References
Affholder, M.C., Weiss, D.J., Wissuwa, M., Johnson-Beebout, S. & Kirk,
G.J.D. 2017. Soil CO2 venting as one of the mechanisms
for tolerance of Zn deficiency by rice in flooded soils. Plant
Cell & Environment, 40, 3018–3030, doi:10.1111/pce.13069.
Ando, T., Yoshida, S. & Nishiyama, I. 1983. Nature of oxidizing power
of rice roots. Plant and Soil , 72 , 57–71.
Aung, M.S., Kobayashi, T., Masuda, H. & Nishizawa, N.K. 2018b. Rice HRZ
ubiquitin ligases are crucial for the response to excess iron.Physiologia Plantarum , 163 , 282–296.
Aung, M. S. & Masuda, H. 2020. How does rice defend against excess
iron?: Physiological and molecular mechanisms. Frontiers in Plant
Science, 11, 1102 https://doi.org/10.3389/fpls.2020.01102.
Aung, M.S., Masuda, H., Kobayashi, T. & Nishizawa, N.K. 2018a.
Physiological and transcriptomic analysis of responses to different
levels of iron excess stress in various rice tissues. Soil Science
and Plant Nutrition, 64, 370–385.
Balkos, K.D., Britto, D.T. & Kronzucker, H.J. 2010. Optimization of
ammonium acquisition and metabolism by potassium in rice (Oryza
sativa L. cv. IR-72). Plant Cell & Environment, 33,23–34.
Bashir, K., Ishimaru, Y. & Nishizawa, N.K. 2012. Molecular mechanisms
of zinc uptake and translocation in rice. Plant and Soil, 361 ,
189–201.
Becker, M. & Asch, F. 2005. Iron toxicity in rice—conditions and
management concepts. Journal of Plant Nutrition & Soil Science,
168 , 558–573.
Becker, M., Ngo, N.S. & Schenk, M.K.A. 2020. Silicon reduces the iron
uptake in rice and induces iron homeostasis related genes.Scientific Reports, 10, 5079. doi.org/10.1038/s41598-020-6171.
Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F. & Neue, H.-U. 1994.
Root‐induced iron oxidation and pH changes in the lowland rice
rhizosphere. New Phytologist , 128 , 469–477.
Benckiser, G., Santiago, S., Neue, H.U., Watanabe, I. & Ottow, J.C.G.
1984. Effect of fertilization on exudation, dehydrogenase activity,
iron-reducing populations and Fe++ formation in the
rhizosphere of rice (Oryza sativa L.) in relation to iron
toxicity. Plant and Soil , 79 , 305–316.
Bierschenk, B., Tagele, M.T., Ali, B., Ashrafuzzaman, M.D., Wu, L.B.,
Becker, M. & Frei, M. 2020. Evaluation of rice wild relatives as a
source of traits for adaptation to iron toxicity and enhanced grain
quality. PloS One , 15 , e0223086.
Briat, J.-F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine,
B., … & Gaymard, F. 2010. New insights into ferritin synthesis
and function highlight a link between iron homeostasis and oxidative
stress in plants. Annals of Botany, 105, 811–822.
Britto, D.T. & Kronzucker, H.J. 2005. Nitrogen acquisition, PEP
carboxylase, and cellular pH homeostasis: new views on old paradigms.Plant Cell & Environment, 38, 1396–1409.
Broadley, M., Brown, P., Cakmak, I., Ma, J.F., Rengel, Z. & Zhao, F.-J.
2012. Beneficial elements. Pages 249–268 in Marschner, P. (ed.)Marschner’s mineral nutrition of higher plants , 3rd edn. London:
Academic Press.
Bughio, N., Yamaguchi, H., Nishizawa, N.K., Nakanishi, H. & Mori, S.
2002. Cloning an iron-regulated metal transporter from rice.Journal of Experimental Botany, 53, 1677–1682.
Chalmardi, Z.K., Abdolzadeh, A. & Sadeghipour, H.R. 2014. Silicon
nutrition potentiates the antioxidant metabolism of rice plants under
iron toxicity. Acta Physiologiae Plantarum, 36, 493–502.
da Silveira, V.C., Fadanelli, C., Sperotto, R.A., Stein, R.J., Basso,
L.A. & Santos, D.S, … & Fett, J.P. 2009. Role of ferritin in
the rice tolerance to iron overload. Scientia Agricola, 66,
549–555.
