StorAge Selection (SAS) functions concept has emerged as a useful 69 

tool to improve our mechanistic understanding of catchment functioning (Botter et al., 2011; 70 

Harman, 2019; Hrachowitz et al., 2016; Nguyen et al., 2021; Rinaldo et al., 2015; J. Yang et al., 71 

2018). SAS functions describe catchment mixing and release of water and dissolved solutes of 72 

different ages, thus regulating the transit time distributions (TTDs) and solute composition of 73 

outflows (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). It is noted that the term 74 

“catchment mixing” (hereafter also called subsurface mixing) within the SAS function concept 75 

refers to the mixing at the catchment outlet, where water and solutes from different flow 76 

paths/ages eventually exit the catchment. SAS functions are typically incorporated into 77 

catchment-scale transport models in a lumped approach and rarely used in a distributed 78 

approach. The lumped approach (catchment-scale SAS functions) represents the integrated 79 

response of the catchment (Benettin et al., 2013; Nguyen et al., 2021), tracing the temporal 80 

dynamics of dissolved solutes in discharge at the catchment outlet, but not their explicit spatial 81 

origin. It remains unclear, to what extent parameters obtained from the spatially lumped 82 

approach are transferable to the subcatchment scale given potentially different subcatchment 83 

responses, as previously mentioned.  84 

A spatially distributed SAS approach accounts for spatial heterogeneity in mesoscale 85 

catchments and can thus provide insights into subcatchment functioning and the spatiotemporal 86 

origin of solutes in outflows. In the distributed approach, SAS functions are applied for each 87 

model grid cell. Different implementations of the distributed SAS approach have been proposed. 88 

For example, Nguyen et al. (2021) used the non-well mixed SAS functions for for each 89 

individual grid cell. Remondi et al. (2018) used several well-mixed SAS functions for different 90 
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vertical storage compartments within a grid cell. Although the well-mixed assumption is applied 91 

for each vertical storage compartment, the overall response of the grid cell could be far from 92 

well-mixed (Benettin et al., 2017; Remondi et al., 2018). These approaches could reasonably 93 

represent solute export at the catchment outlet (Nguyen et al., 2021) as well as the internal 94 

gauging stations (Remondi et al., 2018). The aforementioned applications of the distributed 95 

approach are limited to either catchment with homogeneous geological settings (Nguyen et al., 96 

2021) or to transport of conservative solutes (Remondi et al., 2018), while applications of these 97 

approaches for catchments with heterogeneous geological settings and non-conservative solutes 98 

(e.g., nitrate) are still lacking. While numerical studies have been able to provide insights into the 99 

functional forms of SAS functions (which represent subsurface mixing dynamics) at the 100 

catchment scale (e.g., J. Yang et al., 2018), the functional forms and spatial variability of SAS 101 

functions at the grid-scale largely remain unknown. Furthermore, direct verification of the 102 

functional forms of SAS functions for each grid cell (e.g., using numerical groundwater models 103 

with particle tracking) would be technically/computationally very demanding if at all feasible. 104 

Therefore, a semi-distributed SAS approach, in which a few SAS compartments represent 105 

distinct subcatchments, may represent a reasonably sized modeling unit for which we can 106 

establish sufficient process understanding to verify SAS functions and solute concentrations.  107 

We hypothesize that a semi-distributed SAS approach can capture the spatial 108 

heterogeneity of the catchment at an intermediate level and provide an understanding of 109 

subcatchment functioning. With the semi-distributed SAS approach, SAS functions at the 110 

subcatchment level can be validated (1) indirectly using instream solute/tracer concentrations at 111 

the internal gauging stations or (2) directly using numerical groundwater models (if necessary). 112 

Despite the potential benefits of the semi-distributed approach as mentioned above or elsewhere 113 

(Hrachowitz et al., 2016; Nguyen et al., 2021), an application or implementation of this concept 114 

has not yet been attempted. In addition, the temporal dynamics of SAS functions in large 115 

catchments have not been given enough attention with SAS-based models. Previous studies have 116 

restricted the temporal changes of SAS functions between (1) young (2) old, or (3) both young 117 

and old water selection preference schemes (Nguyen et al., 2021; van der Velde et al., 2015), 118 

while more selection preference schemes could exist (J. Yang et al., 2018).  119 

 Considering the aforementioned issues, the main objective of this research is to provide a 120 

mechanistic understanding of nitrate export dynamics from a nested mesoscale catchment using 121 

the SAS approach. For this purpose, we modified the mHM-SAS model (Nguyen et al., 2021) to 122 

enable its application in a semi-distributed manner and to improve the representation of the 123 

temporal dynamics of SAS functions. The modified model is used to explore subcatchment 124 

functioning in terms of nitrate export dynamics in a mesoscale catchment with three nested 125 

subcatchments located in Central Europe with a total area of 457 km2. We also evaluate if a 126 

spatially lumped SAS approach could be used for understanding subcatchment functioning, 127 

especially in terms of nitrate export. Through this study, we aim at advancing the application of 128 

spatially explicit SAS-based models for mesoscale heterogeneous catchments, thereby informing 129 

the design of management strategies that tackle nitrate-related issues at both local and regional 130 

scales. 131 
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2 Methodology 132 

2.1 The mHM-SAS model 133 

The mHM-SAS model (Nguyen et al., 2021) consists of a spatially distributed soil 134 

nitrogen model and a spatially lumped or distributed nitrate transport model for the subsurface 135 

below the soil/root zone (Figure 1). The mHM-SAS model uses the hydrological model of the 136 

mesoscale Hydrologic Model (mHM, Kumar et al., 2013; Samaniego et al., 2010), the soil 137 

nitrogen model of the HYdrological Predictions for the Environment model (HYPE; Lindström 138 

et al., 2010; X. Yang et al., 2018), and the subsurface transport model with SAS functions (van 139 

der Velde et al., 2012). The mHM-SAS model allows applying SAS functions for (1) the 140 

subsurface (representing the saturated and unsaturated zones below the soil/root zone) over the 141 

entire catchment (lumped SAS approach) or (2) the subsurface of each model grid cell 142 

(distributed SAS approach). 143 

Within the soil zone, the mHM-SAS model considers the transformation of nitrogen (N) 144 

between different N pools (dissolved inorganic nitrogen - DIN, dissolved organic nitrogen - 145 

DON, active organic nitrogen - SONA, and inactive organic nitrogen - SONI) via mineralization, 146 

dissolution, and degradation. DIN is assumed to be exclusively composed of nitrate (N-NO3) (X. 147 

Yang et al., 2018). Nitrate is transported with water from the soil zone to the subsurface (below 148 

the soil zone) and eventually to the stream. In this study, we focus on the transport of nitrate in 149 

the subsurface. Using a first-order reaction for subsurface denitrification, the nitrate 150 

concentration in discharge is calculated as follows: 151 

𝐶𝑄(𝑡) = ∫ 𝐶𝐽(𝑡 − 𝑇, 𝑇) ⋅ exp⁡(−𝑘 ⋅ 𝑇) ⋅ 𝑝𝑄(𝑡, 𝑇) ⋅ 𝑑𝑇
+∞

0
    (1) 152 

where 𝐶𝐽(𝑡 − 𝑇, 𝑇) [ML-3] is the nitrate concentration in percolating water 𝐽(𝑡 − 𝑇) [L3T-1] to the 153 

SAS compartment at time (𝑡 − 𝑇) [T], 𝑘 [T-1] is the first-order denitrification rate constant, 154 

𝑝𝑄(𝑡, 𝑇) [T
-1] is the transit time distribution (TTD) at time 𝑡, and 𝑇 [T] is the age of water since 155 

its entry to the SAS compartment. The TTD, 𝑝𝑄(𝑡, 𝑇) [T
-1], is related to the residence time 156 

distribution (in form of the normalized age-ranked storage, 𝑃𝑆 [-]; (Benettin & Bertuzzo, 2018) 157 

via the SAS functions 𝜔𝑄(𝑃𝑆, 𝑡) [-] as follows: 158 

𝑝𝑄(𝑡, 𝑇) = 𝜔𝑄(𝑃𝑆, 𝑡) ⋅
𝜕𝑃𝑆

𝜕𝑇
         (2) 159 

2.2. The modified mHM-SAS model 160 

In this study, we modified the mHM-SAS model to enable a semi-distributed SAS 161 

approach. The subcatchments were used as the spatial units for which the SAS functions are 162 

applied. This is in line with the common idea that SAS functions are catchment-scale descriptors 163 

