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Summary

This paper investigates the feedback stabilization of non-homogeneous delayed bilin-
ear systems, evolving in Hilbert state space. More precisely, under observability like
assumption, we prove the exponential and strong stability of the solution by using a
bounded feedback control. The partial stabilization is discussed as well. The proof
of the main results is based on the decomposition method. The decay estimates of
the corresponding solution are obtained. Finally, some examples are presented.
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1 INTRODUCTION

Bilinear systems appear in the control of various real problems which frequently appear in engineering, biological, nuclear ( see,
e.g.9,20,23,25), and the references therein). In the modeling process, one should take into account different parameters to be closer
to reality, such as time delay (see e.g.16,15). The presence of the delay in a system can be a source of instability. Indeed, even
arbitrarily small delays in the feedbackmay destabilize the system at hand (see, e.g.,24,10). Therefore, it is important to understand
the effect of the delay on the system’s stability. Non-homogeneous delayed bilinear systems like (1) are found in many areas
of engineering and modeling several problems in the real world (see e.g.11,29). Stability results for the delayed bilinear systems
have been recently obtained in18,19. This work mainly investigates the feedback stabilization question of the non-homogeneous
delayed bilinear system, given by:

{ dy(t)
dt

= Ay(t) + u(t)(By(t − r) + b), ∀t > 0
y0 = ' ∈  = C([−r, 0],H),

(1)

whereA is the infinitesimal generator of a linearC0-semigroup of contractionsS(t) on a real Hilbert spaceH , with inner product
⟨., .⟩, and corresponding norm ‖.‖, B ∶ H → H is a linear bounded operator ofH , the positive real number r denotes the delay
which is assumed to be constant, b ∈ H is a fixed vector, and the real-valued function u(t) is the control.
In the sequel of this paper, we consider  ∶= C([−r, 0],H), the Banach space of continuous H-valued functions on [−r, 0],
equipped with the supremum norm:

‖ ‖ = sup
−r≤�≤0

‖ (�)‖ , for all  ∈ .

If  is a continuous function from [−r,+∞) to X and t ∈ [−r,+∞), then the history function  t denotes the element of 
defined by:

 t(�) =  (t + �) for all � ∈ [−r, 0].
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The stabilization question of the homogeneous undelayed version of system (1) (i.e. the case where b = r = 0 ) has been
studied in various works (see e.g.3,4,26,14,13,12). Moreover, there are some works that have been dedicated to the case of the
non-homogeneous (i.e. b ≠ 0) bilinear system (1) (see e.g.5,7,8,1,6,17, and the references therein).
This work’s main contribution is to provide sufficient conditions for exponential, strong, and partial stabilization of the non-

homogeneous, delayed bilinear system (1).
The paper is organized as follows. The next section deals with the existence, uniqueness, and regularity of the system’s solution
(1). In the third section, we give sufficient conditions that ensure the full state strong stabilization, leading to an explicit asymp-
totic decay rate. In the fourth section, we consider partial stabilization, which consists of stabilizing only a part of the state. Also,
we provide sufficient conditions for exponential stabilization. Finally, some illustrating examples are presented in section five.

2 WELL-POSSEDNESS

We consider the following delayed bounded feedback control:

u(t) = −�
⟨y(t), By(t − r) + b⟩

|⟨y(t), By(t − r) + b⟩| + 1
, (2)

Where � > 0 is the gain control. This leads to the closed loop system:
{ dy(t)

dt
= Ay(t) + F (yt), ∀t > 0

y0 = ' ∈ ,
(3)

where
F ( ) = −�

⟨B (−r) + b,  (0)⟩
|⟨B (−r) + b,  (0)⟩| + 1

(B (−r) + b), for all  ∈  ∶= C([−r, 0],H). (4)
In this section, we aim to study the existence, uniqueness, and regularity of the system’s solution (3)). We start our study by the
well-posedness result.

Proposition 1. Assume thatA generates a C0-semigroup S(t) of contractions. Then, the system (3) admits a unique global mild
solution. Moreover, we have the following estimate:

‖y(�)‖2 − ‖y(t)‖2 ≥ 2�

t

∫
�

⟨By(s − r) + b, y(s)⟩2

|⟨By(s − r) + b, y(s)⟩| + 1
ds, for all 0 ≤ � ≤ t. (5)

In particular, we have
‖y(t)‖ ≤ ‖'‖ , for all t ≥ −r (6)

Proof. Firstly let us show that F , defined by (4), is a locally Lipschitz continuous function from  to H . To this end, let R be
such that for all  1,  2 ∈ , ‖