Diop, B., Wang, D.R., Dramé, K.-N., Gracen, V., Tongoona, P. … &
McCouch, S.R. 2020. Bridging old and new: diversity and evaluation of
high iron-associated stress response of rice cultivated in West
Africa. Journal of Experimental Botany , 71 , 4188–4200.
Dobermann, A. & Fairhurst, T. 2000. Rice nutrient disorders and
nutrient management . Singapore: Potash and Phosphate Institute, and
Manila: International Rice Research Institute.
dos Santos, M.S., Sanglard, L.M., Barbosa, M.L., Namorato, F.A., de
Melo, D.C., Franco, W.C., Pérez–Molina, J.P., Martins, S.C. & DaMatta,
F.M. 2020. Silicon nutrition mitigates the negative impacts of iron
toxicity in rice photosynthesis and grain yield. Ecotoxicology and
Environmental Safety, 189 , 10008.
Dramé K.-N., Saito K., Koné B., Chabi A., Dakouo D., Annan-Afful E.,
… & Sié, M. 2011. Coping with iron toxicity in the lowlands of
sub-Saharan Africa: experience from Africa rice center.
In Proceedings of the 2nd Africa Rice Congress, Innovation and
Partnerships to Realize Africa’s Rice Potential , (Bamako: Africa Rice
Center), 191–198.
Dufey, I., Gheysens, S., Ingabire, A., Lutts, S. & Bertin, P. 2014.
Silicon application in cultivated rices (Oryza sativa L and Oryza
glaberrima Steud) alleviates iron toxicity symptoms through the
reduction in iron concentration in the leaf tissue. Journal of
Agronomy and Crop Science, 200 , 132–142.
Dufey, I., Draye, X., Lutts, S., Lorieux, M., Martinez, C. & Bertin, P.
2015. Novel QTLs in an interspecific backcross Oryza sativa ×Oryza glaberrima for resistance to iron toxicity in rice.Euphytica, 204, 609–625.
Engel, K., Asch, F. & Becker, M. 2012. Classification of rice genotypes
based on their mechanisms of adaptation to iron toxicity. Journal
of Plant Nutrition and Soil Science , 175 , 871–881.
Finatto, T., Oliveira, A.C., Chaparro, C., Maia, L.C., Farias, D.R.,
Woyann, L.G. … & Picault, N. 2015. Abiotic stress and genome
dynamics: specific genes and transposable elements response to iron in
rice. Rice, 8, 13. doi: 10.1186/s12284-015-0045-6.
Frei, M., Tetteh, R.N., Razafindrazaka, A.L., Fuh, M.A., Wu, L.-B. &
Becker, M. 2016. Responses of rice to chronic and acute iron toxicity:
genotypic differences and biofortification aspects. Plant and
Soil, 408, 149–161.
Fu, Y.Q., Yang, X.J. & Shen, H. 2014. The physiological mechanism of
enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by
phosphorus deficiency. Acta Physiologiae Plantarum , 36 ,
179–190.
Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R. & Bohnert,
H.J. 2003. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.)
regulate AKT1-type potassium channel transcripts
differently. Plant Molecular Biology , 51 , 71–81.
Greenway, H., Armstrong, W. & Colmer, T.D. 2006. Conditions leading to
high CO2 (>5 kPa) in waterlogged–flooded
soils and possible effects on root growth and metabolism. Annals
of Botany, 98, 9–32.
Grillet, L., Lan, P., Li, W., Mokkapati, G. & Schmidt, W. 2018. IRON
MAN is a ubiquitous family of peptides that control iron transport in
plants. Nature Plants , 4 , 953–963.
Hauer-Jákli, M. & Tränkner, M. 2019. Critical leaf magnesium thresholds
and the impact of magnesium on plant growth and photo-oxidative defence:
a systematic review and meta–analysis from 70 years of
research. Frontiers in Plant Science , 10 ,
https://doi.org/10.3389/fpls.2019.00766.
Heuer S., Miézan K.M., Sié M. & Gaye S. 2004. Increasing biodiversity
of irrigated rice in Africa by interspecific crossing of Oryza
glaberrima (Steud.) × O. sativa
indica (L.). Euphytica, 132, 31–40.
