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Abstract

With the rapid growth of the number of sequenced ancient genomes, there has been increasing

interest in using this new information to study past and present adaptation. Such an additional

temporal component has the promise of providing improved power for the estimation of natural

selection. Over the last decade, statistical approaches for detection and quantification of natural

selection from ancient DNA (aDNA) data have been developed. However, most of the existing

methods do not allow us to estimate the timing of natural selection along with its strength, which

is key to understanding the evolution and persistence of organismal diversity. Additionally, most

methods ignore the fact that natural populations are almost always structured, which can result

in overestimation of the effect of natural selection. To address these issues, we propose a novel

Bayesian framework for the inference of natural selection and gene migration from aDNA data

with Markov chain Monte Carlo techniques, co-estimating both timing and strength of natural

selection and gene migration. Such an advance enables us to infer drivers of natural selection

and gene migration by correlating genetic evolution with potential causes such as the changes

in the ecological context in which an organism has evolved. The performance of our procedure

is evaluated through extensive simulations, with its utility shown with an application to ancient

chicken samples.
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1. Introduction1

With modern advances in ancient DNA (aDNA) techniques, there has been a rapid increase2

in the availability of time serial samples of segregating alleles across one or more related popu-3

lations. The temporal aspect of such samples reflects the combined evolutionary forces acting4

within and among populations such as genetic drift, natural selection and gene migration, which5

can contribute to our understanding of how these evolutionary forces are responsible for the6

patterns observed in contemporaneous samples. One of the most powerful applications of such7

genetic time series is to study the action of natural selection since the expected changes in allele8

frequencies over time are closely related to the timing and strength of natural selection.9

Over the past fifteen years, there has been a growing literature on the statistical inference of10

natural selection from time series data of allele frequencies, especially in aDNA (see Malaspinas,11

2016; Dehasque et al., 2020, for excellent reviews). Typically, estimating natural selection from12

genetic time series is built on the hidden Markov model (HMM) framework proposed by Bollback13

et al. (2008), where the allele frequency trajectory of the underlying population through time was14

modelled as a latent variable following the Wright-Fisher model introduced by Fisher (1922) and15

Wright (1931), and the allele frequency of the sample drawn from the underlying population at16

each sampling time point was treated as a noisy observation of the underlying population allele17

frequency. In their likelihood computation, the Wright-Fisher model was approximated through18

its standard diffusion limit, called the Wright-Fisher diffusion, which was then discretised for19

numerical integration with a finite difference scheme. Their method was used to analyse aDNA20

data associated with horse coat colouration in Ludwig et al. (2009) and extended to more21

complex evolutionary scenarios (see e.g., Malaspinas et al., 2012; Steinrücken et al., 2014; Ferrer-22

Admetlla et al., 2016; Schraiber et al., 2016; He et al., 2020b,c).23

Natural populations are almost always structured, which affects the relative effect of natural24

selection and genetic drift on the changes in allele frequencies over time. This can cause overesti-25

mation of the selection coefficient (Mathieson et al., 2015). However, all existing methods based26

on the Wright-Fisher model for the inference of natural selection from time series data of allele27

frequencies lack the ability to account for the confounding effect of gene migration, with the28

exception of Mathieson & McVean (2013), which could model population structure. Mathieson29

& McVean (2013) is an extension of Bollback et al. (2008) for the inference of metapopulations,30
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which enables joint estimation of the selection coefficient and the migration rate from genetic31

time series. However, their method could become computationally cumbersome for large popu-32

lation sizes and evolutionary timescales since their likelihood computation was carried out with33

the Wright-Fisher model, which is an undesirable feature in aDNA.34

More recently, Loog et al. (2017) developed a Bayesian statistical framework for estimating35

the timing and strength of natural selection from genetic time series while explicitly modelling36

gene migration from external sources. Their approach also allowed joint estimation of the allele37

frequency trajectory of the underlying population through time, which was important for un-38

derstanding the drivers of natural selection. However, the population size in their approach was39

assumed to be large enough to ignore genetic drift, which simplifies their likelihood computation40

but limits the application of their method to aDNA data.41

In this work, we develop a novel HMM-based approach for the Bayesian inference of natural42

selection and gene migration to re-analyse the temporally-spaced ancient chicken samples from43

Loog et al. (2017). Our approach is built upon the HMM framework of Bollback et al. (2008),44

but unlike most existing methods, it enables the joint estimation of the timing and strength of45

natural selection and gene migration. Such an advance allows us to infer the drivers of natural46

selection and gene migration by correlating genetic evolution with ecological and cultural shifts.47

Our key innovation is to propose a multi-allele Wright-Fisher diffusion for a single locus evolving48

under natural selection and gene migration, including the timing of natural selection and gene49

migration. This diffusion process characterises the allele frequency trajectories of the underlying50

population through time, where the alleles that migrate from external sources are no longer51

treated as the same as those that originate in the underlying population. Such a setup allows us52

to take full advantage of known quantities like the proportion of the modern European chicken53

that have Asian origin as a direct result of gene migration. Our Bayesian inference of natural54

selection and gene migration is carried out through the particle marginal Metropolis-Hastings55

(PMMH) algorithm of Andrieu et al. (2010) with blockwise sampling, which permits a joint56

update of the underlying population allele frequency trajectories. We evaluate the performance57

of our procedure through extensive simulations, with its utility shown with an application to58

the time serial samples of segregating alleles from ancient chicken reported in Loog et al. (2017).59
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2. Materials and Methods60

In this section, we first introduce the multi-allele Wright-Fisher diffusion for a single locus61

evolving under natural selection and gene migration and then present our Bayesian method for62

the joint inference of natural selection and gene migration from time series allele frequency data.63

2.1. Wright-Fisher diffusion64

Let us consider a population of N randomly mating diploid individuals at a single locus A65

with discrete and nonoverlapping generations, where the population size N is finite and fixed66

over time. Suppose that at locus A there are two allele types, labelled A1 and A2, respectively.67

We attach the symbol A1 to the mutant allele, which arises only once in the population and68

is positively selected once the evolution starts to act through natural selection. We attach the69

symbol A2 to the ancestral allele, which originally exists in the population.70

According to Loog et al. (2017), we characterise the population structure with the continent-71

island model (see, e.g., Hamilton, 2011, for an introduction). More specifically, the population is72

subdivided into two demes, the continental population and the island population. To distinguish73

between the alleles found on the island but emigrated from the continent or were originally on74

the island, the mutant and ancestral alleles that originated on the island are labelled Ai
1 and75