(Botter et al., 2011; van der Velde et al., 2012). Subcatchment delineation should not only be 164 

based on the surface or subsurface drainage area but also ensure a certain uniformity in 165 

topography, land use, and geological settings. Therefore, there is no unique way to define the 166 

subcatchment size, which is further discussed in detail in the case study (Section 2.3). 167 

In the semi-distributed SAS approach, incoming fluxes to the SAS compartment from the 168 

grid cells need to be aggregated following the subcatchment delineation. Further modifications 169 

were added to account for instream processes as instream nitrate removal could be significant 170 

(e.g., Alexander et al., 2000) and instream nitrate dynamics are different from subsurface solute 171 

dynamics. For streamflow routing, we adopted the Muskingum-Cunge method (Cunge, 1969), 172 
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which was implemented in the Soil and Water Assessment Tool (SWAT, Neitsch et al., 2011). In 173 

this study, instream nitrate removal via denitrification and uptake are lumped into the instream 174 

denitrification as described by Lindström et al., (2010) and X. Yang et al. (2018).  175 

 176 

 177 

Figure 1.  The modified mHM-SAS model (Nguyen et al., 2021) with added instream processes.  178 

Furthermore, we modified the parameterization of SAS functions in the mHM-SAS 179 

model. In this study, we focus on the two-parameter beta function (Equation 3) because of its 180 

flexibility in representing different types of selection preferences for outflows and its practical 181 

use (Buzacott et al., 2020; Nguyen et al., 2021; van der Velde et al., 2015; J. Yang et al., 2018). 182 

In previous studies, the temporal variability of the beta function parameters was restricted to 183 

certain limited types of selection preferences. For example, van der Velde et al., (2012) fixed one 184 

parameter of the beta function as a constant, limiting the selection preference to either (1) young 185 

or (2) old water preferences according to catchment storage. Nguyen et al. (2021) used a step 186 

function to represent the temporal changes of the selection preference scheme (the beta function) 187 

for young or old (or both young and old) water in storage based on changes in the antecedent 188 

hydrologic conditions (the ratio between the accumulated inflow and outflow over previous time 189 

steps). In this study, we generalized the concept proposed by Nguyen et al. (2021) by allowing 190 

the selection preference scheme to change continuously based on antecedent hydrologic 191 

conditions (Equation 5). The temporal changes in the parameters of the beta function are 192 

expressed as follows: 193 

𝑏𝑒𝑡𝑎(𝑃𝑆, 𝑎, 𝑏) =
Γ(𝑎+𝑏)

Γ(𝑎)⋅Γ(𝑏)
⋅ 𝑃𝑆

𝑎−1 ⋅ (1 − 𝑃𝑆)
𝑏−1      (3) 194 
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𝑟(𝑡) =
∫ 𝐽(𝑡)⋅𝑑𝑡
𝑡
𝑡−𝑛

∫ 𝑄(𝑡)⋅𝑑𝑡
𝑡
𝑡−𝑛

          (4) 195 

𝑎 = ⁡
𝛼

𝑟(𝑡)
           (5) 196 

𝑏 = 𝛽 ⋅ 𝑟(𝑡)           (6) 197 

where 𝑏𝑒𝑡𝑎(𝑃𝑆, 𝑎, 𝑏) is the beta function with two positive shape parameters 𝑎 [-] and 𝑏 [-], Γ is 198 

the gamma function, 𝑟(𝑡) [-] is the ratio between inflow and outflow to the SAS compartment 199 

during the time [𝑡 − 𝑛, 𝑡], 𝑛 [T] is the time window to account for antecedent hydrologic 200 

conditions, 𝑄(𝑡) [L3T-1] is the outflow from the SAS compartment at time 𝑡, and 𝛼 [-] and 𝛽 [-] 201 

are time-invariant parameters that control the rate of change of 𝑎 and 𝑏 with 𝑟(𝑡). In this 202 

approach, 𝛼, 𝛽, and 𝑛 are model parameters (𝛼, 𝛽, 𝑛 > 0). Equations (4-6) show that an increase 203 

in 𝑟(𝑡) will result in a decrease in 𝑎 and an increase in 𝑏, indicating a stronger preference for 204 

younger water. This reflects that an increase in 𝑟(𝑡) represents an increase in catchment storage 205 

(or wetness), leading to the selection of younger water from storage. Compared to previous 206 

approaches (Nguyen et al., 2021; van der Velde et al., 2015), this approach does not restrict the 207 

parameter range of the beta function, allowing for all selection preference schemes that the beta 208 

function could represent. 209 

2.3. Study area and data 210 

 The study area is the Selke catchment located in the northeastern Harz Mountains, 211 

Germany. The Selke catchment has an area of about 457 km2 with diverse landscapes and 212 

hydrogeological settings (Figure 2a-d). The catchment consists of both lowland and mountainous 213 

areas with elevation ranging between 106 m and 592 m above mean sea level (a.m.s.l) (Figure 214 

2a). In the mountainous part, agricultural lands are patchy. The lowland areas are characterized 215 

by extensive agricultural land use (Figure 2b). Both soil and geological maps show that the 216 

mountainous areas are less heterogeneous than the lowland areas (Figure 2c-d). In the 217 

mountainous areas (steeper slope), cambisols with high permeability overlaying low permeable 218 

schist and claystone layers result in predominantly shallow flow paths (Jiang et al., 2014). In the 219 

lowland areas (mild slope), chernozems with low permeability overlaying sedimentary deposit 220 

layers allow for the development of deeper flow paths. The mountainous areas have shallower 221 

aquifers compared to the lowland areas with deeper aquifers.  222 

Table 1. Information about the upper, middle, and lower Selke subcatchments. 223 

Subcatchment  upper Selke middle Selke lower Selke 

Outlet gauge Silberhütte Meisdorf Hausneindorf 

Area (km2 and % catchment area) 100.9 (22.1%) 78.9 (17.2%) 277.6 (60.7%) 

Forest (% subcatchment area) 61.5 87.5 12.1 

Agriculture (% subcatchment area) 36.0 10.2 75.8 

Average elevation (m a.m.s.l) 448.9 370.0 164.8 

Average slope (%) 6.8 11.5 2.6 

Dominant soil types Dystric/spodic cambisols Haplic chernozems 

Dominant geological units Mississippian wacke/shale Sedimentary material 

Annual average precipitation 

(mm/year) (data from 2012-2019) 

515.6 457.5 432.5 

Average annual contribution to total 

catchment discharge (%) 

50 25 25 
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Based on the distinct catchment characteristics and to make use of the observed data from 224 

the three gauging stations (Silberhütte, Meisdorf, and Hausneindorf) for model evaluation, we 225 

delineated the Selke catchment into three subcatchments, namely the upper, middle, and lower 226 

Selke (Figure 2). The upper Selke is a mixed agriculture-forest subcatchment with high altitude, 227 

high average annual rainfall, steep slope, shallow aquifer, and shallow flow paths. The middle 228 

Selke is a forest-dominated subcatchment with hydrogeological settings similar to the upper 229 

Selke. The lower Selke is an agriculturally-dominated subcatchment with gentle topography 230 

(mild slopes), deeper aquifers, and deep subsurface flow paths. Detailed information about these 231 

subcatchments is presented in Table 1 (see also Figure 2 for the spatial arrangement of different 232 

landscape attributes).  233 

 234 

Figure 2. Location of the study area and subcatchment delineation with (a) elevation, (b) land 235 

use, (c) soil types, and (d) geological units.  236 

In this study, model input and evaluation data were combined from different sources. 237 

Daily precipitation, temperature, and potential evapotranspiration were provided by the German 238 
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Weather Service (DWD). Daily streamflow and instream nitrate concentration were obtained 239 

from the State Office of Flood Protection and Water Management of Saxony-Anhalt (LHW) and 240 

Helmholtz Center for Environmental Research (UFZ), respectively. Estimated nitrate load from 241 

wastewater treatment plants (WWTP) as well as their locations were taken from X. Yang et al., 242 

(2018). Land use management practices (fertilizer, manure application, and crop rotation) are 243 

based on field surveys and interviews (Yang et al., 2018). Other data (digital elevation model 244 

(DEM), land use, soil, and geological map) were provided by the Federal Institute for 245 