Howeler, R.H. 1973. Iron‐induced oranging disease of rice in relation to
physico‐chemical changes in a flooded oxisol. Soil Science Society
of America Journal , 37 , 898–903.
Inoue H., Higushi K., Takahashi M., Nakanishi H., Mori S. & Nishizawa
N.K. 2003. Three rice nicotianamine synthase genes, OsNAS1,OsNAS2,and
OsNAS3 are expressed in cells involved in long-distance transport of
iron and differentially regulated by iron. The Plant Journal, 36,366–381.
Inoue, H., Takahashi, M., Kobayashi, T., Suzuki, M., Nakanishi, H.,
Mori, S. & Nishizawa, N. 2008. Identification and localisation of the
rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the
site of phytosiderophore synthesis in rice. Plant Molecular
Biology, 66, 193–203.
Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K. Nakazono, M.
… & Nishizawa, N.K. 2006. Rice plants take up iron as an
Fe3+-phytosiderophore and as Fe2+.The Plant Journal, 45, 335–346.
Jianguo, H. & Shuman, L.M. 1991. Phosphorus status and utilization in
the rhizosphere of rice. Soil Science , 152 , 360–364.
Jugsujinda, A. & Patrick, W.H. Jr. 1993. Evaluation of toxic conditions
associated with oranging symptoms of rice in a flooded Oxisol in
Sumatra, Indonesia. Plant and Soil, 152, 237–243.
Kirk G.J.D. 2003. Rice root properties for internal aeration and
efficient nutrient acquisition in submerged soil. New Phytologist,
159, 185–194.
Kirk, G.J.D. 2004. The biogeochemistry of submerged
soils. Chichester, Wiley.
Kirk G.J.D., Ahmad A.R. & Nye P.H. 1990. Coupled diffusion and
oxidation of ferrous iron in soils. II. A model of the diffusion and
reaction of O2, Fe2+,
H+ and HCO3- in
soils and a sensitivity analysis of the model. Journal of Soil
Science, 41, 411–431.
Kirk G.J.D. & Bajita J.B. 1995. Root-induced iron oxidation, pH changes
and zinc solubilization in the rhizosphere of lowland rice. New
Phytologist, 131, 129–137.
Kirk G.J.D., Boghi A., Affholder M.C., Keyes S.D., Heppell J. & Roose
T. 2019. Soil carbon dioxide venting through rice roots. Plant
Cell & Environment, 42, 3197–320. doi: 10.1111/pce.13638.
Kirk, G.J.D. & Du, L.V. 1997. Changes in rice root architecture,
porosity, and oxygen and proton release under phosphorus deficiency.New Phytologist, 135 , 191–200.
Kirk G.J.D. & Kronzucker H.J. 2005. The potential for nitrification and
nitrate uptake in the rhizosphere of wetland plants: a modelling study.Annals of Botany, 96, 639–646.
Kirk G.J.D., Solivas J.L. & Alberto M.A. 2003. Effects of redox
conditions on solute diffusion in soil. Eur. Journal of Soil
Science, 54, 617–624.
Kobayashi, T., Itai, R.N., Aung, M.S., Senoura, T., Nakanishi, H. &
Nishizawa, N.K. 2012. The rice transcription factor IDEF1 directly binds
to iron and other divalent metals for sensing cellular iron status.Plant Journal , 69 , 81–91.
Kobayashi, T., Nagano, A. J. & Nishizawa, N.K. 2021. Iron
deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively
regulate a major pathway of iron uptake and translocation in rice .Journal of Experimental Botany , 72 , 2196–2211.
Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R.N., Nakanishi, H. &
Nishizawa, N.K. 2013. Iron-binding haemerythrin RING ubiquitin ligases
regulate plant iron responses and accumulation. Nature
Communications , 4 , 2792.
Kobayashi, T., Ogo, Y., Itai, R.N., Nakanishi, H., Takahashi, M., Mori,
S. & Nishizawa, N. K. 2007. The transcription factor IDEF1 regulates
the response to and tolerance of iron deficiency in plants.Proceedings of the National Academy of Sciences of the United
States of America , 104 , 19150–19155.