Ai
2, respectively, and the mutant and ancestral alleles that were results of emigration from the76

continent are labelled Ac
1 and Ac

2, respectively. We assume that the continent population is large77

enough such that the gene migration between the continent and the island does not influence the78

genetic composition of the continent population. Our interests in this work primarily focus on79

the island population dynamics. In what follows, the population refers to the island population80

unless noted otherwise.81

To investigate the island population dynamics under natural selection and gene migration,82

we need to specify the life cycle of the island population, which starts with zygotes that natural83

selection acts on. Suppose that natural selection takes the form of viability selection, and the84

relative viabilities of all possible genotypes are shown in Table 1, where s ∈ [0, 1] is the selection85

coefficient, and h ∈ [0, 1] is the dominance parameter. After natural selection, a fraction m of86

the adults on the continent migrate into the population of mating adults on the island, which87

results in the change of the genetic composition of the island population, i.e., fraction m of88

the adults on the island are immigrants from the continent, and fraction 1−m of adults were89
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originally already on the island. The Wright-Fisher reproduction introduced by Fisher (1922)90

and Wright (1931) finally completes the life cycle, which corresponds to randomly sampling 2N91

gametes with replacement from an effectively infinite gamete pool to form new zygotes in the92

next generation through random union of gametes.93

We let X(N)(k) = (X
(N)
1 (k), X

(N)
2 (k), X

(N)
3 (k), X

(N)
4 (k)) be frequencies of the Ai

1, Ai
2, Ac

194

and Ac
2 alleles in N zygotes of generation k ∈ N on the island, which follows the multi-allele95

Wright-Fisher model with selection and migration described in Supplemental Material, File S1.96

We assume that the selection coefficient and the migration rate are both of order 1/(2N) and97

fixed from the time of the onset of natural selection and gene migration up to present. We run98

time at rate 2N , i.e., t = k/(2N), and scale the selection coefficient and the migration rate as99

α(t) =


0, if t < ts

2Ns, otherwise

and β(t) =


0, if t < tm

4Nm, otherwise,

where ts and tm denote the starting times of natural selection and gene migration on the island100

measured in the unites of 2N generations. With the population size N approaching infinity, the101

Wright-Fisher model X(N) converges to a diffusion process, denoted by X = {X(t), t ≥ t0},102

evolving in the state space (i.e., a three-simplex)103

ΩX =

{
x ∈ [0, 1]4 :

4∑
i=1

xi = 1

}

and satisfying the stochastic differential equation (SDE) of the form104

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), t ≥ t0 (1)

with initial condition X(t0) = x0. In Eq. (1), µ(x, t) is the drift term105

µ1(x, t) = α(t)x1(x2 + x4) [(x1 + x3)h+ (x2 + x4)(1− h)]− 1

2
β(t)x1

µ2(x, t) = −α(t)x2(x1 + x3) [(x1 + x3)h+ (x2 + x4)(1− h)]− 1

2
β(t)x2

µ3(x, t) = α(t)x3(x2 + x4) [(x1 + x3)h+ (x2 + x4)(1− h)]− 1

2
β(t)(x3 − xc)

µ4(x, t) = −α(t)x4(x1 + x3) [(x1 + x3)h+ (x2 + x4)(1− h)]− 1

2
β(t)(x4 + xc − 1),

(2)
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where xc is the frequency of the Ac
1 allele in the continent population, which is fixed over time,106

σ(x, t) is the diffusion term107

σ(x, t) =



√
x1x2

√
x1x3

√
x1x4 0 0 0

−√x2x1 0 0
√
x2x3

√
x2x4 0

0 −√x3x1 0 −√x3x2 0
√
x3x4

0 0 −√x4x1 0 −√x4x2 −√x4x3


, (3)

and W (t) is a six-dimensional standard Brownian motion. Notice that the explicit formula for108

the diffusion term σ(x, t) in Eq. (3) is obtained by following He et al. (2020a). The proof of109

the convergence follows in the similar manner to that employed for the neutral two-locus case110

in Durrett (2008, p. 323). We refer to the stochastic process X = {X(t), t ≥ t0} that satisfies111

the SDE in Eq. (1) as the multi-allele Wright-Fisher diffusion with selection and migration.112

2.2. Bayesian inference of natural selection and gene migration113

Suppose that the available data are sampled from the underlying island population at time114

points t1 < t2 < . . . < tK , which are measured in units of 2N generations to be consistent with115

the Wright-Fisher diffusion timescale. At the sampling time point tk, there are ck mutant alleles116

(i.e., the Ai
1 and Ac

1 alleles) and dk continent alleles (i.e., the Ac
1 and Ac

2 alleles) observed in117

the sample of nk chromosomes drawn from the underlying island population. Note that in real118

data, the continent allele count of the sample may not be available at each sampling time point,119

e.g., the proportion of European chicken that have Asian origin is only available in the modern120

sample (Loog et al., 2017). The population genetic quantities of interest are the scaled selection121

coefficient α = 2Ns, the dominance parameter h, the selection time ts, the scaled migration122

rate β = 4Nm, and the migration time tm, as well as the allele frequency trajectories of the123

underlying island population. For simplicity, in the sequel we let ϑs = (α, h, ts) be the selection-124

related parameters and ϑm = (β, tm) be the migration-related parameters, respectively.125

2.2.1. Hidden Markov model126

We apply an HMM framework similar to the one proposed in Bollback et al. (2008). We as-127

sume that the underlying population evolves according to the Wright-Fisher diffusion in Eq. (1)128

and the observations are modelled through independent sampling from the underlying popula-129
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tion at each given time point. Unlike Loog et al. (2017), we co-estimate the timing and strength130

of natural selection and gene migration, including the allele frequency trajectories of the under-131

lying population. Our Wright-Fisher diffusion can trace the changes over time in the frequency132

of the allele in the island population that results from emigrants from the continent population,133

which allows us to make the most of other available information such as the proportion of the134

modern European chicken with Asian ancestry in the most recent sample reported in Loog et al.135

(2017). This provides valuable information regarding the timing and strength of gene migration.136