Geosciences and Natural Resources, Germany. Meteorological forcing constitutes of daily total 246 

precipitation and average air temperature were acquired from the German Weather Service 247 

(DWD). The point station data were gridded at a spatial resolution of 1×1 km2 using the external 248 

drift kriging interpolation approach with terrain elevation as an external variable (X. Yang et al., 249 

2018; Zink et al., 2017). The potential evapotranspiration was estimated with the Hargreaves & 250 

Samani (1985) method. 251 

2.4. Parameter sensitivity analysis 252 

The objective of parameter sensitivity analysis is to identify the parameters (or processes) 253 

that contribute most to the variability of streamflow and instream nitrate concentrations. This 254 

information is further used to select parameters for optimization. The Elementary Effect Test 255 

(EET, Campolongo et al., 2007; Morris, 1991) implemented in the Sensitivity Analysis For 256 

Everybody (SAFE, Pianosi et al., 2015) toolbox was used for parameter sensitivity analysis. The 257 

EET is an effective tool for screening non-influential parameters for models with a high number 258 

of parameters (Campolongo et al., 2007; Pianosi et al., 2016). A further description of the EET is 259 

presented in the supporting information (Text S1).  260 

In this study, all global (catchment) and local (subcatchment-specific) parameters (M = 261 

75 parameters) were selected for sensitivity analysis (Table S1). Global parameters are 262 

catchment-scale parameters, while local parameters are SAS-related parameters that are defined 263 

for each subcatchment. The parameter ranges were selected based on previous studies (Neitsch et 264 

al., 2011; Nguyen et al., 2021; J. Yang et al., 2018; X. Yang et al., 2018) and parameter 265 

distributions were assumed to be uniform. Parameter sensitivity analysis was carried out for the 266 

period 2012-2019. All model runs were performed at a daily time step with a spatial resolution of 267 

1 km2. Detailed results of the parameter sensitivity analysis are shown in the supporting 268 

information (Text S2 and Figure S1). 269 

2.5. Parameter estimation and uncertainty analysis 270 

In this study, parameters were optimized for the period 2012-2015 and validated for the 271 

period 2015-2019 using observed streamflow and instream nitrate concentrations at the 272 

Silberhütte, Meisdorf, and Hausneindorf gauging stations (Figure 2). Based on the results of 273 

parameter sensitivity analysis, we selected the 21 most sensitive parameters (8 hydrological 274 

parameters and 13 nitrate parameters) for optimization (Table 3, Text S2, and Figure S1). These 275 

selected parameters include the different SAS-related parameters of all subcatchments, allowing 276 

for the quantification of the uncertainty in the subsurface mixing and TTs. 277 

For parameter optimization, we generated 400,000 parameter sets using the Latin 278 

Hypercube Sampling (LHS) technique. LHS is an efficient approach for searching an ensemble 279 

of optimal solutions, accounting for parameter uncertainties (Abbaspour et al., 2004; Sarrazin et 280 

al., 2018). The same initial ranges of subsurface transport parameters (𝛼, 𝛽,⁡and 𝑘) in the three 281 

subcatchments were used (Section 3.2). This means that we did not impose any prior knowledge 282 
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on subsurface mixing, water age, and denitrification conditions in these subcatchments. The 283 

model prediction uncertainty was characterized by the 95 percent prediction uncertainty (95PPU) 284 

band of behavioral simulations (Abbaspour et al., 2004). The lower and upper limits of the 285 

95PPU band correspond to the 2.5% and 97.5% percentiles of the output variable at the 286 

respective time step. The 95PPU band was evaluated by the p factor [0, 1] (the percentage of 287 

measured data bracketed by the 95PPU band) and r factor [0, ∞) (the average thickness of the 288 

95PPU band divided by the standard deviation of the measured data) (Abbaspour et al., 2004). In 289 

general, higher p and lower r factors indicate lower prediction uncertainty. 290 

The model performance was evaluated using the Nash–Sutcliffe Efficiency (NSE, Nash & 291 

Sutcliffe, 1970), its logarithmic transformation (lnNSE), and the bias (BIAS) (Text S3). 292 

Behavioral simulations were selected using “soft rules” (e.g., Choi & Beven, 2007; Hartmann et 293 

al., 2017; Sarrazin et al., 2018) by defining different threshold values for NSE, lnNSE, and BIAS 294 

for streamflow (Q) and instream nitrate concentrations (C). This ensures that the simulated 295 

results for both Q and C at all gauging stations meet a certain quality. The threshold values for 296 

NSE, lnNSE, and BIAS were defined based on the simulated results, in a way that allows 297 

uncertainty to be quantified (Hartmann et al., 2017), and are presented in the supporting 298 

information (Text S3). 299 

2.6. Evaluating the spatial model structure 300 

Besides the aforementioned simulations (hereinafter referred to as simulation scenario 1: 301 

base case), we performed additional simulation scenarios (SC 2 and SC 3; Table 2) to evaluate 302 

the spatial model structure (semi-distributed and lumped SAS). Specifically, we determined 303 

whether the subsurface transport parameters obtained from the lumped SAS approach 304 

(catchment-scale SAS functions, SC 2) are applicable for the subcatchments, providing a similar 305 

understanding of the subcatchment functioning as the semi-distributed SAS-based approach (SC 306 

3). In the lumped SAS approach (SC 2), we conceptualized the entire subsurface of the Selke 307 

catchment as a single storage compartment and applied the SAS concept to model nitrate export 308 

from this compartment. For this evaluation, the lumped SAS model was calibrated at the 309 

catchment outlet (Hausneindorf gauging station). The parameters selected for optimization were 310 

based on the result of sensitivity analysis from the semi-distributed SAS model (SC 1, Table S2). 311 

Then, the calibrated model parameters from the lumped approach (SC 2) were used for the 312 

subcatchments (SC 3) to validate their applicability. In both semi-distributed (SC 1) and lumped 313 

(SC2) SAS approaches, the same criteria were applied to select behavioral simulations.  314 

Table 2. List of simulation scenarios. All simulation scenarios use the conceptual model as 315 

shown in Figure 1 with the number of subcatchments varies from 1 to 3, depending on the 316 

simulation scenario.  317 

Simulation scenario (SC) SAS approach (number of 

subcatchments) 

Calibrated gauging station 

SC1: base case semi-distributed (3) Silberhütte, Meisdorf, Hausneindorf 

SC2: lumped SAS lumped (1) Hausneindorf 

SC3: semi-distributed SAS semi-distributed (3) using calibrated parameters from SC 2 

 318 

3 Results and Discussion 319 

3.1. Streamflow, instream nitrate concentrations, and instream nitrate removal 320 
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 Figure 3 shows the simulated streamflow and instream nitrate concentrations at the three 321 

gauging stations from the base case scenario SC1 (Table 3). It can be seen that the model could 322 

well capture the seasonality of streamflow and instream nitrate concentrations at the internal 323 

gauging stations (Silberhütte and Meisdorf) as well as at the catchment outlet (Hausneindorf). 324 

The model could represent high instream nitrate concentrations during the exceptional drought 325 

years 2018 and 2019 (Hari et al., 2020), which were not part of the model calibration. However, 326 

high flows are consistently underestimated by the model, which is a common issue with 327 

hydrological models driven by daily meteorological forcing (e.g., Mizukami et al., 2019).  328 

Statistical indices (the median NSE, lnNSE, and BIAS) show that the model performance 329 

can be considered satisfactory (Figure S3a). In general, the model performance for the validation 330 

period is slightly better than for the calibration period (except for instream nitrate concentrations 331 

at the catchment outlet), indicating a slight underfitting in the calibration period. Considering 332 

differences in hydrological conditions between the calibration and validation periods, in which 333 

the validation period is drier with a multi-year drought period, the slight underfitting in the 334 

calibration period is acceptable. The NSE for instream nitrate concentrations at the catchment 335 

outlet during the calibration period is low due to the low seasonality of the observed data (Figure 336 