Kobayashi, N.I., Ogura, T., Takagi, K., Sugita, R., Suzuki, H., Iwata,
R., Nakanishi, T.M. & Tanoi, K. 2018. Magnesium deficiency damages the
youngest mature leaf in rice through tissue-specific iron
toxicity. Plant and Soil , 428 , 137–152.
Kosegarten, H., Hoffmann, B., Rroco, E., Grolig, F., Glüsenkamp, K.H. &
Mengel, K. 2004. Apoplastic pH and FeIII reduction in young sunflower
(Helianthus annuus ) roots. Physiologia Plantarum, 122,95–106.
Kronzucker, H.J., Glass, A.D.M., Siddiqi, M.Y. & Kirk, G.J.D. 2000.
Comparative kinetic analysis of ammonium and nitrate acquisition by
tropical lowland rice: implications for rice cultivation and yield
potential. New Phytologist, 145, 471–476.
Li, G., Kronzucker, H.J. & Shi, W. 2016a. Root developmental adaptation
to Fe toxicity: Mechanisms and management. Plant Signalling &
Behaviour, 11 , e1117722
Li, G., Kronzucker, H.J. & Shi, W. 2016b. The response of the root apex
in plant adaptation to iron heterogeneity in soil. Frontiers in
Plant Science 7, 344. doi:10.3389/fpls.2016.00344.
Li, J., Long, Y., Qi, G.N., Li, J., Xu, Z.J., Wu, W.H. & Wang, Y. 2014.
The Os-AKT1 channel is critical for K+ uptake in rice
roots and is modulated by the rice CBL1-CIPK23 complex. The Plant
Cell , 26 , 3387–3402.
Li, B., Sun, L., Huang, J., Göschl, C., Shi, W., Chory, J. & Busch, W.
2019. GSNOR provides plant tolerance to iron toxicity via preventing
iron-dependent nitrosative and oxidative cytotoxicity. Nature
Communications , 10 , 3896.
Linares, O.F. 2002. African rice (Oryza glaberrima ): history and
future potential. Proceedings of the National Academy of Science,
USA, 99, 16360–16365.
Majerus, V., Bertin, P. & Lutts, S. 2009. Abscisic acid and oxidative
stress implications in overall ferritin synthesis by African rice
(Oryza glaberrima Steud.) seedlings exposed to short term iron
toxicity. Plant and Soil, 324, 253–265.
Matthus, E., Wu, L.-B., Ueda, Y. Höller, S., Becker, M. & Frei, M.
2015. Loci, genes, and mechanisms associated with tolerance to ferrous
iron toxicity in rice (Oryza sativa L.). Theoretical &
Applied Genetics, 128, 2085–2098.
Melandri, G., Sikirou, M., Arbelaez, J. D., Shittu, A., Semwal, V. K.
… & McCouch, S. R. 2021. Multiple small-effect alleles
of Indica origin enhance high iron-associated stress tolerance in
rice under field conditions in West Africa. Frontiers in Plant
Science , 11 , 604938.
Mongon, J., Konnerup, D. Colmer, T.D. & Rerkasem, B. 2014. Responses of
rice to Fe2+ in aerated and stagnant conditions:
growth, root porosity and radial oxygen loss barrier. Functional
Plant Biology 41, 922–929. doi.org/10.1071/FP13359.
Moore, K.L., Chen, Y., van de Meene, A.M.L., Hughes, L., Liu, W., Geraki
T. … & Zhao F.-J. 2014. Combined NanoSIMS and synchrotron X-ray
fluorescence reveal distinct cellular and subcellular distribution
patterns of trace elements in rice tissues. New Phytologist, 201,104–115.
Narteh, N.T. & K.L. Sahrawat, K.L. 1999. Influence of flooding on
electrochemical and chemical properties of West African soils.Geoderma, 87, 179–207.
Ndjiondjop, M.N., Semagn, K., Sow, M., Manneh, B., Gouda, A.C. …
& Warburton, M.L. 2018. Assessment of genetic variation and population
structure of diverse rice genotypes adapted to lowland and upland
ecologies in Africa using SNPs. Frontiers in Plant Science, 9,446.
Nozoe, T., Agbisit, R., Fukuta, Y., Rodriguez, R. & Yanagihara, S.
2004. The Iron (Fe)-excluding power of rice roots as a mechanism of
tolerance of elite breeding lines to iron toxicity. In Fisher, T. (ed.)Proceedings for the 4th International Crop Science Congress,
Brisbane, Australia, 26 September – 1 October 2004 .