Let x1:K = (x1,x2, . . . ,xK) be the allele frequency trajectories of the underlying population137

at the sampling time points t1:K . Under our HMM framework, the joint posterior probability138

distribution for the population genetic quantities of interest and the allele frequency trajectories139

of the underlying population is140

p(ϑs,ϑm,x1:K | c1:K ,d1:K) ∝ p(ϑs,ϑm)p(x1:K | ϑs,ϑm)p(c1:K ,d1:K | x1:K ,ϑs,ϑm), (4)

where p(ϑs,ϑm) is the prior probability distribution for the population genetic quantities of141

interest and can be taken to be a uniform prior over the parameter space if their prior knowledge142

is poor, p(x1:K | ϑs,ϑm) is the probability distribution for the allele frequency trajectories of the143

underlying population at the sampling time points t1:K , and p(c1:K ,d1:K | x1:K ,ϑs,ϑm) is the144

probability of the observations at the sampling time points t1:K conditional on the underlying145

population allele frequency trajectories.146

With the Markov property of the Wright-Fisher diffusion, we have147

p(x1:K | ϑs,ϑm) = p(x1 | ϑs,ϑm)
K−1∏
k=1

p(xk+1 | xk;ϑs,ϑm), (5)

where p(x1 | ϑs,ϑm) is the prior probability distribution for the allele frequencies of the under-148

lying population at the initial sampling time point, commonly taken to be non-informative (e.g.,149

flat over the entire state space) if the prior knowledge is poor, and p(xk+1 | xk;ϑs,ϑm) is the150

transition probability density function of the Wright-Fisher diffusion between two consecutive151

sampling time points for k = 1, 2, . . . ,K−1, which satisfies the Kolmogorov backward equation152

(or its adjoint) resulting from the Wright-Fisher diffusion in Eq. (1). Unless otherwise specified,153

in this work we take the prior p(x1 | ϑs,ϑm) to be a uniform distribution over the state space154
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ΩX , known as the flat Dirichlet distribution, if gene migration starts before the first sampling155

time point, i.e., tm ≤ t1; otherwise, the prior p(x1 | ϑs,ϑm) is set to be a uniform distribution156

over the state space ΩX restricted to the line satisfying the condition that x3 = x4 = 0, i.e.,157

there is no continent allele in the island population.158

Given the allele frequency trajectories of the underlying population, the observations at each159

sampling time point are independent. Therefore, we have160

p(c1:K ,d1:K | x1:K ,ϑs,ϑm) =
K∏
k=1

p(ck, dk | xk;ϑs,ϑm), (6)

where p(ck, dk | xk;ϑs,ϑm) is the probability for the observations at the k-th sampling time161

point given its relevant allele frequencies of the underlying population for k = 1, 2, . . . ,K. If the162

sample continent allele count dk is available, we introduce zk = (z1,k, z2,k, z3,k, z4,k) to denote163

the counts of the Ai
1, Ai

2, Ac
1 and Ac

2 alleles in the sample at the k-th sampling time point, and164

the emission probability p(ck, dk | xk;ϑs,ϑm) can be expressed as165

p(ck, dk | xk;ϑs,ϑm) =
∑

zk∈ΩZk

nk!∏4
i=1 zi,k!

4∏
i=1

x
zi,k
i,k 1{z1,k+z3,k=ck,z3,k+z4,k=dk}(zk),

where166

ΩZk
=

{
zk ∈ N4 :

4∑
i=1

zi,k = nk

}

and 1A is the indicator function that equals to 1 if condition A holds and 0 otherwise. Otherwise,167

the emission probability p(ck, dk | xk;ϑs,ϑm) can be reduced to168

p(ck, dk | xk;ϑs,ϑm) =
nk!

ck!(nk − ck)!
(x1,k + x3,k)ck(x2,k + x4,k)nk−ck .

2.2.2. Particle marginal Metropolis-Hastings169

The most challenging part in the computation of the posterior p(ϑs,ϑm,x1:K | c1:K ,d1:K) is170

obtaining the transition probability density function p(xk+1 | xk;ϑs,ϑm) for k = 1, 2, . . . ,K−1.171

Although it can be achieved by numerically solving the Kolmogorov backward equation (or its172

adjoint) associated with the Wright-Fisher diffusion in Eq. (1) like Bollback et al. (2008) and He173

et al. (2020c), typically using a finite difference scheme, this requires a fine discretisation of the174

state space ΩX to guarantee numerically stable computation of the solution. Moreover, how fine175
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the discretisation needs to be strongly depends on the underlying population genetic quantities176

that we aim to estimate (He et al., 2020a). We thus resort to the PMMH algorithm developed177

by Andrieu et al. (2010) in this work that only involves simulating the Wright-Fisher SDE in178

Eq. (1), which permits a joint update of the population genetic parameters of interests and the179

allele frequency trajectories of the underlying population. Full details of the PMMH algorithm180

can be found in Andrieu et al. (2010). Fearnhead & Künsch (2018) provided a detailed review181

of Monte Carlo methods for parameter estimation in the HMM based on the particle filter.182

In our PMMH-based procedure, the marginal likelihood183

p(c1:K ,d1:K | ϑs,ϑm) =

∫
ΩK

X

p(x1:K | ϑs,ϑm)p(c1:K ,d1:K | x1:K ,ϑs,ϑm) dx1:K

is estimated with the bootstrap particle filter introduced by Gordon et al. (1993), where the184

particles are generated by simulating the Wright-Fisher diffusion in Eq. (1) through the Euler-185

Maruyama scheme. The product of average weights of the set of particles at the sampling time186

points t1:K yields an unbiased estimate of the marginal likelihood p(c1:K ,d1:K | x1:K ,ϑs,ϑm),187

and the underlying population allele frequency trajectories x1:K are sampled once from the final188

set of particles with their corresponding weights. Given that the strength of natural selection and189

gene migration can be strongly correlated with their timing, we resort to a blockwise updating190

scheme to avoid the small acceptance ratio of the PMMH with full dimensional updates. We first191

split the population genetic quantities of interest into two disjoint blocks, the selection-related192

parameters ϑs and the migration-related parameters ϑm, respectively, and then we iteratively193

update one block at a time through the PMMH.194

More specifically, we first generate a set of the initial candidates of the parameters (ϑs,ϑm)195

from the prior p(ϑs,ϑm). We then run a bootstrap particle filter with the proposed parameters196

(ϑs,ϑm) to obtain an initial candidate of the underlying population allele frequency trajectories197

x1:K and a bootstrap particle filter’s estimate of the marginal likelihood p(c1:K ,d1:K | ϑs,ϑm).198

Repeat the following steps until a sufficient number of the samples of the parameters (ϑs,ϑm)199

and the underlying population allele frequency trajectories x1:K have been obtained:200

Step 1: Update the selection-related parameters ϑs.201

Step 1a: Draw a sample of new candidates of the selection-related parameters ϑ?
s from the202

proposal qs( · | ϑs).203
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Step 1b: Run a bootstrap particle filter with the parameters (ϑ?
s,ϑm) to yield the underlying204

population allele frequency trajectories x∗1:K and the marginal likelihood estimate205

p̂(c1:K ,d1:K | ϑ?
s,ϑm).206

Step 1c: Accept the parameters ϑ?
s and the underlying population allele frequency trajec-207

tories x∗1:K with probability equal to the Metropolis-Hastings ratio208

A =
p(ϑ?

s,ϑm)

p(ϑs,ϑm)

p̂(c1:K ,d1:K | ϑ?
s,ϑm)

p̂(c1:K ,d1:K | ϑs,ϑm)

qs(ϑs | ϑ?
s)

qs(ϑ
?
s | ϑs)

.