‖

 1‖‖ , ‖‖ 2‖‖ ≤ R, we have:
‖

‖

F ( 1) − F ( 2)‖‖ ≤ � ‖B‖ ‖
‖

 1(−r) −  2(−r)‖‖
+�G( 1,  2) ‖‖B 2(−r) + b‖‖ (7)

where
G( 1,  2) =

|

|

|

|

|

⟨B 1(−r) + b,  1(0)⟩
|

|

⟨B 1(−r) + b,  1(0)⟩|| + 1
−

⟨B 2(−r) + b,  2(0)⟩
|

|

⟨B 2(−r) + b,  2(0)⟩|| + 1

|

|

|

|

|

By definition of ‖.‖ , we have ‖‖ 1(−r) −  2(−r)‖‖ ≤ ‖

‖

 1 −  2‖‖ . By making use of the function f (x) = x
|x|+1

, we get

G( 1,  2) ≤ |

|

⟨B 1(−r) + b,  1(0)⟩ − ⟨B 2(−r) + b,  2(0)⟩|| (8)

We also have
|

|

⟨B 1(−r) + b,  1(0)⟩ − ⟨B 2(−r) + b,  2(0)⟩|| ≤ |

|

⟨ 1(0) −  2(0), B 1(−r) + b⟩||
+ |

|

⟨ 2(0), B 1(−r) − B 2(−r)⟩||
It follows that

|

|

⟨B 1(−r) + b,  1(0)⟩ − ⟨B 2(−r) + b,  2(0)⟩|| ≤ (‖B‖ ‖
‖

 1‖‖ + ‖b‖) ‖
‖

 1 −  2‖‖
+ ‖B‖ ‖

‖

 2‖‖ ‖‖ 1 −  2‖‖ (9)
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then, using (8) and (9), we get

G( 1,  2) ≤ (‖B‖ ‖‖ 1‖‖ + ‖B‖ ‖
‖

 2‖‖ + ‖b‖) ‖
‖

 1 −  2‖‖
It follows from the above inequality and (7) that

‖

‖

F ( 1) − F ( 2)‖‖ ≤ � ‖B‖ ‖
‖

 1 −  2‖‖
+�(‖B‖ ‖

‖

 2‖‖ + ‖b‖)(‖B‖ ‖
‖

 1‖‖ + ‖B‖ ‖
‖

 2‖‖ + ‖b‖) ‖
‖

 1 −  2‖‖
we deduce that F is locally Lipschitz. According to Theorem 2.6 (30, p. 51), the system (3) admits a unique mild solution defined
on a maximal interval

[

0, T'
)

), which is continuous with respect to the initial state given by the following variation of constants
formula:

y(t) = S(t)'(0) − �

t

∫
0

⟨By(s − r) + b, y(s)⟩
|⟨By(s − r) + b, y(s)⟩| + 1

S(t − s)(By(s − r) + b)ds (10)

Consider the following function:
f ∶

[

0, T'
)

→ H
t → F (yt)

Let 0 < T < T'. We have that f ∈ C([0, T ],H), so there exist a sequence (fn) ⊂ C1([0, T ] ,H) such that

fn → f uniformly in C([0, T ],H).

Let (�n) ⊂ D(A) such that (�n) converges to '(0) inH , and define the function:

yn(t) = S(t)�n +

t

∫
0

S(t − s)fn(s)ds, for all t ∈ [0, T ] (11)

Then, yn(t) ∈ D(A) and yn ∈ C1([0, T ] ,H) (see e.g.,28, p. 187) and we have
∕yn(t) = Ayn(t) + fn(t), t ∈ (0, T ), yn(0) = �n.

Using the dissipativity of the operator A, we obtain:
d
dt

‖

‖

yn(t)‖‖
2 ≤ 2 ⟨fn(t), yn(t)⟩ , for all t ∈ (0, T )

Integrating this inequality and using the continuity of yn with respect to t, we derive:

‖

‖

yn(t)‖‖
2 − ‖

‖

yn(�)‖‖
2 ≤ 2

t

∫
�

⟨fn(s), yn(s)⟩ ds, for all 0 ≤ � ≤ t ≤ T .

Using (11) and the fact that (fn) is bounded with respect to n, we can see that (yn) is bounded as well. Then, by passing to the
limit in the last estimation, we get via the dominated convergence theorem,

‖

‖

yn(t)‖‖
2 − ‖

‖

yn(�)‖‖
2 ≤ −2�

t

∫
�

⟨By(s − r) + b, y(s)⟩2

|⟨By(s − r) + b, y(s)⟩| + 1
ds, for all 0 ≤ � ≤ t ≤ T .

Since T is arbitrary, the inequality (5) holds for all t < T'. We deduce from Theorem 2.6 (30, p. 51) that T' = ∞. In other
words, the system (3) possesses a unique global solution y(t), moreover, we have

‖y(t)‖ ≤ ‖'‖ , for all t ≥ −r.