3f or S3a). In this case, the NSE is high only if it can explain the short time-scale (e.g., daily) 337 

fluctuations in the observed data (Schaefli & Gupta, 2007). Such short time-scale fluctuations 338 

may be interpreted as noise in the data due to measurement/observational errors. Nevertheless, 339 

other statistical indices, for example, the Kling-Gupta efficiency (KGE, Gupta et al., 2009) and 340 

the correlation coefficient, indicate good model performance for instream nitrate concentrations 341 

at the catchment outlet (Figure S3a). The r factors for instream nitrate concentrations (C) tend to 342 

be higher than the r factors for streamflow (Q), indicating higher uncertainty for modeling 343 

instream nitrate concentrations (Figure S3b). This is expected because the nitrate submodel is 344 

affected by additional uncertainties in model structure and input data related to the agricultural 345 

management practices. The p factors for both C and Q show that less than 60% of the observed 346 

values are inside the 95PPU band. This is acceptable considering the narrow width of the 95PPU 347 

band (reflected in small r factors) and strict criteria for NSE, lnNSE, and BIAS for behavioral 348 

solutions (Text S3).  349 

The results show that the instream nitrate removal rate is highly seasonal, namely high 350 

during summer and low during winter (Figure S4). This is consistent with findings from previous 351 

studies in the area (X. Yang et al., 2018). High instream nitrate removal rates during the drought 352 

periods in 2018 and 2019 could be due to unusually high air/stream temperature and low-flow 353 

conditions in these periods. Although the fraction of instream nitrate removal could be up to 354 

about 50% during dry periods, the maximum cumulative instream nitrate removal among all 355 

behavioral simulations for the entire simulation period (2012-2019) accounts for a maximum of 356 

3% of the total nitrate export. The overall instream nitrate removal, however, could be significant 357 

for other areas (e.g., Alexander et al., 2000).  358 
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 359 

Figure 3. Simulated streamflow and instream nitrate concentrations at (a, d) the Silberhütte, (b, 360 

e) the Meisdorf, and (c, f) the Hausneindorf gauging stations in the base case scenario SC1. Solid 361 

lines indicate the median values, while bands indicate the 95PPU bands. 362 

 363 
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3.2. Behavioral parameter ranges 364 

Statistical information about the behavioral parameter sets are shown in Table 3. Among 365 

the calibrated parameters, only local parameters provide information about subcatchment 366 

functioning. It is seen that the calibrated subsurface mixing parameters for upper (𝛼𝑢𝑝, ⁡𝛽𝑢𝑝) and 367 

middle (𝛼𝑚𝑖𝑑 , 𝛽𝑚𝑖𝑑) Selke are in a similar and much narrower range, while those for the lower 368 

Selke cover a wider ranges (Table 3). The denitrification rates in the upper (𝑘𝑢𝑝) and middle 369 

(𝑘𝑚𝑖𝑑) Selke are at least an order of magnitude higher compared to the denitrification rate in the 370 

lower (𝑘𝑙𝑜𝑤) Selke. Geochemical evidence from groundwater well data about subsurface 371 

denitrification potential was reported for the upper and middle Selke; however, little to no sign of 372 

subsurface denitrification in the lower Selke was found (Hannappel et al., 2018). Our model 373 

results indicate similar subsurface mixing dynamics and reaction rates between the upper and 374 

middle Selke, but different values for the lower Selke. This reflects similar hydrogeological 375 

settings in the upper and middle Selke and the distinct hydrogeological setup of the lower Selke 376 

(Figure 2). The behavioral ranges of 𝛼𝑙𝑜𝑤 and ⁡𝛽𝑙𝑜𝑤 parameters in the lower Selke are not 377 

significantly reduced compared to their initial ranges, indicating a relatively high uncertainty of 378 

these parameters. Similar to previous works in the study area (Nguyen et al., 2021) and 379 

elsewhere (Benettin et al., 2015, 2017), we found that using the observed streamflow and 380 

instream solute concentrations is not sufficient to constrain the initial subsurface storage (Table 381 

3). 382 

Table 3. List of the selected parameters for optimization and the statistical characteristics of 383 

behavioral parameter sets of the base case scenario SC1. 384 

Parameter Description Initial range Calibrated 

min max median [min, max] 

Global (catchment-scale) parameter 

𝑠𝑜𝑖𝑙4 

Pedotransfer function parameters for soil hydrology 

routines of mHM 

0.65 0.95 0.78 [0.65, 0.95] 

𝑠𝑜𝑖𝑙6 -0.37 -0.18 -0.32 [-0.37, -0.26] 

𝑠𝑜𝑖𝑙7 0.54 1.12 0.81 [0.57, 1.08] 

𝑠𝑜𝑖𝑙9 -0.55 -0.09 -0.27 [-0.55, -0.11] 

𝑠𝑜𝑖𝑙14 Fraction of roots in forest areas 0.90 0.99 0.98 [0.96, 0.99] 

𝑠𝑜𝑖𝑙17 Shape factor for calculating infiltration 1.00 4.00 2.49 [1.69, 3.23] 

𝑟𝑢𝑛𝑜𝑓𝑓 Direct surface runoff parameter 0.00 5.00 3.42 [0.08, 5.00] 

𝑝𝑒𝑡1 Correction factor for potential evapotranspiration 0.70 1.30 0.96 [0.92, 1.00] 

𝑘𝑛𝑎 Denitrification rate in nonagricultural soil (day-1) 1.00e-8 1.00e-1 1.00e-2 [4.13e-3, 2.42e-2] 

𝑘𝑎 Denitrification rate in agricultural soil (day-1) 1.00e-8 1.00e-1 2.18e-2 [5.68e-3, 4.11e-2] 

𝑘𝑠𝑡𝑟 Denitrification rate in the stream network (day-1) 1.00e-8 1.00e-3 2.72e-6 [3.07e-8, 2.76e-4] 

𝐶0 Initial nitrate concentration in the subsurface (mg/L) 0.5 10.0 7.86 [4.43, 8.85] 

Local (subcatchment-specific) parameter 

𝛼𝑢𝑝 
Parameters of the SAS function (upper Selke) 

0.01 5.00 0.36 [0.10, 0.97] 

𝛽𝑢𝑝 0.01 5.00 4.28 [0.77, 4.84] 

𝑆0_𝑢𝑝 Initial subsurface storage of the upper Selke (mm) 500.00 5000.00 798.0 [565.0, 4959.9] 
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𝑘𝑢𝑝 Subsurface denitrification rate in the upper Selke (day-1) 1.00e-8 1.00e-2 9.06e-3 [3.42e-3, 9.60e-3] 

𝛼𝑚𝑖𝑑  
Parameters of the SAS function (middle Selke) 

0.01 5.00 0.44 [0.10, 1.29] 

𝛽𝑚𝑖𝑑  0.01 5.00 3.29 [1.06, 4.00] 

𝑘𝑚𝑖𝑑  Subsurface denitrification rate in the middle Selke (day-1) 1.00e-8 1.00e-2 1.05e-3 [3.01e-4, 7.87e-3] 

𝛼𝑙𝑜𝑤  
Parameters of the SAS function (lower Selke) 

0.01 5.00 1.84 [0.22, 4.78] 

𝛽𝑙𝑜𝑤  0.01 5.00 1.95 [0.12, 4.71] 

𝑘𝑙𝑜𝑤  Subsurface denitrification rate in the lower Selke (day-1) 1.00e-8 1.00e-2 4.96e-6 [3.43e-7, 8.40e-5] 

 385 

3.3. Subcatchment discharge and nitrate export  386 

Figure 4a shows the contribution of discharge from each subcatchment to the total 387 

catchment discharge. Overall, the simulated results show that a dominant fraction of catchment 388 

discharge (about 48-51% considering the 95PPU band) originates from the upper Selke although 389 

it only accounts for 22.1% of the catchment area. The middle and lower Selke contribute a 390 

comparable amount of discharge (23-25% and 24-29% of catchment discharge, respectively) 391 

despite having significantly different areal percentages (17.2% and 61.7%, respectively). These 392 

results are comparable with those obtained from observed data (Table 1). Although the fraction 393 

of total discharge from the upper and middle Selke varies seasonally in a wide range, it remains 394 

mostly above 50%, and thus constitutes a dominant source of catchment discharge even during 395 

low-flow periods (Figure 4a). 396 

In terms of exported nitrate load, the lower Selke contributes a substantial portion of 397 

nitrate load (about 44-55%) despite its relatively low discharge contribution (Figure 4a-b). The 398 

exported nitrate loads from the upper and middle Selke account for 31-38% and 13-18% of the 399 

catchment nitrate export, respectively. During high-flow periods, the exported nitrate load from 400 

the upper and middle Selke (predominantly the upper Selke) is much higher than that from the 401 

lower Selke (Figure 4b). During low-flow periods, however, the lower Selke contributes the 402 

major fraction of the catchment nitrate export. This is because during low-flow periods (1) 403 

instream nitrate concentrations in discharge from the lower Selke are much higher than that from 404 

the upper and middle Selke (Figure 4c), and (2) discharge contribution from the lower Selke 405 

could increase up to 50%. The results also show that instream nitrate concentrations from the 406 

upper and middle Selke have a clear seasonal pattern (high during high-flow and low during low-407 

flow periods), while that from the lower Selke is relatively stable (Figure 4c). This is related to 408 

the differences in the subsurface mixing, transport time, and denitrification timescale (Section 409 