If the new candidates are rejected, put the parameters ϑ?
s = ϑs and the underlying209

population allele frequency trajectories x∗1:K = x1:K .210

Step 2: Update the migration-related parameters ϑm.211

Step 2a: Draw a sample of new candidates of the migration-related parameters ϑ?
m from212

the proposal qm( · | ϑm).213

Step 2b: Run a bootstrap particle filter with the parameters (ϑ?
s,ϑ

?
m) to yield the underlying214

population allele frequency trajectories x?
1:K and the marginal likelihood estimate215

p̂(c1:K ,d1:K | ϑ?
s,ϑ

?
m).216

Step 2c: Accept the parameters ϑ?
m and the underlying population allele frequency trajec-217

tories x?
1:K with probability equal to the Metropolis-Hastings ratio218

A =
p(ϑ?

s,ϑ
?
m)

p(ϑ?
s,ϑm)

p̂(c1:K ,d1:K | ϑ?
s,ϑ

?
m)

p̂(c1:K ,d1:K | ϑ?
s,ϑm)

qm(ϑm | ϑ?
m)

qm(ϑ?
m | ϑm)

,

If the new candidates are rejected, put the parameters ϑ?
m = ϑm and the under-219

lying population allele frequency trajectories x?
1:K = x∗1:K .220

In this work we use random walk proposals for both selection- and migration-related parameters221

in our blockwise PMMH algorithm unless otherwise specified.222

Once enough samples of the parameters (ϑs,ϑm) and the underlying population allele fre-223

quency trajectories x1:K have been yielded, we can compute the posterior p(ϑs,ϑm | c1:K ,d1:K)224

from the samples of the parameters (ϑs,ϑm) using nonparametric density estimation techniques225

(see Izenman, 1991, for a detailed review) and achieve the maximum a posteriori probability226

(MAP) estimates for the population genetic quantities of interest. Our estimates for the under-227

lying population allele frequency trajectories x1:K are the posterior mean of the stored samples228
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of the underlying population allele frequency trajectories. Our method can be readily extended229

to the analysis of multiple (independent) loci. Given that the migration-related parameters are230

shared by all loci, in each iteration of our procedure we only need to replicate Step 1 once to231

update selection-related parameters specified for each locus and then update migration-related232

parameters with shared by all loci in Step 2, where the likelihood is replaced by the product of233

the likelihoods for each locus.234

3. Results235

In this section, we first evaluate the performance of our approach using simulated datasets236

with various population genetic parameter values and then apply it to re-analyse the time series237

allele frequency data from ancient chicken in Loog et al. (2017) genotyped at the locus encoding238

for the thyroid-stimulating hormone receptor (TSHR), which is hypothesised to have undergone239

strong and recent natural selection in domestic chicken.240

3.1. Robustness and performance241

To test our procedure, we run forward-in-time simulations of the multi-allele Wright-Fisher242

model with selection and migration described in Supplemental Material, File S1 and examine243

the bias and the root mean square error (RMSE) of our estimates obtained from these replicate244

simulations. We vary the selection coefficient s ∈ {0.003, 0.006, 0.009}, and fix the selection time245

ks = 180 and the dominance parameter h = 0.5. We set the migration rate m = 0.005 and vary246

the migration time km ∈ {90, 360}. The starting times of natural selection and gene migration,247

ks and km, respectively, are measured in generations. Additionally, we vary the population size248

N ∈ {5000, 50000, 500000}. In principle, the conclusions we draw in this section hold for other249

values of the population genetic parameters in similar ranges.250

For each of the 18 possible combinations of the selection coefficient, the migration time and251

the population size, we perform 300 replicated runs. For each run, we take the starting allele252

frequencies of the underlying island population at generation 0 (i.e., the first sampling time253

point) to be x1 = (0.4, 0.6, 0, 0) and the mutant allele frequency of the underlying continent254

population to be xc = 0.9. These values are similar to the allele frequencies of ancient chicken255

samples reported in Loog et al. (2017). We simulate a total of 500 generations under the multi-256

allele Wright-Fisher model with selection and migration and generate a multinomial sample of257
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100 chromosomes from the underlying island population every 50 generations from generation 0,258

11 sampling time points in total. Given that in real data only mutant allele counts and continent259

allele counts are available, in our simulation studies we generate the mutant allele count of the260

sample by summing the first and third components of the simulated sample allele counts, and261

the continent allele count by summing the third and fourth components at each sampling time262

point. Moreover, in real data the continent allele count of the sample may not be available at263

each sampling time point (e.g., Loog et al., 2017), thereby assuming that the continent allele264

counts of the sample are unavailable at first three and seven sampling time points, respectively,265

for each run in our simulation studies (as shown in simulated dataset A and B, respectively, in266

Figure 1).267

In our procedure, we choose a uniform prior over the interval [−1, 1] for the selection coeffi-268

cient s and a uniform prior over the interval [0, 1] for the migration rate m. We assume that the269

starting times of natural selection and gene migration ks and km are uniformly distributed over270

the set of all possible time points, i.e., ks, km ∈ {k ∈ Z : k ≤ 500}. We run 10000 iterations of271

the blockwise PMMH with 1000 particles, and in the Euler-Maruyama scheme each generation272

is divided into five subintervals. We discard the first half of the iterations as the burn-in period273

and then thin the remaining PMMH output by selecting every fifth value. See Figures 2 and 3274

for our posteriors of the timing and strength of natural selection and gene migration obtained275

from the simulated datasets shown in Figure 1, including our estimates for the mutant and con-276

tinent allele frequency trajectories of the underlying island population. Evidently our approach277

is capable of identifying the signature of natural selection and gene migration and accurately278

estimate their timing and strength in these two examples. Also, the mutant and continent allele279

frequency trajectories of the underlying island population are well matched with our estimates,280

i.e., the mutant and continent allele frequency trajectories of the underlying island population281

fluctuate slightly around our estimates and are completely covered by our 95% highest posterior282

density (HPD) intervals.283

In Figure 4, we present the boxplots of our estimates for the scenario where continent allele284

counts are not available at the first three sampling time points. These boxplots illustrate the285

relative bias of (a) the selection coefficient estimates, (b) the selection time estimates, (c) the286

migration rate estimates and (d) the migration time estimates across 18 different combinations287