3 STRONG STABILIZATIONWITH DECAY ESTIMATE

In the sequel we suppose that H = Hu ⊕Hs where Hu and Hs are two closed subspace of H , which are orthogonal to each
one and invariant under S (t). Thus, S (t) induces a C0-semigroup Su (t) (resp. Ss (t)) on Hu (resp. Hs). We also consider the
following assumptions:

(

H1
)

BHu ⊆ Hu, and
(

H2
)

BHs ⊆ Hs.
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Under the hypothesis
(

H1
)

and
(

H2
)

, the systems (1) can be decomposed into the two following systems:
{ ∕yu(t) = Auyu(t) + v(t)(Buyu(t − r) + bu), ∀t > 0
yu0 = '

u ∈ u =∶ C([−r, 0],Hu),
(12)

and
{ ∕ys(t) = Asys(t) + v(t)(Bsys(t − r) + bs), ∀t > 0
ys0 = '

s ∈ s =∶ C([−r, 0],Hs),
(13)

where Au and Bu are respectively the restrictions of A and B in Hu, As and Bs are respectively the restrictions of A and B in
Hs. zu and zs are the components of the solution z ∈ H on Hu and Hs respectively. We further suppose that Au generates a
C0-semigroup of contractions Su (t).

In the rest of the paper, we consider the following feedback control:

vu (t) = −�
⟨yu (t) , Byu (t − r) + bu⟩

|⟨yu (t) , Byu (t − r) + bu⟩| + 1
(14)

Using Proposition 1, we deduce that the system (12) admits a unique global mild solution given by

⎧

⎪

⎨

⎪

⎩

yu (t) = Su (t)'u (0) +

t

∫
0

Su (t − �) vu (�) (Buyu (� − r) + bu) d�, t ≥ 0

yu0 = '
u ∈ u

(15)

and verifies the following estimations

‖yu(�)‖2 − ‖yu(t)‖2 ≥ 2�

t

∫
�

⟨Buyu(s − r) + bu, yu(s)⟩2

|⟨Buyu(s − r) + bu, yu(s)⟩| + 1
ds, for all 0 ≤ � ≤ t. (16)

Then, we have
‖yu(t)‖ ≤ ‖'u‖ , for all t ≥ −r (17)

Theorem 1. Let A generates a C0-semigroup S(t), and suppose that the following conditions holds:

1. Su (t) is a contraction semigroup,

2. there exist �, T > 0 such that:
T

∫
r

|⟨BuSu (s − r) � + bu, Su (s) �⟩| ds ≥ � ‖�‖
bu , for all � ∈ Hu (18)

where

bu =

{

2 if bu = 0
1 if bu ≠ 0

• if 
bu = 2, then the feedback (14) strongly stabilizes the system (12), and we have the following decay estimate:

‖yu (t)‖ = O

(

1
√

t − r

)

, as t ←→ +∞.

• if 
bu = 1, then the feedback (14) exponentially stabilizes the system (12). More precisely, there exists � > 0, such
that

‖yu (t)‖ ≤ e−� ‖'u‖ e
− �
T
(t−r), for all t ≥ r

Proof. According to the discussion, at the beginning of this section, the system (12) has a unique global mild solution which is
given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yu (t) = Su (t)'u (0) +

t

∫
0

Su (t − �) vu (�) (Buyu (� − r) + bu) d�, t ≥ 0

yu0 = '
u ∈ u
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by using the fact that
|vu (t)| ≤ � |⟨yu (t) , Buyu (t − r) + bu⟩| ,

we get the following estimation:

‖yu (t) − Su (t)'u (0)‖ ≤ �
(

‖Bu‖ ‖'u‖ + ‖bu‖
)

t

∫
0

|⟨yu (�) , Buyu (� − r) + bu⟩| d�, ∀t ≥ 0. (19)

On the other hand, let s ≥ r, we have
|⟨BuSu (s − r) yu (0) + bu, Su (s) yu (0)⟩| ≤ |⟨BuSu (s − r) yu (0) − Buyu (s − r) , Su (s) yu (0)⟩|

+ |⟨Buyu (s − r) + bu, Su (s) yu (0) − yu (s)⟩|
+ |⟨Buyu (s − r) + bu, yu (s)⟩| .

using the fact that the semigroup Su (t) is of contraction, it comes:
|⟨BuSu (s − r) yu (0) + bu, Su (s) yu (0)⟩| ≤ ‖Bu‖ ‖'u‖ ‖Su (s − r) yu (0) − yu (s − r)‖

+
(

‖Bu‖ ‖'u‖ + ‖bu‖
)

‖Su (s) yu (0) − yu (s)‖
+ |⟨Buyu (s − r) + bu, yu (s)⟩| .

It follows from the last inequality and (19) that,

|⟨BuSu (s − r) yu (0) + bu, Su (s) yu (0)⟩| ≤ �
(

‖Bu‖ ‖'u‖ + ‖bu‖
)2 ∫ s−r

0 |⟨yu (�) , Buyu (� − r) + bu⟩| d�
+�

(

‖Bu‖ ‖'u‖ + ‖bu‖
)2 ∫ s

0 |⟨yu (�) , Buyu (� − r) + bu⟩| d�
+ |⟨Buyu (s − r) + bu, yu (s)⟩|
≤ 2�

(

‖Bu‖ ‖'u‖ + ‖bu‖
)2 ∫ s

0 |⟨yu (�) , Buyu (� − r) + bu⟩| d�
+ |⟨yu (s) , Buyu (s − r) + bu⟩| .