3.4). The uncertainty in the simulated nitrate concentrations in discharge from the lower Selke is 410 

relatively large during low-flow periods in 2012, 2016, and 2018 compared to other periods 411 

(Figure 4c). This is due to the uncertainty in the estimated nitrate concentrations in the oldest 412 

water pool (or initial nitrate concentration C0) and the interplay between denitrification and 413 

transport timescales (Section 3.4) 414 
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 415 

Figure 4. Contribution of (a) discharge Q, (b) exported nitrate load 𝐿𝑁−𝑁𝑂3, and (c) nitrate 416 

concentrations in discharge CQ from individual subcatchments (scenario SC1). The superscripts 417 

“up”, “mid”, and “low” indicate the upper, middle, and lower Selke, respectively. Discharge and 418 

exported nitrate load were aggregated from daily to monthly for better visualization. Light (blue, 419 

red, and green) color bands in (a)-(c) and grey band in (a)-(b) indicate the 95PPU bands from 420 

behavioral simulations, darker (blue, red, green) color bands in (a)-(c) indicate the area (volume 421 

of discharge, and mass of nitrate) under the 95PPU bands, and solid lines in (a)-(c) indicate the 422 

median values.  423 

The reliability of the simulated nitrate concentrations in discharge from the middle Selke 424 

(Figure 4c) is lower compared to that from the upper Selke. This is because most of the nitrate at 425 

the Meisdorf gauging station originates from the upper Selke, so the nitrate concentration data at 426 

the Meisdorf gauge do not contain much additional information for the model calibration. 427 

Considering the aforementioned reason and the comparable instream dynamics (Figure 4c) as 428 

well as the behavioral subsurface parameter ranges (Table S2) between the upper and middle 429 
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Selke, those subcatchments could be considered as one subcatchment for future studies. 430 

3.4. Linking subsurface mixing with water age and nitrate export 431 

Figure 5 shows the relation between subsurface mixing and the TTs of discharge as well 432 

as nitrate export from the three subcatchments. The upper Selke tends to select young water (a/b 433 

< 1 in Eqs. 4-7) for discharge, apart from low-flow periods (a/b > 1; Figure 5a). The catchment 434 

progressively shifts from young (or old) to old (or young) water selection preference with 435 

decreasing wetness. The selection preference for young water during high-flow periods is 436 

consistent with our understanding that fast shallow flow paths dominate under these flow 437 

conditions. These flow paths can be activated due to a combination of 1) high precipitation, 2) 438 

high permeability of the uppermost cambisols layer, and 3) low percolation rate of the lower 439 

schist and claystone layers (Section 2.3 and Figure 2c). During low-flow periods, we found a 440 

dominance of old water in the simulated discharge, causing a strong difference in the TTs of 441 

discharge between high and low-flow periods (Figure 5b). This can be explained by the fact that 442 

the relative contribution of discharge from deeper and longer flow paths to streamflow becomes 443 

more pronounced in low-flow periods, because less flow from the shallower zone with shorter 444 

flow paths is generated when those shallow flow paths increasingly cease. It should be noted that 445 

the maximum TT is rather restricted by the time frame of the simulation rather than the actual 446 

age of the oldest water, which is unknown (Figure 5b). Discharge with older water has less 447 

nitrate compared to discharge with younger age due to longer time for denitrification, creating a 448 

pronounced seasonality in instream nitrate concentrations (Figure 5b). In addition, the 449 

seasonality in instream nitrate concentrations is also due to the seasonality of nitrate 450 

concentrations in the percolation water (Figure 5b). However, due to denitrification and 451 

subsurface mixing, the range of nitrate concentrations in discharge is buffered compared to that 452 

in the percolating water. 453 

The middle Selke shows a similar behavior to the upper Selke in terms of subsurface 454 

mixing and nitrate export dynamics (Figure S5). In addition, the subsurface denitrification rates 455 

in the upper and middle Selke are comparable (Table 3). This is expected because the upper and 456 

middle Selke have similar hydrogeological settings (Table 1 and Figure 2). Visual assessment 457 

shows that the model prediction uncertainties (the 95PPU of 𝑎/𝑏, 𝑇𝑇50, and 𝐶𝑄) for the middle 458 

Selke tend to be higher than that for the upper Selke (Figures S4) for the reason mentioned 459 

earlier (Section 3.3).  460 
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 461 

Figure 5. Relation between subsurface mixing dynamics (characterized by the a/b ratio of the 462 

beta function), TTs (characterized by the median transit time TT50), and nitrate concentration 463 

dynamics in discharge (CQ) from (a-b) the upper Selke and (c-d) the lower Selke, and (e) the 464 

interplay between transport time and denitrification timescale (characterized by the Damköhler 465 

number, Da) in the upper and lower Selke. Solid lines indicate the median values, while bands 466 

indicate the 95PPU band. The superscripts “up” and “low” mean the upper and lower Selke, 467 

respectively. Cpercol is the nitrate concentration in percolated water. The Damköher number is the 468 

ratio between TT50 of discharge and the reaction time (1/k). Results are from individual 469 

subcatchments. 470 

Compared to the upper and middle Selke, the selection preference for discharge (a/b 471 
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ratio) in the lower Selke varies over a smaller range (Figures 5a,c and S5b). This is to be 472 

expected considering that the lower Selke has smaller topographic gradients (flatter terrain) and a 473 

deeper aquifer system with more steady, less dynamic subsurface flow field (Nixdorf & Trauth, 474 

2018; J. Yang et al., 2018). The median a/b ratio shows that subsurface mixing in the lower 475 

Selke varies around the complete mixing ratio (a/b = 1) except during the very dry periods in 476 

which the system discharges only old water. As a result, the TTs of discharge from the lower 477 

Selke are much higher than those from the upper and middle Selke, which preferably discharge 478 

young water most of the time (Figures 5a,c and S5b). The relation between nitrate concentrations 479 

in discharge and TTs of discharge from the lower Selke is unclear, as nitrate concentrations in 480 

discharge from the lower Selke seem to be relatively steady throughout the years (Figure 5d). 481 

This is because subsurface mixing in the lower Selke (Figure 5c) is relatively stable around an 482 

a/b ratio of 1, which describes complete mixing behavior. Interestingly, the median subsurface 483 

transport time in the lower Selke subcatchment is faster compared to the denitrification timescale 484 

defined by the very low denitrification rate (Figure 5e, Table 3). During low-flow periods, the 485 

initial nitrate concentration in the oldest water pool has negligible impacts on the nitrate export 486 

from the upper Selke compared to that from the lower Selke (Figure 5b,d). This is because the 487 

upper Selke during those periods is characterized by relatively long subsurface transport times 488 

compared to the denitrification timescale so that denitrification is controlled by the high 489 

denitrification rates and most nitrate is removed along the deeper flow paths. In contrast, in the 490 

lower Selke subsurface transport times, although generally longer than in the upper Selke, are 491 

short relative to the very long reaction time scales caused by the very low denitrification rates, 492 

making the system transport-controlled as indicated by the Da numbers during low-flow periods 493 

(Figure 5e). In general, subsurface transport in the upper Selke is characterized by a strong 494 

variability of transport time-scales over the denitrification timescale (shown by the Da numbers, 495 

Figure 5e), while subsurface transport in the lower Selke is more steady and characterized by 496 

transport time scales that are shorter than the respective reaction time scales.   497 