Pawar, S., Pandit, E., Mohanty, I.C., Saha, D. & Pradhan, S.K. 2021.
Population genetic structure and association mapping for iron toxicity
tolerance in rice. PLoS ONE, 16, e0246232
Ponnamperuma, F.N. (1972). The chemistry of submerged soils.Advances in Agronomy, 24, 29–96.
Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I.,
Lutts, S. & Lefevre, I. 2012. Combined transcriptomic and physiological
approaches reveal strong differences between short‐ and long‐term
response of rice (Oryza sativa ) to iron toxicity. Plant
Cell & Environment , 35 , 1837–1859.
Rakotoson, T., Ergezinger, L., Rajoandraina, T, Razafimbelo, T., Wu,
L.-B. & Frei, M. 2019. Physiological investigations of management and
genotype options for adapting rice production to iron toxicity in
Madagascar. Journal or Plant Nutrition and Soil Science 182,145–155. https://doi.org/10.1002/jpln.201800621.
Ramírez, L.M., Claassen, N. Ubiera, A.A., Werner, H. & Moawad, A.M.
2002. Effect of phosphorus, potassium and zinc fertilizers on iron
toxicity in wetland rice (Oryza sativa L.). Plant and Soil 239,
197–206.
Rasheed, A., Hassan, M.U., Aamer, M., Bian, J.M., Xu, Z.R., He, X.F., &
Wu, Z.M. 2020. Iron toxicity, tolerance and quantitative trait loci
mapping in rice: a review. Applied Ecology and Environmental
Research, 18, 7483–7498.
Rodenburg, J., Zwartb, S.J., Kiepe, P., Narteh, L.T., Dogbe, W. &
Wopereis, M.C.S. 2014. Sustainable rice production in African inland
valleys: Seizing regional potentials through local approaches.Agricultural Systems, 123, 1–11.
Rose, T.J., Impa, S.M., Rose, M.T., Pariasca-Tanaka, J., Mori, A.,
Heuer, S., Johnson-Beebout, S.E. & Wissuwa, M. 2013. Enhancing
phosphorus and zinc acquisition eefficiency in rice: a critical review
of root traits and their potential utility in rice breeding.Annals of Botany, 112, 331–345.
Sahrawat, K.L. 2000. Elemental composition of the rice plant as affected
by iron toxicity under field conditions. Communications in Soil
Science and Plant Analysis 31, 2819–2827.
Sahrawat, K.L. 2005. Iron toxicity in wetland rice and the role of other
nutrients. Journal of Plant Nutrition , 27 , 1471–1504.
Sahrawat, K.L., Mulbah, C.K., Diatta, S., Delaune, R.D., Patrick Jr, D.,
Singh, B.N. & Jones, M.P. 1996. The role of tolerant genotypes and
plant nutrients in the management of iron toxicity in lowland
rice. Journal of Agricultural Science , 126 , 143–149.
Saleque, M.A. & Kirk, G.J.D. 1995. Root-induced solubilization of
phosphate in the rhizosphere of lowland rice. New Phytologist,
129, 325–336.
Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T.A.
2015. Iron-binding e3 ligase mediates iron response in plants by
targeting basic helix-loop-helix transcription factors. Plant
Physiology , 167 , 273–286.
Sié, M., Sanni, K., Futakuchi, K., Manneh, B., Mandé, S., Vodouhe, R.,
Dogbe, S, Dramé, K.-N., Ogunbayo, A., Ndjiondjop, M. & Traore, K. 2012.
Towards a rational use of African rice (Oryza glaberrima Steud.)
for breeding in Sub-Saharan Africa. Genes, Genomes and Genomics,
6, 1–7.
Sikirou, M., Saito, K., Achigan-Dako, E.G., Dramé, K.N., Adam, A. &
Venuprasad, R. 2015. Genetic improvement of iron toxicity tolerance in
rice-Progress, Challenges and Prospects in West Africa. Plant
Production Science, 18, 423–424.