Using the superposition property of the solution of the system (12), then for all t ≥ 0, we get

|⟨BuSu (s − r) yu (t) + bu, Su (s) yu (t)⟩| ≤ 2� (‖Bu‖ ‖'u‖ + ‖bu‖)2 ∫ s+t
t |⟨yu (�) , Buyu (� − r) + bu⟩| d�

+ |⟨yu (t + s) , Buyu (t + s − r) + bu⟩| ,
which by integrating over [r, T + r] with respect to s gives

∫ T+r
r |⟨BuSu (s − r) yu (t) + bu, Su (s) yu (t)⟩| ds ≤ Ru ∫ T+r

r ∫ s
0 |⟨yu (t + �) , Buyu (t + � − r) + bu⟩| d�ds

+ ∫ T+r
r |⟨yu (t + s) , Buyu (t + s − r) + bu⟩| ds

≤ (Ru (T + r) + 1)Iu

where

Ru = 2�
(

‖Bu‖ ‖'u‖ + ‖bu‖
)2 and Iu =

T+r

∫
r

|⟨yu (t + s) , Buyu (t + s − r) + bu⟩| ds.

This, together with (18), gives:

� ‖yu (t)‖
bu ≤ ((T + r)Ru + 1)

t+T+r

∫
t+r

|⟨yu (�) , Buyu (� − r) + bu⟩| d�

Hölder’s inequality gives

� ‖yu (t)‖
bu ≤ K
⎛

⎜

⎜

⎝

t+T+r

∫
t+r

|⟨yu (�) , Buyu (� − r) + bu⟩|2 d�
⎞

⎟

⎟

⎠

1
2

with K =
√

T ((T + r)Ru + 1). Using (16) and the fact that ‖yu (t)‖ is decreasing, we obtain

� ‖yu (t + r + T )‖
bu ≤ 1
√

2
K1

(

‖yu (t + r)‖2 − ‖yu (t + r + T )‖2
)

1
2

with K1 = K
√

(‖Bu‖‖'u‖+‖bu‖)‖'u‖+1
�

, then

‖yu (t + r + T )‖2 ≤ ‖yu (t + r)‖2 − 2 �
2

K2
1

‖yu (t + r + T )‖2
bu
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Letting sk = ‖yu (kT + r)‖2 with k is a positive integer number, we derive

sk+1 ≤ sk − 2
�2

K2
1

s
buk+1. (20)

Let us examine the two following cases:

Case 1: If 
bu = 2 i.e bu = 0, by using (2, Lemma 5.2), we deduce that there exists a positive constantM (depending on 
, �
and K1) such that

sk ≤
M

(k + 1)
1
2

, for all k ≥ 0,

then, we have the following estimate:

‖yu (t)‖ = O

(

1
√

t − r

)

, as t ←→ +∞. (21)

Case 2: If 
bu = 1 i.e bu ≠ 0, from (20)
sk+1 ≤

1
C
sk

where C = 1 + 2 �
2

K2
1
. Therefore, we have

sk ≤ e−k lnCs0,
which gives

‖yu (kT + r)‖ ≤ e−k
ln(C)
2
‖'u‖ .

We deduce that
‖yu (t)‖ ≤ e−

ln(C)
2
‖'u‖ e

− ln(C)
2T

(t−r), for all t ≥ r. (22)
Hence yu (t) decays exponentially with the decay rate �∗ = lnC

2T
.

LettingHu = H in Theorem 1, we deduce the following corollary:

Corollary 1. Let A generates a C0-semigroup of contractions S(t):

• If there exist �, T > 0 such that:
T

∫
r

|⟨BS (s − r) �, S (s) �⟩| ds ≥ � ‖�‖2 , for all � ∈ H,

then the feedback v (t) = −�
⟨y (t) , By (t − r)⟩

|⟨y (t) , By (t − r)⟩| + 1
, strongly stabilizes the system (1), and we have the following decay

estimate:

‖y (t)‖ = O

(

1
√

t − r

)

, as t ←→ +∞.

• If there exists �, T > 0 such that:
T

∫
r

|⟨BS (s − r) � + b, S (s) �⟩| ds ≥ � ‖�‖ , for all � ∈ H,

then the feedback v (t) = −�
⟨y (t) , By (t − r) + b⟩

|⟨y (t) , By (t − r) + b⟩| + 1
exponentially stabilizes the system (1).

Let us recall the following lemma that will be used in the sequel of the paper

Lemma 1 (see,21). Let x (t) be continuous and non-negative on [0, ℎ] and satisfy

x (t) ≤ a (t) +

t

∫
0

(

a1 (s) x (s) + b (s)
)

ds,
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where a1 (t) and b (t) are non-negative integrable functions on the interval [0, ℎ], with a (t) bounded there. Then, we have

x (t) ≤

t

∫
0

b (s) ds + sup
0≤t≤ℎ

|a (t)| exp
⎛

⎜

⎜

⎝

t

∫
0

a1 (s) ds
⎞

⎟

⎟

⎠

, ∀t ∈ [0, ℎ] .