3.5. Semi-distributed versus lumped SAS approach 498 

Comparing results from the semi-distributed (SC 1) and lumped (SC 2) SAS approaches 499 

show that model performances for instream nitrate concentrations at the catchment outlet are 500 

somewhat different (Figure 6a). The median statistical indices (NSE and lnNSE) indicate that the 501 

lumped approach calibrated with data from the catchment outlet only has a better model 502 

performance than  the semi-distributed approach in the calibration period (Figure 6a). The 503 

slightly poorer model performance of the semi-distributed model, despite having higher degrees 504 

of freedom, is because the semi-distributed SAS model is constrained with streamflow and 505 

instream nitrate concentration data not only from the catchment outlet, but also from the internal 506 

gauging stations (Table 2). In the validation period, however, it can be seen clearly that the semi-507 

distributed approach performs significantly better than the lumped approach. This suggests that 508 

the dynamics of age selection for discharge and the associated turnover of nitrate are indeed 509 

distinctly different between the three sub-catchments and cannot be adequately represented with 510 

the simpler lumped approach. A better model performance in the calibration period with the 511 

lumped approach could be an artifact of the optimization. In fact, a misrepresentation of three 512 

SAS functions by one SAS function can be compensated by other non-SAS-related parameters in 513 

the calibration period but not in the validation period. The results further suggest that for model 514 

applications beyond the calibration period (e.g., climate change and land-use change impact 515 

studies), the semi-distributed approach should be preferred over the lumped approach. For 516 

streamflow simulation, the two approaches have comparable results with median NSE values 517 
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from both approaches being within the range [0.73, 0.89] for both calibration and validation 518 

periods (not shown).   519 

 520 

 521 

Figure 6. Observed and simulated (a, c) instream nitrate concentrations at the catchment outlet 522 

(Hausneindorf) and (b) the internal gauging station (Silberhütte) from different simulation 523 

scenarios (Table 2). Solid lines indicate the median values, while bands indicate the 95PPU 524 

band. 525 

Next, we compared the simulations of nitrate dynamics based on the semi-distributed and 526 

lumped SAS approaches to understand how well the internal catchment functioning can be 527 

represented with spatially lumped SAS functions. Figure 6b-c shows the simulated instream 528 

nitrate concentrations at the internal gauging station (e.g., Silberhütte) and the catchment outlet 529 

(Hausneindorf) using the calibrated catchment-scale subsurface parameters (𝛼, 𝛽, 𝑛, 𝑆0) obtained 530 

from the lumped approach for all subcatchments (SC 3). It is clearly visible that these parameters 531 

cannot be used for the subcatchments as they provide a false understanding of the subcatchment 532 

functioning (Figure 6b). For example, the simulated nitrate concentrations in discharge from the 533 

upper Selke (SC 3) are relatively high and steady throughout the years, while those from the 534 

observed data and the semi-distributed SAS approach (SC 1) show a strong seasonality (Figures 535 

6b). The relatively steady simulated nitrate concentrations in discharge (SC 3) are due to  (1) 536 
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faster TTs and higher nitrate concentrations in young water (percolated water) during high-flow 537 

periods and (2) longer TTs and high nitrate concentration in the old water pool due to the very 538 

low denitrification rate during low-flow periods (Figure S6 and Table S2). In the dry periods, the 539 

simulated nitrate concentrations (SC 3) are even slightly higher than those in the high-flow 540 

periods (e.g., during 2018-2019; Figure 6b), suggesting contrasting catchment functioning 541 

compared to observed data and results from the semi-distributed approach (SC 1). The simulated 542 

subsurface mixing and TT dynamics from the upper Selke (SC 3) indicate that using parameters 543 

from the lumped approach (SC 2) will shift the selection preference for discharge to much older 544 

water compared to the semi-distributed approach (SC 1) (Figure S6).  545 

Despite a clear mismatch at the internal gauging station, the simulated instream nitrate 546 

concentrations at the catchment outlet match quite well the observations (Figure 6c). This 547 

indicates that taking the same subsurface transport parameters for all subcatchments in a highly 548 

heterogeneous catchment could provide the right results at the catchment outlet for the wrong 549 

reasons. For spatially explicit SAS models, this means that a parameter regionalization technique 550 

could be needed to parameterize the subsurface transport parameters of each spatial modeling 551 

unit (e.g., sub-catchments or HRUs or grid-cells) to be applicable in heterogeneous catchments, 552 

thus assisting (land use) management decisions.  553 

 Results from the lumped and semi-distributed models also imply that if the lower Selke is 554 

further divided into smaller modeling units, individual responses from these modeling units can 555 

be different from the integrated response of the lower Selke. This is because the geological 556 

setting of the lower Selke is highly heterogeneous (Figure 2d). In this case, additional data 557 

(internal gauging stations) are required for further understanding the internal functioning of 558 

different modeling units within the lower Selke. However, further discretization of the upper and 559 

middle Selke into smaller modeling units might not change our understanding of the internal 560 

subcatchment functioning, as the soil and geological conditions in these areas are quite 561 

homogeneous. Therefore, the responses of these smaller modeling units are expected to be 562 

similar (as shown by the similar responses of the upper and lower Selke; Section 3.4).    563 

4 Model capabilities, implications for management practices, and limitations 564 

This study demonstrated that the spatially explicit (e.g., semi-distributed) SAS approach 565 

can provide valuable additional insights into the functioning of each subcatchment with 566 

internally consistent process descriptions, while at the same time it does not compromise the 567 

quality of the model fit at the integral point of the main catchment outlet. In contrast, the lumped 568 

SAS approach could only yield robust results at the main catchment outlet and yielded 569 

inadequate results at internal points in the model domain. Our application of the semi-distributed 570 

SAS model in a nested mesoscale heterogeneous catchment has demonstrated the model’s ability 571 

to capture nitrate dynamics at internal gauging stations as well as at the main catchment outlet. 572 

Applying SAS functions in a semi-distributed framework as presented here, helps to overcome 573 

some of the limitations of the spatially lumped characteristics of the general SAS concept. 574 

Results from a semi-distributed model can provide not only additional spatial information, such 575 

as subcatchment nitrate export, but also temporal information on the age of water and potentially 576 

nitrate, which is) related to the source and origin of the exported nitrate.  577 

The spatially explicit SAS approach is especially relevant for planning and evaluating 578 

spatial management practices as (1) parameters infer from the lumped approach could fail to 579 

represent the subcatchment functioning, (2) the lumped approach is less robust than the semi-580 
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distributed approach, and (3) the lumped approach does not provide information about both 581 

spatial and temporal origins of nitrate in discharge for effective management. Results from the 582 

Selke with the semi-distributed SAS approach show that the lowland catchments (lower Selke) 583 

should have different management practices compared to the mountainous headwater catchments 584 

(middle and upper Selke). Agricultural management practices that aim to quickly reduce nitrate 585 

export during high-flow periods should be implemented in the mountainous headwater 586 

catchments rather than in the lowland catchment. This is because of the short TTs and transport-587 

limited characteristics of these catchments during high-flow periods. However, management 588 

practices that aim to reduce exported nitrate loads (1) during low-flow periods or (2) in the 589 

coming decade(s) should be implemented in the lowland catchments with longer TTs and 590 

transport-limited characteristics. Due to the short median TTs in the mountainous catchments (~ 591 

1 year), the effectiveness of management practices in these catchments can be evaluated in the 592 

following years. In contrast, long median TTs in the lowland catchment would require decades 593 

for the effects of a certain management practice to become effective and visible. 594 

Despite the advantages of the semi-distributed SAS approach, the application of this 595 

approach in larger catchments with more diverse hydrogeological settings could face several 596 

challenges. In such catchments, the number of subsurface parameters could be high due to a high 597 

number of subcatchments. In this case, understanding the linkage between key catchment 598 

characteristics (e.g., topography, geology, land use, and meteorological conditions) with 599 

subcatchment functioning (parameters of the SAS function) could avoid unnecessary small 600 

spatial resolution and model overparameterization. This can provide useful insights into the 601 

optimal spatial modeling resolution, in which the number of modeling units is at a minimum 602 

while the spatial heterogeneity of subcatchment responses is adequately captured. For such 603 

understanding, applications of the semi-distributed SAS approach in much larger catchments 604 

with diverse settings are required.   605 

 606 

5 Conclusions 607 

In this study, we developed a semi-distributed SAS-based model, in which SAS functions 608 

are applied at the subcatchment level. The proposed model was applied in a mesoscale nested 609 

catchment, namely the Selke catchment located in Germany. The catchment was delineated into 610 

three subcatchments for application of SAS functions, consisting of (1) a upper mountainous 611 

headwater subcatchment (upper Selke) with a mixture of forest and agricultural land, (2) a 612 

middle mountainous subcatchment (middle Selke) dominated by forest land, and (3) a lowland 613 

subcatchment (lower Selke) dominated by agricultural land. The main results from this study are 614 

as follows: 615 

 The semi-distributed SAS approach could represent instream nitrate concentration 616 

dynamics not only at the catchment outlet but also at the internal gauging stations. 617 

