Acknowledgement
We thank Kanehiro Kitayama for providing us many thoughtful and
constructive comments. This study was funded by the National Natural
Science Foundation of China (Grant Nos. 41991285, 41977287, 41825020 and
31961143023), Key Research and Development Program of Guangdong Province
(2020B1111530004) and the Science
and Technology Programs of Guangzhou City (Grant No. 201903010021). The
authors declare no conflict of interests.
Reference
Allison, S. D., Weintraub, M. N., Gartner, T. B., &
Waldrop, M. P. (2010). Evolutionary-economic principles as
regulators of soil enzyme production and ecosystem function. In
Soil enzymology (pp. 229–243). Springer, Berlin, Heidelberg.
Anderson, J.M., & Ingram, J. (1989). Tropical soil biology and
fertility. CAB International, Wallingford.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4. J. Stat. Softw. ,67 , 1–48.
Chacon, N., Silver, W. L., Dubinsky, E. A., & Cusack,
D. F. (2006). Iron reduction and soil phosphorus
solubilization in humid tropical forests soils: the roles of labile
carbon pools and an electron shuttle
compound. Biogeochemistry, 7 8 , 67–84.
Cheeke, T.E., Phillips, R.P., Brzostek, E.R., Rosling, A., Bever, J.D.,
& Fransson, P. (2017). Dominant mycorrhizal association of trees
alters carbon and nutrient cycling by selecting for microbial groups
with distinct enzyme function. New Phytol., 214 ,
432–442.
Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., & Son,
Y. (2013). Experimental warming studies on tree species and
forest ecosystems: a literature review. J. Plant
Res. , 126 , 447–460.
Cleveland, C. C., Houlton, B. Z., Smith, W. K.,
Marklein, A. R., Reed, S. C., Parton, W., et al.(2013). Patterns of new versus recycled primary production in the
terrestrial biosphere. P. Natl. Acad. Sci ., 110 ,
12733–12737.
Cleveland, C. C., Townsend, A. R., Taylor, P.,
Alvarez-Clare, S., Bustamante, M. M., Chuyong, G., et al.(2011). Relationships among net primary productivity, nutrients and
climate in tropical rain forest: a pan-tropical analysis. Ecol.
lett. , 14 , 939–947.
Devau, N., Hinsinger, P., Le Cadre, E., Colomb, B., & Gérard, F.(2011). Fertilization and pH effects on processes and mechanisms
controlling dissolved inorganic phosphorus in soils.
Geochim.Cosmochim.Ac. 75 , 2980–2996.
Diffenbaugh, N. S., & Field, C. B. (2013). Changes
in ecologically critical terrestrial climate conditions. Science ,341 , 486–492.
Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal,
D. M., Carrillo, Y., LeCain, D. R., et al. (2012).
Climate change alters stoichiometry of phosphorus and nitrogen in a
semiarid grassland. New Phytol. , 196 , 807–815.
Du, E., Terrer, C., Pellegrini, A. F., Ahlström, A., van Lissa,
C. J., Zhao, X., et al. (2020). Global patterns of
terrestrial nitrogen and phosphorus limitation. Nat. Geosci.13 , 221–226.
Estiarte, M., & Peñuelas, J. (2015). Alteration of the phenology
of leaf senescence and fall in winter deciduous species by climate
change: effects on nutrient proficiency.Global Change Biol. ,21 , 1005–1017.
Fang, X., Zhou, G., Qu, C., Huang, W., Zhang, D., Li, Y., et al .
(2020). Translocating subtropical forest soils to a warmer region alters
microbial communities and increases the decomposition of
mineral-associated organic carbon. Soil Biol. Biochem. ,142 , 107707.
Gerdol, R., Iacumin, P., & Brancaleoni, L. (2019). Differential
effects of soil chemistry on the foliar resorption of nitrogen and
phosphorus across altitudinal gradients. Funct. Ecol.33 , 1351–1361.
Gong, S., Zhang, T., Guo, R., Cao, H., Shi, L., Guo, J., & Sun,
W. (2015). Response of soil enzyme activity to warming and
nitrogen addition in a meadow steppe. Soil Res. 53 ,
242–252.