Now, we are ready to establish the strong stabilization result concerning the full system (3).

Theorem 2. Suppose that assumptions 1. and 2. of Theorem 1 holds. Furthermore, suppose that Ss (t) is an exponentially stable
semigroup, i.e. there existsM > 0 and � > 0 such that

‖Ss (t)‖ ≤Me−�t, for all t ≥ 0

. Then, we have the following results:

1. If 
bu = 2 and � ≤ �
M‖Bs‖e�r

. the feedback control (14) Strongly stabilizes the system (3), and we have the following
estimate:

‖y (t)‖ = O

(

1
√

t

)

, as t ←→ +∞.

2. If 
bu = 1 and � ≤
�

M‖Bs‖e�r
, then the corresponding solution of the system (3) is exponentially stable by using the feedback

control (14).

Proof. The corresponding solution of (13) is given by the following variations of constants formula:
{

ys (t) = Ss (t)'s (0) + ∫ t
0 S

s (t − �) vu (�) (Bsys (� − r) + bs) d�, t ≥ 0
ys0 = '

s ∈ Cs

Then, we have

‖ys (t)‖ ≤ M ‖'s‖ e−�t +

r

∫
0

|vu (�)|Me−�(t−�) (‖Bs‖ ‖ys (� − r)‖ + ‖bs‖) d�

+

t

∫
r

|vu (�)|Me−�(t−�) (‖Bs‖ ‖ys (� − r)‖ + ‖bs‖) d�

then,

‖ys (t)‖ ≤ M ‖'s‖ e−�t +

r

∫
0

|vu (�)|Me−�(t−�) (‖Bs‖ ‖ys (� − r)‖ + ‖bs‖) d�

+e−�(t−r)
t−r

∫
0

|vu (� + r)|Me�� (‖Bs‖ ‖ys (�)‖ + ‖bs‖) d�.

Let t ≥ r and !s (t) = ‖ys (t)‖ e�t, then we have

!s (t) ≤ � + e�r
t−r

∫
0

|vu (� + r)|Me�� (‖Bs‖ ‖ys (�)‖ e�� + ‖bs‖ e��) d�

with � =M ‖'s‖ + ∫ r
0 |vu (�)|Me�� (‖Bs‖ ‖ys (� − r)‖ + ‖bs‖) d�, and then

!s (t) ≤ � +

t

∫
0

Me�r |vu (� + r)| (‖Bs‖!s (�) + ‖bs‖ e��) d�

By applying Lemma 1, we deduce that

!s (t) ≤Me�r ‖bs‖

t

∫
0

|vu (� + r)| e��d� + � exp
⎛

⎜

⎜

⎝

M ‖Bs‖ e�r
t

∫
0

|vu (� + r)| ds
⎞

⎟

⎟

⎠

, ∀t ≥ 0.
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from which, it comes for all t ≥ 0

‖ys (t)‖ ≤Me−�(t−r) ‖bs‖

t

∫
0

|vu (� + r)| e��d� + � exp
⎛

⎜

⎜

⎝

M ‖Bs‖ e�r
t

∫
0

|vu (� + r)| ds − �t
⎞

⎟

⎟

⎠

. (23)

Two cases will be considered

Case 1: 
bu = 2 i.e. bu = 0. Using (21), we get
|vu (t)| ≤

� ‖Bu‖
√

t2 − rt
Thus, from (23) we have

‖ys (t)‖ ≤ M� ‖Bu‖ ‖bs‖ e−�(t−r)
t

∫
0

e��
√

�2 + r�
d�

+� exp
⎛

⎜

⎜

⎝

M ‖Bs‖ e�r
t

∫
0

|vu (� + r)| d� − �t
⎞

⎟

⎟

⎠

.

Since, the function f (t) = e�t
√

t2+tr
is decreasing on [0, "] and increasing on [",+∞[, with " = −(�r−1)+

√

�2r2+1
2�

. Thus, for any
t ≥ ", we have

‖ys (t)‖ ≤ M� ‖Bu‖ ‖bs‖ e−�(t−r−�)
"

∫
0

d�
√

�2 + r�

+M� ‖Bu‖ ‖bs‖ e−�(t−r)
t

∫
"

e��
√

�2 + r�
d�

+� exp
⎛

⎜

⎜

⎝

M ‖Bs‖ e�r
t

∫
0

|vu (� + r)| d� − �t
⎞

⎟

⎟

⎠

(24)

Hence, we get

‖ys (t)‖ ≤ �M ‖Bu‖ ‖bs‖ e−�(t−r−�) ln
(2
r
" + 1 + 2

r

√

"2 + r"
)