 The headwater subcatchment has high seasonal variations in the subsurface mixing 618 

schemes, while that in the lowland catchment is less pronounced. Nitrate concentrations 619 

in discharge from the headwater subcatchment show a strong seasonality, while those 620 

from the lowland subcatchment are relatively steady over different seasons. 621 

 Instream denitrification only removes a minor part of the exported nitrate loads. 622 

 The median age of water in discharge (TT50) from the headwater subcatchment is much 623 
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younger than that from the lowland subcatchment.  624 

 The headwater and lowland subcatchments take turns at dominating catchment nitrate 625 

export in high and low-flow periods. 626 

 Parameters infer from the lumped approach fail to represent the subcatchment 627 

functioning and the lumped approach is less robust than the semi-distributed approach 628 

Results from this study have demonstrated that the proposed model can provide useful 629 

insights into the functioning of each subcatchment, unlike the lumped SAS approach. The 630 

proposed model concept in combination with an appropriate regional parameterization approach 631 

could help to extend the application of the SAS concept in larger catchments. Results from such 632 

model applications could help understand both spatial and temporal origins of nitrate in rivers, 633 

contributing towards efforts to reduce nitrate pollution. 634 

Acknowledgments, Samples, and Data 635 

We would like to thank the Deutscher Wetterdienst (DWD), the Federal Institute for Geosciences 636 

and Natural Resources (BGR), and the State Agency for Flood Protection and Water 637 

Management of Saxony-Anhalt (LHW) for providing the required input data. We would also like 638 

to thank Xiaoqiang Yang and Michael Rode for providing the model code, land use/land cover 639 

management practices data, and high-frequency nitrate data for model calibration. FS, RK and 640 

SA acknowledge the Advanced Earth Modelling Capacity (ESM) project funded by the 641 

Helmholtz Association. Source codes of the mHM-SAS model and relevant data for reproducing 642 

the work are available online at https://git.ufz.de/nguyenta/mhm-sas (‘development’ branch, last 643 

commit on 9 July, 2021).  644 



manuscript submitted to Water Resources Research 

 

References 645 

Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating Uncertain Flow 646 

and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone 647 

Journal, 3(4), 1340–1352. https://doi.org/10.2136/vzj2004.1340 648 

Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2000). Effect of stream channel size on the 649 

delivery of nitrogen to the Gulf of Mexico. Nature, 403(6771). 650 

https://doi.org/10.1038/35001562 651 

Benettin, P., & Bertuzzo, E. (2018). Tran-SAS v1.0: A numerical model to compute catchment-652 

scale hydrologic transport using StorAge Selection functions. Geoscientific Model 653 

Development, 11(4), 1627–1639. https://doi.org/10.5194/gmd-11-1627-2018 654 

Benettin, P., Kirchner, J. W., Rinaldo, A., & Botter, G. (2015). Modeling chloride transport 655 

using travel time distributions at Plynlimon, Wales. Water Resources Research. 656 

https://doi.org/10.1002/2014WR016600 657 

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., & Rinaldo, A. (2017). Using SAS 658 

functions and high-resolution isotope data to unravel travel time distributions in headwater 659 

catchments. Water Resources Research. https://doi.org/10.1002/2016WR020117 660 

Benettin, P., Van Der Velde, Y., Van Der Zee, S. E. A. T. M., Rinaldo, A., & Botter, G. (2013). 661 

Chloride circulation in a lowland catchment and the formulation of transport by travel time 662 

distributions. Water Resources Research, 49(8), 4619–4632. 663 

https://doi.org/10.1002/wrcr.20309 664 

Boeykens, S. P., Piol, M. N., Samudio Legal, L., Saralegui, A. B., & Vázquez, C. (2017). 665 

Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. Journal of 666 

Environmental Management, 203. https://doi.org/10.1016/j.jenvman.2017.05.026 667 

Botter, G., Bertuzzo, E., & Rinaldo, A. (2011). Catchment residence and travel time 668 

distributions: The master equation. Geophysical Research Letters, 38(11), 1–6. 669 

https://doi.org/10.1029/2011GL047666 670 

Breuer, L., Vaché, K. B., Julich, S., & Frede, H. G. (2008). Current concepts in nitrogen 671 

dynamics for mesoscale catchments. Hydrological Sciences Journal, 53(5). 672 

https://doi.org/10.1623/hysj.53.5.1059 673 

Buzacott, A. J. V., van der Velde, Y., Keitel, C., & Vervoort, R. W. (2020). Constraining water 674 

age dynamics in a south-eastern Australian catchment using an age-ranked storage and 675 

stable isotope approach. Hydrological Processes. https://doi.org/10.1002/hyp.13880 676 

Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity 677 

analysis of large models. Environmental Modelling and Software, 22(10). 678 

https://doi.org/10.1016/j.envsoft.2006.10.004 679 

Choi, H. T., & Beven, K. (2007). Multi-period and multi-criteria model conditioning to reduce 680 

prediction uncertainty in an application of TOPMODEL within the GLUE framework. 681 

Journal of Hydrology, 332(3–4). https://doi.org/10.1016/j.jhydrol.2006.07.012 682 

Cunge, J. A. (1969). On the subject of a flood propagation computation method (Muskingum 683 

method). Journal of Hydraulic Research. https://doi.org/10.1080/00221686909500264 684 



manuscript submitted to Water Resources Research 

 

Dupas, R., Ehrhardt, S., Musolff, A., Fovet, O., & Durand, P. (2020). Long-term nitrogen 685 

retention and transit time distribution in agricultural catchments in western France. 686 

Environmental Research Letters, 15(11). https://doi.org/10.1088/1748-9326/abbe47 687 

Ebeling, P., Kumar, R., Weber, M., Knoll, L., Fleckenstein, J. H., & Musolff, A. (2021). 688 

Archetypes and Controls of Riverine Nutrient Export Across German Catchments. Water 689 

Resources Research, 3, 1–29. https://doi.org/10.1029/2020wr028134 690 

Ehrhardt, S., Kumar, R., Fleckenstein, J. H., Attinger, S., & Musolff, A. (2019). Trajectories of 691 

nitrate input and output in three nested catchments along a land use gradient. Hydrology and 692 

Earth System Sciences, 23(9), 3503–3524. https://doi.org/10.5194/hess-23-3503-2019 693 

European Commission. (2018). Report from the commission to the council and the European 694 

Parliament on the implementation of Council Directive 91/676/EEC concerning the 695 

protection of waters against pollution caused by nitrates from agricultural sources based on 696 

Member State reports fo. European Commission. 697 

European Environment Agency. (2012). EEA Catchments and Rivers Network System ECRINS 698 

v1.1 - Rationales, building and improving for widening uses to Water Accounts and WISE 699 

applications (Issue 7). 700 

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean 701 

squared error and NSE performance criteria: Implications for improving hydrological 702 

modelling. Journal of Hydrology, 377(1–2). https://doi.org/10.1016/j.jhydrol.2009.08.003 703 

Hannappel, S., Köpp, C., & Bach, T. (2018). Characterization of the denitrification potential of 704 

aquifers in Saxony-Anhalt. Grundwasser, 23(4), 311–321. https://doi.org/10.1007/s00767-705 

018-0402-7 706 

Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from 707 

Temperature. Applied Engineering in Agriculture, 1(2). 708 

https://doi.org/10.13031/2013.26773 709 

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., & Kumar, R. (2020). Increased future 710 

occurrences of the exceptional 2018–2019 Central European drought under global warming. 711 

Scientific Reports. https://doi.org/10.1038/s41598-020-68872-9 712 

Harman, C. J. (2015). Time-variable transit time distributions and transport: Theory and 713 

application to storage-dependent transport of chloride in a watershed. Water Resources 714 

Research. https://doi.org/10.1002/2014WR015707 715 

Harman, C. J. (2019). Age-Ranked Storage-Discharge Relations: A Unified Description of 716 

Spatially Lumped Flow and Water Age in Hydrologic Systems. Water Resources Research, 717 