12



of the selection coefficient, the migration time and the population size. The tips of the whiskers288

represent the 2.5%-quantile and the 97.5%-quantile, and the boxes denote the first and third289

quartiles with the median in the middle. We summarise the bias and the RMSE of the estimates290

in Supplemental Material, Tables S1 and S2.291

As shown in Figure 4, our estimates for the selection coefficient and time are approximately292

median-unbiased across 18 different parameter combinations, but the migration rate and time293

are both slightly overestimated (i.e., our estimates show a small positive bias). An increase in294

the population size results in better overall performance of our estimates (i.e., smaller bias with295

smaller variance). In particular, the average proportion of the replicates that the signature of296

natural selection can be identified (i.e., the 95% HPD interval does not contain the value of 0)297

increases from 17.17% to 59.33% and then to 80.67% as the population size increases. Such an298

improvement in the performance of our estimation is to be expected since large population sizes299

reduce the magnitude of the stochastic effect on the changes in allele frequencies due to genetic300

drift, which degrades evidence of natural selection and gene migration.301

Compared to the case of natural selection starting after gene migration (i.e., km = 90), our302

estimates for the case of natural selection starting before gene migration (i.e., km = 360) reveal303

smaller bias and variances in both the selection coefficient and time, with the average proportion304

of the replicates that the signature of natural selection can be identified increasing by 15.96%.305

This might be because if natural selection begins before gene migration, there is a period of time306

that the underlying trajectory of allele frequencies is only under natural selection. In contrast,307

our estimates perform better for the migration rate when gene migration begins before natural308

selection, but the performance for the migration time deteriorates somewhat unexpectedly. This309

might be due to our parameter setting where the starting time of gene migration is within the310

period of availability of continent allele counts for km = 360, but not for km = 90.311

In addition, we see from Figure 4 that the bias and variance of our estimates for the selection312

coefficient and time are largely reduced as the selection coefficient increases, especially in terms313

of outliers. The average proportion of the replicates where the signature of natural selection can314

be identified increases from 27.56% to 63.11% and then to 66.50% as the selection coefficient315

increases, with 97.17% for the case of large population size (N = 500000) and selection coeffi-316

cient (s = 0.009). For weak natural selection, the underlying trajectory of allele frequencies is317
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extremely stochastic so that it is difficult to disentangle the effects of genetic drift and natural318

selection (Schraiber et al., 2013). An increase in the strength of natural selection leads to more319

pronounced changes through time in allele frequencies, making the signature of natural selection320

more identifiable. In contrast, an increase in the selection coefficient demonstrates little effect321

on our estimates of the migration rate and time.322

In Figure 5, we show the boxplots of our estimates for the case where continent allele counts323

are not available at the first seven sampling time points, with their bias and RMSE summarised324

in Supplemental Material, Tables S3 and S4. They reveal similar behaviour in estimation bias325

and variance, although the estimates for the migration-related parameters illustrate significantly326

larger bias and variances, probably caused by the increased length of time when continent allele327

counts are unavailable. This, however, has little effect on our estimation of the selection-related328

parameters, with similar average proportions of the replicates where the signature of natural329

selection can be identified (52.39% vs. 52.17%).330

In conclusion, our approach can produce reasonably accurate joint estimates of the timing331

and strength of natural selection and gene migration from time series data of allele frequencies332

across different parameter combinations. Our estimates for the selection coefficient and time are333

approximately median-unbiased, with smaller variances as the population size or the selection334

coefficient (or both) increases. Our estimates for the migration rate and time both show little335

positive bias. Their performance improves with an increase in population size or the number of336

the sampling time points when continent allele counts are available (or both).337

3.2. Application to ancient chicken samples338

We re-analyse aDNA data of 452 European chicken genotyped at the TSHR locus (position339

43250347 on chromosome 5) from earlier studies of Flink et al. (2014) and Loog et al. (2017).340

The time from which the data come ranges from approximately 2200 years ago to the present.341

The data shown in Table 2 come from grouping the raw chicken samples by their sampling time342

points. The raw sample information and genotyping results can be found in Loog et al. (2017).343

The derived TSHR allele has been associated with reduced aggression to conspecifics and faster344

onset of egg laying (Belyaev, 1979; Rubin et al., 2010; Karlsson et al., 2015, 2016), which was345

hypothesised to have undergone strong and recent selection in domestic chicken (Rubin et al.,346

2010; Karlsson et al., 2015) from the period of time when changes in Medieval dietary preferences347
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and husbandry practices across northwestern Europe occurred (Loog et al., 2017).348

To avoid overestimating the effect of natural selection on allele frequency changes, we need349

to account for recent gene migration in domestic chicken from Asia to Europe in our analyses.350

More specifically, in our approach the European chicken population is represented as the island351

population while the Asian chicken population is represented as the continent population with352

a mutant allele frequency of xc = 0.99 fixed from the time of the onset of gene migration, which353

is a conservative estimate chosen in Loog et al. (2017). Gene migration from Asia in domestic354

chicken, beginning around 250 years ago and continuing until the present, was historically well355

documented (Dana et al., 2011; Flink et al., 2014; Lyimo et al., 2015). Unlike Loog et al. (2017),356

we co-estimate the migration rate along with the selection coefficient and time by incorporating357

the estimate reported in Loog et al. (2017) that approximately 15% of modern European chicken358

have Asia origin. This allows us to obtain the sample frequency of the allele in European chicken359

at the most recent sampling time point that resulted from immigration from Asia. We take the360

average length of a generation of chicken to be one year.361

In our analyses, we adopt the dominance parameter h = 1 since the derived TSHR allele is362

recessive, and set the population size N = 180000 (95% HPD 26000-460000) estimated by Loog363

et al. (2017). We pick a uniform prior over the interval [−1, 1] for the selection coefficient s and364

a uniform prior over the set {−9000,−8999, . . . , 0} for the selection time ks, which covers the365

time period of chicken domestication dated to about 8000 years ago (95% CI 7014–8768 years)366

(Lawal et al., 2020). We choose a uniform prior over the interval [0, 1] for the migration rate m367

and take the migration time to be km = −250. All settings in the Euler-Maruyama scheme and368

the blockwise PMMH algorithm are the same as we applied in Section 3.1. The posteriors of369

the selection coefficient, the selection time and the migration rate are shown in Figure 6, as well370

as estimates for the mutant and Asian allele frequency trajectories of the underlying European371

population. The MAP estimates, as well as 95% HPD intervals, are summarised in Table 3.372

From Table 3, we observe that our estimate of the selection coefficient for the mutant allele373

is 0.005120 with 95% HPD interval [0.003591, 0.007064], strong evidence to support the derived374