+
M� ‖Bu‖ ‖bs‖

√

t2 + rt
e�r

+� exp
⎛

⎜

⎜

⎝

M ‖Bs‖ e�r
t

∫
0

|vu (� + r)| d� − �t
⎞

⎟

⎟

⎠

Taking into account the fact that
|vu (t)| ≤ � (25)

Hence,

‖ys (t)‖ ≤ �M ‖Bu‖ ‖bs‖ e−�(t−r)M" +
�M ‖Bu‖ ‖bs‖

√

t2 + rt
e�r

+� exp ((�M ‖Bs‖ e�r − �) t) (26)

withM" = e�� ln
(

2
r
" + 1 + 2

r

√

"2 + r"
)

.
If we choose � ≤ �

M‖Bs‖e�r
, we can see that the system (13) is strongly stable. Moreover, we have the following estimates:

‖ys (t)‖ = O

(

1
√

t2 + rt

)

, as t ←→ +∞.
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Then, by using Theorem 1, we obtain

‖y (t)‖ = O

(

1
√

t

)

, as t ←→ +∞.

Case 2: If 
bu = 1 i.e. 
bu ≠ 0 from Theorem 1, we have

|vu (t)| = �
|

|

|

|

⟨yu (t) , Buyu (t − r) + bu⟩
|⟨yu (t) , Byu (t − r) + bu⟩| + 1

|

|

|

|

≤ � |⟨yu (t) , Buyu (t − r) + bu⟩|
≤ � |⟨yu (t) , Buyu (t − r)⟩| + � |⟨yu (t) , bu⟩|
≤ � e−2� ‖'u‖ e

− �
T
(t−r)

‖Bu‖ e−
�
T
(t−2r)

‖'u‖ + � ‖bu‖ e−�e
− �
T
(t−r)

‖'u‖ ,

where � is defined in (22). According to (23) , and (25), we obtain:

‖ys (t)‖ ≤ � e−2�Me−�(t−r) ‖Bu‖ ‖bs‖ ‖'u‖2 e
�
T
r

t

∫
0

e
(

�− 2�
T

)

�d�

+� e−� ‖bu‖ ‖'u‖ Me−�(t−r) ‖bs‖

t

∫
0

e
(

�− �
T

)

�d�

+� exp ((�M ‖Bs‖ e�r − �) t) .

After calculation of the above integrals, we deduce that if � ≤ �
M‖Bs‖e�r

the system (13) is exponentially stable. Then, by using
Theorem 1, we deduce that the control (14) ensures the exponential stability of the full state.

Remark 1. 1. In the undelayed homogeneous case, with 
bu = 2, we can see that the component ys (t) of y (t) decays
exponentially, retrieving thus the result of27.

2. In the delayed case, with 
bu = 2, we retrieve the result of 18.

3. It follows from (26) that if 
bu = 1, � ≤
�

M‖Bs‖e�r
and bs = 0, then the system (1) is exponentially stable.

4. If 
bu = 1, and Bs = 0 then, the corresponding solution of system (1) is exponentially stabilizable.without any condition
on �.

4 PARTIAL STRONG STABILIZATION

Our main result concerning the partial strong stabilization can be stated as follows:

Theorem 3. Suppose that:

1. A is the infinitesimal generator of a linear C0-semigroup of contractions S(t) onH ,

2. B is a linear bounded operator,

3. C is a linear operator fromH toH ,

4. there exist �, T > 0 such that,
T

∫
r

|⟨BS(s − r)y + b, S(s)y⟩| ds ≥ � ‖Cy‖
 , for all y ∈ H and 
 > 0 (27)

Then, the feedback (2) partially strongly stabilize the system (1).

Proof. According to Proposition 1, the system (1) controlled by the feedback (2) possesses a unique global mild solution which
is given by:

y(t) = S(t)'(0) − �

t

∫
0

⟨By(s − r) + b, y(s)⟩
|⟨By(s − r) + b, y(s)⟩| + 1

S(t − s)(By(s − r) + b)ds
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Then, using (6), we get:

‖y(t) − S(t)'(0)‖ ≤ �(‖B‖ ‖'‖ + ‖b‖)

t

∫
0

|⟨By(s − r) + b, y(s)⟩|
|⟨By(s − r) + b, y(s)⟩| + 1

ds, for all t ≥ 0. (28)

Furthermore, for all s ≥ r we have

|⟨BS(s − r)y(0) + b, S(s)y(0)⟩| ≤ |⟨BS(s − r)y(0) − By(s − r), S(s)y(0)⟩|
+ |⟨By(s − r) + b, S(s)y(0) − y(s)⟩|
+ |⟨By(s − r) + b, y(s)⟩| .

