REFERENCES
  1. Geetha D, Jefferson JA. ANCA-associated vasculitis: core curriculum 2020. Am J Kidney Dis. 2020; 75(1): 124-137.
  2. Haris Á, Dolgos S, Polner K. Therapy and prognosis of ANCA-associated vasculitis from the clinical nephrologist’s perspective. Int Urol Nephrol. 2017; 49(1): 91-102.
  3. Yates M, Watts RA, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016; 75(9): 1583-1594.
  4. Jones RB, Hiemstra TF, Ballarin J, et al. European Vasculitis Study Group (EUVAS): Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann Rheum Dis. 2019; 78(3): 399-405.
  5. Moiseev SV, Smitienko I, Bulanov N, et al. Changing landscape of immunosuppression in ANCA-associated vasculitis. Ann Rheum Dis79: e59, 2020
  6. Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: An Update. Clin Pharmacokinet. 2018; 57(5): 547-558.
  7. Joy MS, Hilliard T, Hu Y, et al. Influence of clinical and demographic variables on mycophenolic acid pharmacokinetics in antineutrophil cytoplasmic antibody-associated vasculitis. Ann Pharmacother.2009; 43(6): 1020-1027.
  8. Schaier M, Scholl C, Scharpf D, et al. High interpatient variability in response to mycophenolic acid maintenance therapy in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2015; 30 Suppl 1: i138-145.
  9. Chaigne B, Gatault P, Darrouzain F, et al. Mycophenolate mofetil in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis: a prospective pharmacokinetics and clinical study.Clin Exp Immunol. 2014; 176(2): 172-179.
  10. Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009; 20(3): 629-637.
  11. Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int.2012; 82(4): 445-453
  12. Salvador CL, Tøndel C, Rowe AD, et al. Estimating glomerular filtration rate in children: evaluation of creatinine- and cystatin C-based equations. Pediatr Nephrol. 2019; 34(2): 301-311.
  13. Woillard JB, Bader-Meunier B, Salomon R, et al. Pharmacokinetics of mycophenolate mofetil in children with lupus and clinical findings in favour of therapeutic drug monitoring. Br J Clin Pharmacol.2014; 78(4): 867-876.
  14. Lea-Henry TN, Carland JE, Stocker SL, et al. Clinical pharmacokinetics in kidney disease: Fundamental principles. Clin J Am Soc Nephrol . 2018;13(7): 1085-1095.
  15. Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol. 2021; 87(4): 1730-1757.
  16. Cattaneo D, Cortinovis M, Baldelli S, et al. Pharmacokinetics of mycophenolate sodium and comparison with the mofetil formulation in stable kidney transplant recipients. Clin J Am Soc Nephrol.2007; 2(6): 1147-1155.
  17. Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation.Kidney Int. 2002; 62(3): 1060-1067.
  18. Rong Y, Mayo P, Ensom MHH, et al. Population Pharmacokinetics of Mycophenolic Acid Co-Administered with Tacrolimus in Corticosteroid-Free Adult Kidney Transplant Patients. Clin Pharmacokinet. 2019; 58(11): 1483-1495.
  19. Romano-Aguilar M, Reséndiz-Galván JE, Medellín-Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in Mexican patients with lupus nephritis. Lupus. 2020; 29(9): 1067-1077.
  20. Shemesh O, Golbetz H, Kriss JP, et al. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int.1985; 28(5): 830-838.
  21. Kidney Disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3(1): 1-150.
  22. Brou NA, Jacqz-Aigrain E, Zhao W. Cystatin C as a potential biomarker for dosing of renally excreted drugs. Br J Clin Pharmacol . 2015; 80(1): 20-27.
  23. Barreto EF, Rule AD, Murad MH, et al. Prediction of the renal elimination of drugs with cystatin C vs creatinine: A systematic review. Mayo Clin Proc. 2019; 94(3): 500-514.
  24. Lu JJ, Chen M, Lv CL, et al. A population pharmacokinetics model for vancomycin dosage optimization based on serum cystatin C. Eur J Drug Metab Pharmacokinet. 2020; 45(4): 535-546.
  25. Downes KJ, Zane NR, Zuppa AF. Effect of Cystatin C on vancomycin clearance estimation in critically Ill children using a population pharmacokinetic modeling approach. Ther Drug Monit . 2020; 42(6): 848-855.