TSHR allele being selectively advantageous in the European chicken population. Such positive375

selection results in an increase over time in the mutant allele frequency, starting from 975 AD376

with 95% HPD interval [611, 1174] AD (see Figure 6e). The starting frequency of the mutant377
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allele in 128 BC is 0.454200 with 95% HPD interval [0.349024, 0.562094], which is similar to that378

estimated in a red junglefowl captive zoo population in Rubin et al. (2010). Our estimate of379

the migration rate for the Asian allele is 0.000659 with 95% HPD interval [0.000483, 0.000861].380

This gene migration, starting about 250 years ago, leads to 15.2848% of European chicken with381

Asian ancestry in 1995 AD, with 95% HPD interval [0.116412, 0.191382] (see Figure 6f). Our382

findings are consistent with those reported in Loog et al. (2017). This is further confirmed by the383

results obtained with different values of the population size (i.e., N = 26000 and N = 460000,384

the lower and upper bounds of 95% HPD interval for the population size given in Loog et al.385

(2017), respectively). These results are shown in Supplemental Material Figures S3 and S4 and386

summarised in Table 3.387

To further evaluate the performance of our approach when samples are sparsely distributed388

with small uneven sizes, such as the European chicken samples at the TSHR locus we have389

studied above, we generate 300 simulated datasets that mimic the TSHR data, i.e., we use the390

sample times and sizes as given in Table 2, the timing and strength of natural selection and gene391

migration as given by MAP estimates found in Table 3, and population size N = 180000. From392

Figure 7, we find that our simulation studies based on the TSHR data yield median-unbiased393

estimates for the selection coefficient, the selection time and the migration rate, similar to the394

performance of our procedure applied in the simulation studies in Section 3.1. Additionally, the395

signature of natural selection can be identified in all these 300 replicates. This further shows396

that our approach can achieve a good performance with time serial samples that are sparsely397

distributed with small uneven sizes, which is highly desirable for aDNA data.398

In summary, our approach works well on the ancient chicken samples, even though they are399

sparsely distributed with small uneven sizes. Our estimates show strong evidence for the derived400

TSHR allele being positively selected between the 7th and 12th centuries AD, which coincides401

exactly with the time period of changes in dietary preferences and husbandry practices across402

northwestern Europe. This again demonstrates possible links established by Loog et al. (2017)403

between the selective advantage of the derived TSHR allele and a historically attested cultural404

shift in food preference in Medieval Europe.405
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4. Discussion406

In this work, we introduced a novel MCMC-based approach for the joint inference of the407

timing and strength of natural selection and gene migration from aDNA data. To our knowledge,408

Mathieson & McVean (2013) and Loog et al. (2017) described the only existing approaches that409

can jointly infer natural selection and gene migration from time series data of allele frequencies.410

However, the method of Mathieson & McVean (2013) is unable to estimate the time of the onset411

of natural selection and gene migration. Loog et al. (2017) only showed the applicability of their412

approach in the case where timing and strength of gene migration were both prespecified. In413

addition, their method is restricted by the assumption of infinite population size, which highly414

limits the application of their approach to aDNA data.415

Our Bayesian inference procedure was built on an HMM framework incorporating a multi-416

allele Wright-Fisher diffusion with selection and migration. Our estimates for the timing and417

strength of natural selection and gene migration were achieved through the PMMH algorithm418

with blockwise sampling, which enables joint estimation of the underlying trajectories of allele419

frequencies as well. This is a highly desirable feature for aDNA because it allows us to infer the420

drivers of natural selection and gene migration by correlating patterns of genetic variation with421

potential evolutionary events such as changes in the ecological context in which an organism422

has evolved.423

We showed through extensive simulation studies that our approach could deliver reasonably424

accurate estimates for the timing and strength of natural selection and gene migration, including425

the estimates for the underlying trajectories of allele frequencies through time. In our simulation426

studies, the estimates for the selection rate and time were largely unbiased, while the estimates427

for the migration rate and time showed a slight positive bias. We applied our Bayesian inference428

procedure to re-analyse ancient European chicken samples genotyped at the TSHR locus from429

previous studies of Flink et al. (2014) and Loog et al. (2017). We observed that the derived430

TSHR allele became selectively advantageous from 975 AD (95% HPD 611-1174 AD), which431

was similar to that reported in Loog et al. (2017). Our results further confirmed the findings432

of Loog et al. (2017) that positive selection acting on the TSHR locus in European chicken433

could be driven by chicken intensification and egg production in Medieval Europe as a result434

of Christian fasting practices (i.e., the consumption of birds, eggs and fish became allowed435
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(Venarde, 2011)). Except for religiously inspired dietary preferences, this could also result from436

changes in Medieval husbandry practices along with population growth and urbanisation in the437

High Middle Ages (around 1000-1250 AD). See Loog et al. (2017) and references cited therein438

for more details.439

Unlike Loog et al. (2017), our method takes the influence of genetic drift into account. From440

Table 3, we see that our estimates from aDNA data for TSHR are close to each other regardless441

of what population size we pick from the 95% HPD interval for European chicken population442

size reported in Loog et al. (2017). This implies that ignoring genetic drift might have little443

effect on the inference of natural selection from aDNA data such as those in Loog et al. (2017).444

To explore the effect of genetic drift, we further simulate 300 datasets based on the aDNA data445

for TSHR, where the timing and strength of natural selection and gene migration are set to our446

estimates found in Table 3 but the true population size is picked to be N = 4500. We run our447

method with an incorrect population size N = 180000 for these 300 replicates and find that this448

incorrect (larger) population size results in significant overestimation of the selection coefficient449

and time (see Figure 8). Moreover, the misspecified population size causes a reduction of 9.67%450

in the proportion of the replicates that the signature of natural selection can be identified, which451

implies the necessity of modelling genetic drift in the inference of natural selection from aDNA452

data.453

Furthermore, we explore the effect of gene migration in a similar manner. We simulate 300454

datasets based on the aDNA data for TSHR with the migration rate m = 0.00001 and m = 0.01,455

respectively, but run our procedure with a misspecified migration rate m = 0.000659 (i.e., the456

migration rate estimated with the population size N = 180000 shown in Table 3). We can find457

from Figure 9 that an incorrect migration rate does not dramatically alter the posterior median458

of the selection-related parameters, but can change the overall shape of the posterior surface for459

the selection time. This possibly results from incorrect information used for gene migration also460

causing incorrect information for natural selection, therefore disturbing the resulting posterior461

surface.462

Although we have focused on the continent-island model in this work, our Bayesian statis-463

tical framework lends itself to being extended to more complex models of gene migration, e.g.,464

multiple islands. With an increase in the number of demes, our approach will be more compu-465
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tationally demanding, but improvements to exact-approximate particle filtering techniques like466

the PMMH algorithm continue to be developed. See e.g. Yıldırım et al. (2018). Our approach467

is also readily applicable to the analysis of multiple (independent) loci, where updating the468

selection-related parameters for each locus can proceed in parallel on different cores. Moreover,469

it is possible to extend our procedure to handle the case of non-constant demographic histories470

like Schraiber et al. (2016) and He et al. (2020c). To achieve accurate estimation of relevant471

population genetic quantities of interest, it is important to account for local linkage among loci,472

which has been illustrated to be capable of further improving the inference of natural selection473