Then, using (28) and the contraction property of S(t), we deduce that for all s ≥ r

|⟨BS(s − r)y(0) + b, S(s)y(0)⟩| ≤ � ‖B‖ ‖'‖ (‖B‖ ‖'‖ + ‖b‖)

s−r

∫
0

|⟨By(� − r) + b, y(�)⟩|
|⟨By(� − r) + b, y(�)⟩| + 1

d�

+�(‖B‖ ‖'‖ + ‖b‖)2
s

∫
0

|⟨By(� − r) + b, y(�)⟩|
|⟨By(� − r) + b, y(�)⟩| + 1

d�

+ |⟨By(s − r) + b, y(s)⟩| . (29)

It follows that for all T ≥ s ≥ r, we have

|⟨BS(s − r)y(0) + b, S(s)y(0)⟩| ≤ K1

T

∫
0

|⟨By(� − r) + b, y(�)⟩|
|⟨By(� − r) + b, y(�)⟩| + 1

d�

+ |⟨By(s − r) + b, y(s)⟩| ,

with K1 = �
(

2 ‖B‖ ‖'‖ + ‖b‖
)

(‖B‖ ‖'‖ + ‖b‖). Then,

|⟨BS(s − r)y(0) + b, S(s)y(0)⟩| ≤ K1

T

∫
0

|⟨By(� − r) + b, y(�)⟩| d�

+ |⟨By(s − r) + b, y(s)⟩| .

Now, using the superposition property of the solution y(t), we obtain via the above inequality that, for all (s, t) ∈ [r, T ] ×ℝ+

|⟨BS(s − r)y(t) + b, S(s)y(t)⟩| ≤ K1

t+T

∫
t

⟨By(� − r) + b, y(�)⟩ d�

+ |⟨By(t + s − r) + b, y(t + s)⟩|

Thus, integrating the last inequality with respect to s ∈ [r, T ], we deduce that
T

∫
r

|⟨BS(s − r)y(t) + b, S(s)y(t)⟩| ds ≤ (K1(T − r) + 1)

t+T

∫
t

|⟨By(s − r) + b, y(s)⟩| ds

then, using Holder’s inequality, we obtain
T

∫
r

|⟨BS(s − r)y(t), S(s)y(t)⟩| ds ≤ K(

t+T

∫
t

|⟨By(s − r) + b, y(s)⟩|2 ds)
1
2

with K = (K1(T − r) + 1)
√

T . This combined with the inequality (5) gives:

� ‖Cy(t)‖
b ≤ ( K
K2
(‖y(t)‖2 − ‖y(t + T )‖2))

1
2 (30)

with K2 =
2�

(‖B‖‖'‖+‖b‖)‖'‖+1
. Now, using the above inequality and (6), we conclude that the system (1) is strongly partially

stabilizable by the feedback control (2).



Z. Hamidi ET AL 11

5 APPLICATIONS

5.1 Example 1
Consider the uncoupled system described by:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

y′ (t) = −�y (t) + u (t) y (t − r) + u (t) q t ≥ 0

)2z(x, t)
)t2

=
)2z(x, t)
)x2

+ u(t)
)z(x, t − r)

)t
x ∈ (0, 1), t ≥ 0

z(x, t − r) = z0(x),
)z(x,t−r)

)t
= z1(x), y (t − r) = y0 x ∈ (0, 1), t ∈ [0, r]

z(0, t) = z(1, t) = 0 t ≥ 0

(31)

Where � > 0 and q ∈ ℝ. The system (31) can be written in the form of (1) in the state-space H = ℝ ×  , where the space
 = H1

0 (0, 1) × L
2(0, 1) endowed with the inner product

⟨(X1, X2), (Y1, Y2)⟩ =

1

∫
0

dX1

dx
(x)

dY1
dx

(x)dx +

1

∫
0

X2(x)Y2(x)dx,

The operators A, B, and the vector b are defined as follows.

A =

⎛

⎜

⎜

⎜

⎝

−� 0 0
0 0 Id
0 )2

)x2
0

⎞

⎟

⎟

⎟

⎠

with D(A) = ℝ × (H1
0 (0, 1) ∩H

2(0, 1)) ×H1
0 (0, 1).

and

B =
⎛

⎜

⎜

⎝

1 0 0
0 0 0
0 0 Id

⎞

⎟

⎟

⎠

, b =
⎛

⎜

⎜

⎝

q
0
0

⎞

⎟

⎟

⎠

Here, we takeHs = ℝ × {0} andHu = {0} ×  , we haveH = Hu ⊕Hs. Then, we have

As =
⎛

⎜

⎜

⎝

−� 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

and Au =

⎛

⎜

⎜

⎜

⎝

0 0 0
0 0 Id
0 )2

)x2
0

⎞

⎟

⎟

⎟

⎠

and

Bs =
⎛

⎜

⎜

⎝

1 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

and Bu =
⎛

⎜

⎜

⎝

0 0 0
0 0 0
0 0 Id

⎞

⎟

⎟

⎠

.