Sikirou, M., Shittu, A., Konaté, K. A., Maji, A. T., Ngaujah, A. S.,
Sanni, K. A. … & Venuprasad, R. 2018. Screening African rice
(Oryza glaberrima ) for tolerance to abiotic stresses: I. Fe
toxicity. Field Crops Research, 220, 3–9. doi:
10.1016/j.fcr.2016.04.016
Souza–Santos, P., Ramos, R.S., Ferreira, S.T. & Carvalho–Alves, P.C.
2001. Iron-induced oxidative damage of corn root plasma membrane
H+-ATPase. Biochimica et Biophysica
Acta , 1512 , 357–366.
Stein, R.J., Ricachenevsky, F.K. & Fett, J.P. 2009. Differential
regulation of the two rice ferritin genes (OsFER1 and OsFER2).Plant Science, 177, 563–569.
Stein, R.J., Ricachenevsky, F.K. & Fett, J.P. 2014. Iron toxicity in
field-cultivated rice: contrasting tolerance mechanisms in distinct
cultivars. Theoretical and Experimental Plant Physiology, 26,135–146.
Suriyagoda, L.D., Tränkner, M. & Dittert, K. 2020. Effects of potassium
nutrition and water availability on iron toxicity of rice seedlings.Journal of Plant Nutrition, 43 , 2350–2367.
van Mensvoort, M.E., Lantin, R.S., Brinkman, R. & Van Breemen, N. 1985.
Toxicities of wetland soils. Pages 123–138 in Wetland soils:
characterization, classification, and utilization. International Rice
Research Institute, Manila.
Vandamme, E., Ahouanton, K., Mwakasege, L., Mujuni, S., Mujawamariya,
G., Kamanda, J., Senthilkumar, K. & Saito, K. 2018. Phosphorus
micro-dosing as an entry point to sustainable intensification of rice
systems in sub-Saharan Africa. Field Crops Research, 222, 39–49.
Wairich, A., de Oliveira, B.H.N., Wu, L.B., Murugaiyan, V.,
Margis-Pinheiro, M., Fett, J.P., Ricachenevsky, F.K. & Frei, M. 2021.
Chromosomal introgressions from Oryza meridionalis into
domesticated rice Oryza sativa result in iron
tolerance. Journal of Experimental Botany , 72 , 2242–2259.
Wu, L.-B., Holtkamp, H., Wairich, A. & Frei, M. 2019. Potassium ion
channel gene OsAKT1 affects iron translocation in rice plants exposed to
iron toxicity. Frontiers in Plant Science 10, 579. doi:
10.3389/fpls.2019.00579.
Wu, L.-B., Shhadi, M.Y., Gregorio, G., Matthus, E., Becker, M. & Frei,
M. 2014. Genetic and physiological analysis of tolerance to acute iron
toxicity in rice. Rice 7 , 8.
www.thericejournal.com/content/7/1/8.
Wu, L.-B., Ueda, Y., Lai, S.K. & Frei, M. 2017. Shoot tolerance
mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell
& Environment , 40 , 570–584.
Yamanouchi, M. & Yoshida, S. 1981. Physiological mechanisms of rice‘s
tolerance for iron toxicity. Paper presented at the IRRI Saturday
Seminar, June 6, 1981. Manila: International Rice Research Institute.
Yamauchi, M. 1989. Rice bronzing in Nigeria caused by nutrient
imbalances and its control by potassium sulfate application. Plant
and Soil, 117 , 275–286.
Yamauchi, M. & Peng, X.X. 1995. Iron toxicity and stress-induced
ethylene production in rice leaves. Plant and Soil, 173 , 21–28.
Yamauchi, T., Colmer, T.D., Pederson, O. & Nakazono, M. 2018.
Regulation of root traits for internal aeration and tolerance of
waterlogging-flooding stress. Plant Physiology, 176, 118–1130.
Yoshida, S. 1981. Fundamentals of rice crop science. Manila:
International Rice Research Institute.
Zhang, H., Li, Y., Yao, X., Liang, G., & Yu, D. 2017. POSITIVE
REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis.Plant Physiology , 175 , 543–554.
Zhang, X.K., Zhang, F.S. & Mao, D.R. 1996. Effect of root iron plaque
on zinc uptake by rice plant. Chinese Acta Applied Ecology , 7,
262–266.
Zhang, X., Zhang, F. & Mao, D. 1999. Effect of iron plaque outside
roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake.Plant and Soil , 209, 187–192.