Gross, A., Lin, Y., Weber, P. K., Pett‐Ridge, J., & Silver,
W. L (2020). The role of soil redox conditions in microbial
phosphorus cycling in a humid tropical forest. Ecology ,101 , e02928.
Gunderson, C. A., Edwards, N. T., Walker, A. V.,
O’Hara, K. H., Campion, C. M., & Hanson, P. J.(2012). Forest phenology and a warmer climate-growing season extension
in relation to climatic provenance. Global Change Biol. ,18 , 2008–2025.
Güsewell, S. (2004). N:P ratios in terrestrial plants: variation
and functional significance. New Phytol. , 164 , 243–266.
Hall, S. J., & Silver, W. L. (2015). Reducing
conditions, reactive metals, and their interactions can explain spatial
patterns of surface soil carbon in a humid tropical forest.
Biogeochemistry , 125 , 149–165.
Hood, J. M., Benstead, J. P., Cross, W. F., Huryn,
A. D., Johnson, P. W., Gíslason, G. M., et al.(2018). Increased resource use efficiency amplifies positive response of
aquatic primary production to experimental warming. Global Change
Biol. , 24 , 1069–1084.
Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., et al.(2021). Latitudinal patterns of terrestrial phosphorus limitation over
the globe. Ecol. Lett. DOI: 10.1111/ele.13761.
Huang, W., & Hall, S. J. (2017). Optimized high-throughput
methods for quantifying iron biogeochemical dynamics in soil.
Geoderma , 306 , 67–72.
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K.,
Beeckman, H., Cuní-Sanchez, A., et al. (2020). Asynchronous
carbon sink saturation in African and Amazonian. Nature ,579 , 80–87.
Jonasson, S., Castro, J., & Michelsen, A. (2004). Litter,
warming and plants affect respiration and allocation of soil microbial
and plant C, N and P in arctic mesocosms. Soil Biol. Biochem. ,36 , 1129–1139.
enzyme activities and protein expression. Biogeosciences ,9 , 4537–4551.
Li, Y., Zhou, G., Huang, W., Liu, J., & Fang, X. (2016).
Potential effects of warming on soil respiration and carbon
sequestration in a subtropical forest. Plant Soil , 409 ,
247–257.
Lie, Z., Huang, W., Liu, X., Zhou, G., Yan, J., Li, Y., et al.(2021). Warming leads to more closed nitrogen cycling in nitrogen‐rich
tropical forests. Global Change Biol. , 27 , 664–674.
Lin, Y., Bhattacharyya, A., Campbell, A. N., Nico, P. S.,
Pett‐Ridge, J., & Silver, W. L. (2018). Phosphorus
fractionation responds to dynamic redox conditions in a humid tropical
forest soil. J. Geophys. Res-Biogeo. 123 , 3016–3027.
Liptzin, D., & Silver, W. L. (2009). Effects of carbon
additions on iron reduction and phosphorus availability in a humid
tropical forest soil. Soil Biol. Biochem. , 41 ,
1696–1702.
Liptzin, D., & Silver, W. L. (2015). Spatial patterns in
oxygen and redox sensitive biogeochemistry in tropical forest
soils. Ecosphere , 6 , 1–14.
McDowell, R. W., & Condron, L. M. (2000). ChemicalNature , and potential mobility of phosphorus in fertilized
grassland soils. Nutr. Cycl. Agroecosys. 57 , 225–233.
McGroddy, M. E., Silver, W. L., de Oliveira Jr, R. C.,
De Mello, W. Z., & Keller, M. (2008). Retention of
phosphorus in highly weathered soils under a lowland Amazonian forest
ecosystem. J. Geophys. Res-Biogeo. 113 , G04012.
Mora, C., Frazier, A. G., Longman, R. J., Dacks,
R. S., Walton, M. M., Tong, E. J., et al.(2013). The projected timing of climate departure from recent
variability. Nature, 502 , 183–187.
Navratil, T., Rohovec, J., Amirbahman, A., Norton, S. A., &
Fernandez, I. J. (2009). Amorphous aluminum hydroxide
control on sulfate and phosphate in sediment-solution systems.
Water Air Soil Poll., 201 , 87–98.