55(8), 7143–7165. https://doi.org/10.1029/2017WR022304 718 

Hartmann, A., Antonio Barberá, J., & Andreo, B. (2017). On the value of water quality data and 719 

informative flow states in karst modelling. Hydrology and Earth System Sciences, 21(12). 720 

https://doi.org/10.5194/hess-21-5971-2017 721 

Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., van 722 

der Velde, Y., & Wade, A. J. (2016). Transit times-the link between hydrology and water 723 

quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 3(5), 629–657. 724 

https://doi.org/10.1002/wat2.1155 725 



manuscript submitted to Water Resources Research 

 

Jiang, S., Jomaa, S., & Rode, M. (2014). Modelling inorganic nitrogen leaching in nested 726 

mesoscale catchments in central Germany. Ecohydrology, 7(5), 1345–1362. 727 

https://doi.org/10.1002/eco.1462 728 

Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-729 

contaminated well water. Environmental Health Perspectives. 730 

https://doi.org/10.1289/ehp.00108675 731 

Knoll, L., Breuer, L., & Bach, M. (2019). Large scale prediction of groundwater nitrate 732 

concentrations from spatial data using machine learning. Science of the Total Environment, 733 

668, 1317–1327. https://doi.org/10.1016/j.scitotenv.2019.03.045 734 

Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic model 735 

parameterization on water fluxes at multiple scales and locations. Water Resources 736 

Research. https://doi.org/10.1029/2012WR012195 737 

Lassaletta, L., García-Gómez, H., Gimeno, B. S., & Rovira, J. V. (2009). Agriculture-induced 738 

increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 739 

25 years (1981-2005). Science of the Total Environment, 407(23). 740 

https://doi.org/10.1016/j.scitotenv.2009.08.002 741 

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and 742 

testing of the HYPE (Hydrological Predictions for the Environment) water quality model 743 

for different spatial scales. Hydrology Research. https://doi.org/10.2166/nh.2010.007 744 

Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., & Kumar, 745 

R. (2019). On the choice of calibration metrics for “high-flow” estimation using hydrologic 746 

models. Hydrology and Earth System Sciences, 23(6). https://doi.org/10.5194/hess-23-2601-747 

2019 748 

Musolff, A., Fleckenstein, J. H., Rao, P. S. C., & Jawitz, J. W. (2017). Emergent archetype 749 

patterns of coupled hydrologic and biogeochemical responses in catchments. Geophysical 750 

Research Letters, 44(9). https://doi.org/10.1002/2017GL072630 751 

Musolff, A., Schmidt, C., Selle, B., & Fleckenstein, J. H. (2015). Catchment controls on solute 752 

export. Advances in Water Resources, 86, 133–146. 753 

https://doi.org/10.1016/j.advwatres.2015.09.026 754 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - 755 

A discussion of principles. Journal of Hydrology, 10(3). https://doi.org/10.1016/0022-756 

1694(70)90255-6 757 

Neitsch, S. ., Arnold, J. ., Kiniry, J. ., & Williams, J. . (2011). Soil & Water Assessment Tool 758 

Theoretical Documentation Version 2009. Texas Water Resources Institute. 759 

https://doi.org/10.1016/j.scitotenv.2015.11.063 760 

Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., & Fleckenstein, J. H. (2021). 761 

Modeling Nitrate Export From a Mesoscale Catchment Using StorAge Selection Functions. 762 

Water Resources Research. https://doi.org/10.1029/2020wr028490 763 

Nixdorf, E., & Trauth, N. (2018). Evaluating the reliability of time series analysis to estimate 764 

variable riparian travel times by numerical groundwater modelling. Hydrological Processes, 765 

32(3). https://doi.org/10.1002/hyp.11428 766 



manuscript submitted to Water Resources Research 

 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. 767 

(2016). Sensitivity analysis of environmental models: A systematic review with practical 768 

workflow. Environmental Modelling and Software, 79, 214–232. 769 

https://doi.org/10.1016/j.envsoft.2016.02.008 770 

Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A Matlab toolbox for Global Sensitivity 771 

Analysis. Environmental Modelling and Software, 70, 80–85. 772 

https://doi.org/10.1016/j.envsoft.2015.04.009 773 

Randall, G. W., & Mulla, D. J. (2001). Nitrate Nitrogen in Surface Waters as Influenced by 774 

Climatic Conditions and Agricultural Practices. Journal of Environmental Quality. 775 

https://doi.org/10.2134/jeq2001.302337x 776 

Remondi, F., Kirchner, J. W., Burlando, P., & Fatichi, S. (2018). Water Flux Tracking With a 777 

Distributed Hydrological Model to Quantify Controls on the Spatiotemporal Variability of 778 

Transit Time Distributions. Water Resources Research, 54(4), 3081–3099. 779 

https://doi.org/10.1002/2017WR021689 780 

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., Van Der Velde, Y., 781 

Bertuzzo, E., & Botter, G. (2015). Storage selection functions: A coherent framework for 782 

quantifying how catchments store and release water and solutes. In Water Resources 783 

Research. https://doi.org/10.1002/2015WR017273 784 

Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-785 

based hydrologic model at the mesoscale. Water Resources Research, 46(5), 1–25. 786 

https://doi.org/10.1029/2008WR007327 787 

Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., & Wagener, T. (2018). V2Karst V1.1: A 788 

parsimonious large-scale integrated vegetation-recharge model to simulate the impact of 789 

climate and land cover change in karst regions. Geoscientific Model Development, 11(12). 790 

https://doi.org/10.5194/gmd-11-4933-2018 791 

Scanlon, T. M., Ingram, S. M., & Riscassi, A. L. (2010). Terrestrial and in-stream influences on 792 

the spatial variability of nitrate in a forested headwater catchment. Journal of Geophysical 793 

Research: Biogeosciences, 115(G2). https://doi.org/10.1029/2009jg001091 794 

Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? In Hydrological Processes 795 

(Vol. 21, Issue 15). https://doi.org/10.1002/hyp.6825 796 

Thorburn, P. J., Biggs, J. S., Weier, K. L., & Keating, B. A. (2003). Nitrate in groundwaters of 797 

intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems and 798 

Environment. https://doi.org/10.1016/S0167-8809(02)00018-X 799 

van der Velde, Y., Heidbüchel, I., Lyon, S. W., Nyberg, L., Rodhe, A., Bishop, K., & Troch, P. 800 

A. (2015). Consequences of mixing assumptions for time-variable travel time distributions. 801 

Hydrological Processes, 29(16), 3460–3474. https://doi.org/10.1002/hyp.10372 802 

van der Velde, Y., Torfs, P. J. J. F., Van Der Zee, S. E. A. T. M., & Uijlenhoet, R. (2012). 803 

Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. 804 

Water Resources Research, 48(6), 1–13. https://doi.org/10.1029/2011WR011310 805 

Winter, C., Lutz, S. R., Musolff, A., Kumar, R., Weber, M., & Fleckenstein, J. H. (2021). 806 

Disentangling the Impact of Catchment Heterogeneity on Nitrate Export Dynamics From 807 



manuscript submitted to Water Resources Research 

 

Event to Long-Term Time Scales. Water Resources Research. 808 

https://doi.org/10.1029/2020WR027992 809 

Wollschläger, U., Attinger, S., Borchardt, D., Brauns, M., Cuntz, M., Dietrich, P., Fleckenstein, 810 

J. H., Friese, K., Friesen, J., Harpke, A., Hildebrandt, A., Jäckel, G., Kamjunke, N., Knöller, 811 

K., Kögler, S., Kolditz, O., Krieg, R., Kumar, R., Lausch, A., … Zacharias, S. (2017). The 812 

Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological 813 

research within the TERENO Harz/Central German Lowland Observatory. Environmental 814 

Earth Sciences, 76(1). https://doi.org/10.1007/s12665-016-6327-5 815 

Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., & Fleckenstein, J. H. (2018). Exploring the 816 

Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment. 817 

Water Resources Research, 54(3), 2317–2335. https://doi.org/10.1002/2017WR021896 818 

Yang, X., Jomaa, S., Zink, M., Fleckenstein, J. H., Borchardt, D., & Rode, M. (2018). A New 819 

Fully Distributed Model of Nitrate Transport and Removal at Catchment Scale. Water 820 

Resources Research, 54(8), 5856–5877. https://doi.org/10.1029/2017WR022380 821 

Zink, M., Kumar, R., Cuntz, M., & Samaniego, L. (2017). A high-resolution dataset of water 822 

fluxes and states for Germany accounting for parametric uncertainty. Hydrology and Earth 823 

System Sciences, 21(3). https://doi.org/10.5194/hess-21-1769-2017 824 

 825 