  26. Tan SJ, Cockcroft M, Page-Sharp M, et al. Population pharmacokinetic study of ceftriaxone in elderly patients, using cystatin C-based estimates of renal function to account for frailty. Antimicrob Agents Chemother. 2020; 64(10): e00874-20.
  27. Björk J, Nyman U, Berg U, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol . 2019; 34(6): 1087-1098.
  28. Correa S, Pena-Esparragoza JK, Scovner KM, et al. Myeloperoxidase and the risk of CKD progression, cardiovascular disease, and death in the chronic rrenal insufficiency cohort (CRIC) study. Am J Kidney Dis. 2020; 76(1): 32-41.
  29. Kronbichler A, Lee KH, Denicolò S, et al. Immunopathogenesis of ANCA-Associated Vasculitis. Int J Mol Sci. 2020; 21(19): 7319.
  30. Couser WG, Johnson RJ. What is myeloperoxidase doing in ANCA-associated glomerulonephritis? Kidney Int. 2015; 88(5): 938-940.
  31. Shah RR, Smith RL. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015; 43(3): 400-410.
  32. Shipkova M, Strassburg CP, Braun F, et al. Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol . 2001; 132(5): 1027-1034.
  33. Lamba V, Sangkuhl K, Sanghavi K, et al. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics . 2014; 24(1):73-79.
  34. Reséndiz-Galván JE, Romano-Aguilar M, Medellín-Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen. Eur J Pharm Sci. 2020; 150: 105370.
  35. Knights KM, Rowland A, Miners JO. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol. 2013; 76(4): 587-602.
  36. Zhou X, Xie Y, Qi Q, et al. Disturbance of hepatic and intestinal UDP-glucuronosyltransferase in rats with trinitrobenzene sulfonic acid-induced colitis. Drug Metab Pharmacokinet. 2013; 28(4): 305-313.
  37. de Jong LM, Jiskoot W, Swen JJ, et al. Distinct effects of inflammation on cytochrome P450 regulation and drug metabolism: Lessons from experimental models and a potential role for pharmacogenetics. Genes (Basel). 2020; 11(12): 1509.
  38. Richardson TA, Sherman M, Kalman D, et al. Expression of UDP-glucuronosyltransferase isoform mRNAs during inflammation and infection in mouse liver and kidney. Drug Metab Dispos. 2006; 34(3): 351-353.
  39. Kawase A, Norikane S, Okada A, et al. Distinct alterations in ATP-binding cassette transporter expression in liver, kidney, small intestine, and brain in adjuvant-induced arthritic rats. J Pharm Sci. 2014; 103(8): 2556-2564.
  40. Diao L, Li N, Brayman TG, et al. Regulation of MRP2/ABCC2 and BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to inflammatory cytokines TNF-{alpha}, IL-6, and IL-1{beta}. J Biol Chem . 2010; 285(41): 31185-31192.
  41. Evers R, Piquette-Miller M, Polli JW, et al. International Transporter Consortium: Disease-associated changes in drug transporters may impact the pharmacokinetics and/or toxicity of drugs: A white paper from the international transporter consortium. Clin Pharmacol Ther . 2018;104(5): 900-915.
  42. Beunders R, Schütz MJ, van Groenendael R, et al. Endotoxemia-induced release of pro-inflammatory mediators are associated with increased glomerular filtration rate in humans in vivo. Front Med (Lausanne) 2020;7: 559671.
  43. Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol. 2011; 7(9): 539-543.
  44. Barau C, Barrail-Tran A, Hemerziu B, et al. Optimization of the dosing regimen of mycophenolate mofetil in pediatric liver transplant recipients. Liver Transpl. 2011; 17(10): 1152-1158.
  45. Barau C, Mellos A, Chhun S, et al. Pharmacokinetics of mycophenolic acid and dose optimization in children after intestinal transplantation. Ther Drug Monit. 2017; 39(1): 37-42.
  46. Weber LT, Hoecker B, Armstrong VW, et al. Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit. 2008; 30(5): 570-575.
  47. Tellier S, Dallocchio A, Guigonis V, et al. Mycophenolic acid pharmacokinetics and relapse in children with steroid-dependent idiopathic nephrotic syndrome. Clin J Am Soc Nephrol. 2016; 11(10): 1777-1782.