(He et al., 2020b). Our Bayesian statistical framework can be readily extended to the scenario474

of two linked loci by incorporating the method of He et al. (2020b) but such an extension will475

probably be computationally prohibitive in the case of multiple linked loci. As a tractable al-476

ternative for multiple linked loci, we can apply our two-locus method in a pairwise manner by477

adding additional blocks in blockwise sampling.478
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Fearnhead, P., & Künsch, H. R. (2018). Particle filters and data assimilation. Annual Review493

of Statistics and Its Application, 5 , 421–449.494

Ferrer-Admetlla, A., Leuenberger, C., Jensen, J. D., & Wegmann, D. (2016). An approximate495

Markov model for the Wright-Fisher diffusion and its application to time series data. Genetics,496

203 , 831–846.497

Fisher, R. A. (1922). On the dominance ratio. Proceedings of the Royal Society of Edinburgh,498

42 , 321–341.499

Flink, L. G., Allen, R., Barnett, R., Malmström, H., Peters, J. et al. (2014). Establishing the500

validity of domestication genes using DNA from ancient chickens. Proceedings of the National501

Academy of Sciences, 111 , 6184–6189.502

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-503

Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140 ,504

107–113.505

Hamilton, M. (2011). Population Genetics. Chichester: Wiley-Blackwell.506

He, Z., Beaumont, M. A., & Yu, F. (2020a). Numerical simulation of the two-locus Wright-Fisher507

stochastic differential equation with application to approximating transition probability den-508

sities. bioRxiv , (p. 213769).509

He, Z., Dai, X., Beaumont, M. A., & Yu, F. (2020b). Detecting and quantifying natural selection510

at two linked loci from time series data of allele frequencies with forward-in-time simulations.511

Genetics, 216 , 521–541.512

He, Z., Dai, X., Beaumont, M. A., & Yu, F. (2020c). Estimation of natural selection and allele513

age from time series allele frequency data using a novel likelihood-based approach. Genetics,514

216 , 463–480.515

Izenman, A. J. (1991). Recent developments in nonparametric density estimation. Journal of516

the American Statistical Association, 86 , 205–224.517

Karlsson, A.-C., Fallahshahroudi, A., Johnsen, H., Hagenblad, J., Wright, D. et al. (2016). A518

domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR)519

20



modulates photoperiodic response and reproduction in chickens. General and Comparative520

Endocrinology , 228 , 69–78.521

Karlsson, A.-C., Svemer, F., Eriksson, J., Darras, V. M., Andersson, L. et al. (2015). The522

effect of a mutation in the thyroid stimulating hormone receptor (TSHR) on development,523

behaviour and TH levels in domesticated chickens. PLoS One, 10 , e0129040.524

Lawal, R. A., Martin, S. H., Vanmechelen, K., Vereijken, A., Silva, P. et al. (2020). The wild525

species genome ancestry of domestic chickens. BMC Biology , 18 , 1–18.526

Loog, L., Thomas, M. G., Barnett, R., Allen, R., Sykes, N. et al. (2017). Inferring allele527

frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided528

with changes in medieval husbandry practices. Molecular Biology and Evolution, 34 , 1981–529

1990.530

Ludwig, A., Pruvost, M., Reissmann, M., Benecke, N., Brockmann, G. A. et al. (2009). Coat531

color variation at the beginning of horse domestication. Science, 324 , 485–485.532

Lyimo, C. M., Weigend, A., Msoffe, P. L., Hocking, P. M., Simianer, H. et al. (2015). Maternal533

genealogical patterns of chicken breeds sampled in Europe. Animal Genetics, 46 , 447–451.534

Malaspinas, A.-S. (2016). Methods to characterize selective sweeps using time serial samples:535

an ancient DNA perspective. Molecular Ecology , 25 , 24–41.536

Malaspinas, A.-S., Malaspinas, O., Evans, S. N., & Slatkin, M. (2012). Estimating allele age537

and selection coefficient from time-serial data. Genetics, 192 , 599–607.538

Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N. et al. (2015). Genome-wide539

patterns of selection in 230 ancient Eurasians. Nature, 528 , 499–503.540

Mathieson, I., & McVean, G. (2013). Estimating selection coefficients in spatially structured541

populations from time series data of allele frequencies. Genetics, 193 , 973–984.542

Rubin, C.-J., Zody, M. C., Eriksson, J., Meadows, J. R. S., Sherwood, E. et al. (2010). Whole-543

genome resequencing reveals loci under selection during chicken domestication. Nature, 464 ,544

587–591.545

21



Schraiber, J. G., Evans, S. N., & Slatkin, M. (2016). Bayesian inference of natural selection546

from allele frequency time series. Genetics, 203 , 493–511.547

Schraiber, J. G., Griffiths, R. C., & Evans, S. N. (2013). Analysis and rejection sampling of548

Wright-Fisher diffusion bridges. Theoretical Population Biology , 89 , 64–74.549

Steinrücken, M., Bhaskar, A., & Song, Y. S. (2014). A novel spectral method for inferring550

general diploid selection from time series genetic data. The Annals of Applied Statistics, 8 ,551

2203–2222.552

Venarde, B. L. (2011). The Rule of Saint Benedict . Cambridge, Massachusetts: Harvard553

University Press.554

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16 , 97–159.555

Yıldırım, S., Andrieu, C., & Doucet, A. (2018). Scalable Monte Carlo inference for state-space556

models. arXiv:1809.02527.557

Data Accessibility Statement558

The authors state that all data necessary for confirming the conclusions of this work are559

represented fully within the article. Source code implementing the method described in this work560

is available at https://github.com/zhangyi-he/WFM-1L-DiffusApprox-PMMH-Chicken.561

Author Contributions562

F.Y. and Z.H. designed the project and developed the method; W.L. and Z.H. implemented563

the method; W.L. and X.D. analysed the data under the supervision of M.B., F.Y. and Z.H.;564