Here, ('n ∶=
√

2 sin(n�x))n≥1 is a complete orthonormal eigenfunctions system of )2

)x2
with Dirichlet boundary condition

associated to the eigenvalues (�n = −n2�2)n≥1. Moreover, it is well know that the contraction semigroup Su is defined by

Su (t)
(

z2
z3

)

=
+∞
∑

n=1

(

⟨z2, 'n⟩ cos(n�t) +
1
n�

⟨z3, 'n⟩ sin(n�t)
−n� ⟨z2, 'n⟩ sin(n�t) +

1
n�

⟨z3, 'n⟩ cos(n�t)

)

'n, ∀z = (z1, z2, z3) ∈ H.



12 Z. Hamidi ET AL

Then,

⟨BuSu(t − r)z, Su(t)z⟩ =
+∞
∑

n=1
n2�2 ⟨z2, 'n⟩

2 sin(n� (t − r)) sin(n�t)

−
+∞
∑

n=1
⟨z2, 'n⟩ ⟨z3, 'n⟩ sin(n� (t − r)) cos(n�t)

−
+∞
∑

n=1
⟨z3, 'n⟩ ⟨z2, 'n⟩ cos(n� (t − r)) sin(n�t)

+
+∞
∑

n=1

1
n2�2

⟨z3, 'n⟩
2 cos(n� (t − r)) cos(n�t)

Then, integrating this formula over [r, T ] with r = 2k and T = 2k′ where k, k′ ∈ ℕ such that k ≤ k′, we obtain
T

∫
r

|⟨BuSu(s − r)z, Su(s)z⟩| ds =
+∞
∑

n=1
n2�2 ⟨z1, 'n⟩

2

T

∫
r

sin2(n�t)dt

+
+∞
∑

n=1

1
n2�2

⟨z2, 'n⟩
2

T

∫
r

cos2(n�t)dt

≥
+∞
∑

n=1
( 1
n2�2

⟨z2, 'n⟩
2 + n2�2 ⟨z1, 'n⟩

2)

≥ 
 ‖z‖2

with 
 = 1
�2

. According to Theorem 2, then for any 0 < � ≤ �
M‖Bs‖e�r

. the following feedback control

u(t) = −�

1

∫
0

)z(x, t)
)t

)z(x, t − r)
)t

dx

|

|

|

|

|

|

|

1

∫
0

)z(x, t)
)t

)z(x, t − r)
)t

dx

|

|

|

|

|

|

|

+ 1

, � > 0

strongly stabilizes the system (31), and we have the following estimate:
‖

‖

‖

‖

‖

(

y (t) , z (t) ,
)z (t)
)t

)

‖

‖

‖

‖

‖H

= O

(

1
√

t

)

, as t ←→ +∞.

5.2 Example 2
Consider the system defined in Ω = (0, 1) by the following equation

⎧

⎪

⎨

⎪

⎩

)z (x, t)
)t

=
)2z (x, t)
)x2

+ v (t) (Bz (x, t − r) + b) t ≥ 0, x ∈ (0, 1)

zt = ', z′ (0) = z′ (1) = 0 t ∈ [−r, 0]

(32)

TakingH = L2(Ω) as a state space and

Az =
)2z (x, t)
)x2

with D (A) =
{

z ∈ H2 (Ω) ∶ z′ (0) = z′ (1) = 0
}

The spectrum of A is given by the simple eigenvalues �j = −�2 (j − 1)2, for all j ∈ ℕ∗ associated with the eigenvectors
 1 (x) = 1 and  j (x) =

√

2 cos ((j − 1)�x), ∀j ≥ 2. The unstable subspace is given by Hu = span
(

 1
)

, , and we have
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Su (t) � = ⟨�,  1⟩ 1. Furthermore, let b ∈ L2(Ω) such that
1

∫
0

b(x)dx ≠ 0.

Let Bz =
+∞
∑

j=2
�j

⟨

z,  j
⟩

 j , with �j are real positif numbers and
∑+∞
j=2 �j is convergent.

Here we can see that BHu = (0) ⊂ Hu and BHs ⊂ Hs. It is easy to see that
T

∫
r

|⟨BuSu (s − r) � + b, Su (s) �⟩| ds =

T

∫
r

|⟨b, Su (s) �⟩| ds

≥ � ‖�‖ ,∀� ∈ Hu

with � = (T − r)
|

|

|

|

|

|

|

1

∫
0

b(x)dx
|

|

|

|

|

|

|

. Then, by applying Theorem 1, we deduce that the following control:

v(t) =

1

∫
0

y(t)dt

1

∫
0

b(x)dx

|

|

|

|

|

|

|

1

∫
0

y(t)dt

1

∫
0

b(x)dx
|

|

|

|

|

|

|

+ 1

exponentially stabilize the system (32).

6 CONCLUSION

This paper has proposed a bounded feedback control that ensures the stability of non-homogeneous bilinear systems and com-
pensates for the destabilizing effect of the delay time term r. The presence of the non-homogeneous term b in the feedback
control directly affects the degree of stability of the system at hand. The present study does not cover other interesting situations;
this is when the operator B acting on the delayed state is unbounded or if the delay depends on time.
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