W.L., X.D. and Z.H. wrote the manuscript; M.B. and F.Y. reviewed the manuscript.565

22

http://arxiv.org/abs/1809.02527
https://github.com/zhangyi-he/WFM-1L-DiffusApprox-PMMH-Chicken


Figure 1: Representative examples of the datasets simulated using the Wright-Fisher model with selection and
migration. We take the selection coefficient and time to be s = 0.006 and ks = 180 and the migration rate and
time to be m = 0.005 and km = 360, respectively. We set the dominance parameter h = 0.5 and the population
size N = 5000. We adopt the starting allele frequencies of the underlying island population x1 = (0.4, 0.6, 0, 0)
and the mutant allele frequency of the underlying continent population xc = 0.9. We sample 100 chromosomes at
every 50 generations from generation 0 to 500. (a) simulated dataset A: continent allele counts are not available
at the first three sampling time points. (b) simulated dataset B: continent allele counts of the sample are not
available at the first seven sampling time points.
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Figure 2: Bayesian estimates for the dataset shown in Figure 1a simulated for the case of the continent allele
counts unavailable at the first three sampling time points. Posteriors for (a) the selection coefficient (b) the
selection time (c) the migration rate and (d) the migration time. The MAP estimate is for the joint posterior,
and may not correspond to the mode of the marginals. Estimated underlying trajectories of (e) the mutant allele
frequency and (f) the continent allele frequency of the island population.
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Figure 3: Bayesian estimates for the dataset shown in Figure 1b simulated for the case of continent allele counts
unavailable at the first seven sampling time points. Posteriors for (a) the selection coefficient (b) the selection
time (c) the migration rate and (d) the migration time. The MAP estimate is for the joint posterior, and may not
correspond to the mode of the marginals. Estimated underlying trajectories of (e) the mutant allele frequency
and (f) the continent allele frequency of the island population.
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Figure 4: Empirical distributions of the estimates for 300 datasets simulated for the case of continent allele counts
unavailable at the first three sampling time points. Aquamarine boxplots represent the estimates produced for
the case of natural selection starting after gene migration, and coral boxplots represent the estimates produced
for the case of natural selection starting before gene migration. Boxplots of the relative bias of (a) the selection
coefficient estimates (b) the selection time estimates (c) the migration rate estimates and (d) the migration time
estimates. To aid visual comparison, we have picked the y axes here so that boxes are of a relatively large size.
This causes some outliers to lie outside the plots. Boxplots containing all outliers can be found in Supplemental
Material, Figure S1.
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Figure 5: Empirical distributions of the estimates for 300 datasets simulated for the case of continent allele counts
unavailable at the first seven sampling time points. Aquamarine boxplots represent the estimates produced for
the case of natural selection starting after gene migration, and coral boxplots represent the estimates produced
for the case of natural selection starting before gene migration. Boxplots of the relative bias of (a) the selection
coefficient estimates (b) the selection time estimates (c) the migration rate estimates and (d) the migration time
estimates. To aid visual comparison, we have picked the y axes here so that boxes are of a relatively large size.
This causes some outliers to lie outside the plots. Boxplots containing all outliers can be found in Supplemental
Material, Figure S2.
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Figure 6: Bayesian estimates for aDNA data of European chicken genotyped at the TSHR locus from Loog et al.
(2017) for the case of the population size N = 180000. (a) Temporal changes in the mutant allele frequencies of
the sample, where the sampling time points have been offset so that the most recent sampling time point (1995
AD) is generation 0. Posteriors for (b) the selection coefficient (c) the selection time and (d) the migration rate.
Estimated underlying trajectories of (e) the mutant allele frequency and (f) the Asian allele frequency in the
European chicken population. The MAP estimate is for the joint posterior, and may not correspond to the mode
of the marginals.
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Figure 7: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
shown in Table 2. We simulate the underlying population dynamics with the timing and strength of natural
selection and gene migration estimated with the population size N = 180000 shown in Table 3. Histograms of
(a) the selection coefficient estimates (b) the selection time estimates and (c) the migration rate estimates. To
aid visual comparison, we have picked the x axis in (a) not to cover all 300 estimates. The histogram containing
all 300 estimates can be found in Supplemental Material, Figure S5.
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Figure 8: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
shown in Table 2. We take the timing and strength of natural selection and gene migration to be those estimated
with the population size N = 180000 shown in Table 3, but the true population size in the simulation is taken
to be N = 4500. Histograms of (a) the selection coefficient estimates (b) the selection time estimates and (c)
the migration rate estimates. To aid visual comparison, we have picked the x axis in (a) not to cover all 300
estimates. The histogram containing all 300 estimates can be found in Supplemental Material, Figure S6.
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Figure 9: Empirical distributions of the estimates for 300 datasets simulated for TSHR based on the aDNA data
shown in Table 2. We take the timing and strength of natural selection and gene migration to be those estimated
with the population size N = 180000 shown in Table 3, but the true migration rate in the simulation is taken to
be (a) m = 0.0001 and (b) m = 0.001. Histograms of the selection coefficient estimates and the selection time
estimates for the migration rate (a) m = 0.0001 and (b) m = 0.001.
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Ai
1 Ai

2 Ac
1 Ac

2

Ai
1 1 1− hs 1 1− hs
Ai

2 1− hs 1− s 1− hs 1− s
Ac

1 1 1− hs 1 1− hs
Ac

2 1− hs 1− s 1− hs 1− s

Table 1: Relative viabilities of all possible genotypes at locus A when we distinguish between the alleles that
originate on the island and the alleles that emigrate from the continent.

32



Sample time Sample size Mutant allele

-128 12 8
-25 8 5
82 8 3

200 32 14
256 14 3

1067 6 0
1309 20 18
1650 2 1
1850 2 2
1975 14 14
1995 334 328

Table 2: Time serial European chicken samples of segregating alleles at the TSHR locus. The unit of the sampling
time is the AD year.
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Population size MAP 95% HPD

26000 0.005109 [0.003622, 0.007141]
Selection coefficient 180000 0.005120 [0.003591, 0.007064]

460000 0.005122 [0.003648, 0.006578]

26000 -1047 [-1659, -857]
Selection time 180000 -1020 [-1384, -821]

460000 -1047 [-1327, -893]

26000 0.000712 [0.000448, 0.000918]
Migration rate 180000 0.000659 [0.000483, 0.000861]

460000 0.000620 [0.000478, 0.000837]

Table 3: MAP estimates of the selection coefficient, the selection time and the migration rate, as well as their
95% HPD intervals, for TSHR achieved with the population size N = 26000, N = 180000 and N = 460000.
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