Nottingham, A. T., Whitaker, J., Ostle, N. J., Bardgett,
R. D., McNamara, N. P., Fierer, N., et al. (2019).
Microbial responses to warming enhance soil carbon loss following
translocation across a tropical forest elevation gradient. Ecol.
lett. , 22 , 1889–1899.
Nottingham, A. T., Meir, P., Velasquez, E., & Turner,
B. L. (2020). Soil carbon loss by experimental warming in a
tropical forest. Nature, 584 , 234–237.
Peretyazhko, T., & Sposito, G. (2005). Iron (III) reduction and
phosphorous solubilization in humid tropical forest soils.
Geochim. Cosmochim. Ac. 69 , 3643–3652.
Reed, S. C., Wood, T., & Cavaleri, M. A. (2012).
Tropical forests in a warming world. New Phytol. , 193 ,
27–29.
Reed, S. C., Yang, X., & Thornton, P. E. (2015).
Incorporating phosphorus cycling into global modeling efforts: a
worthwhile, tractable endeavor. New Phytol. , 208 ,
324–329.
Ren, H., Kang, J., Yuan, Z., Xu, Z., & Han, G. (2018). Responses
of nutrient resorption to warming and nitrogen fertilization in
contrasting wet and dry years in a desert grassland. Plant Soil ,432 , 65–73.
Rosling, A., Midgley, M. G., Cheeke, T., Urbina, H., Fransson, P.,
& Phillips, R. P. (2016). Phosphorus cycling in deciduous
forest soil differs between stands dominated by ecto- and arbuscular
mycorrhizal trees. New Phytol. , 209 , 1184–1195.
Rui, Y., Wang, Y., Chen, C., Zhou, X., Wang, S., Xu, Z., et al.(2012). Warming and grazing increase mineralization of organic P in an
alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant
Soil , 357 , 73–87.
Sardans, J., & Penuelas, J. (2012). The role of plants in the
effects of global change on nutrient availability and stoichiometry in
the plant-soil system. Plant Physiol ., 160 , 1741–1761.
Sardans, J., Peñuelas, J., & Estiarte, M. (2006). Warming and
drought alter soil phosphatase activity and soil P availability in a
Mediterranean shrubland. Plant Soil , 289 , 227–238.
Sullivan, M. J., Lewis, S. L., Affum-Baffoe, K., Castilho,
C., Costa, F., Sanchez, A. C., et al. (2020). Long-term
thermal sensitivity of Earth’s tropical forests. Science ,368 , 869–874.
Sun, X., Kang, H., Chen, H. Y., Björn, B., Samuel, B. F., &
Liu, C.et al. (2016). Biogeographic patterns of nutrient
resorption from Quercus variabilis Blume leaves across China.
Plant Biology , 18 , 505–513.
Sun, Y., Peng, S., Goll, D. S., Ciais, P., Guenet,
B., Guimberteau, M., et al. (2017). Diagnosing phosphorus
limitations in natural terrestrial ecosystems in carbon cycle
models. Earths Future , 5 , 730–749.
Tabatabai, M. A. (1994). Soil enzymes. In: Weaver RW,
Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds).Methods of soil analysis. Part 2. Microbiological and
biochemical properties, SSSA Book Ser, vol 5. SSSA, Madison (pp
801–834).
Tian, D., Reich, P. B., Chen, H. Y., Xiang, Y., Luo, Y.,
Shen, Y., et al. (2019). Global changes alter plant multi‐element
stoichiometric coupling. New Phytol. , 221 , 807–817.
Tiessen, H. J. W. B., & Moir, J. O.(1993). Characterization of available P by sequential extraction.
Soil sampling and methods of analysis , 7 , 5–229.
Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018).
Pervasive phosphorus limitation of tree species but not communities in
tropical forests. Nature , 555 , 367–370.
Vance, E. D., Brookes, P. C., & Jenkinson,
D. S. (1987). An extraction method for measuring soil
microbial biomass C. Soil Biol. Biochem. , 19 , 703–707.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., &
Jackson, R. B. (2012). Global resorption efficiencies and
concentrations of carbon and nutrients in leaves of terrestrial
plants. Ecol. Monogr. , 82 , 205–220.
Vitousek, P. (1982). Nutrient cycling and nutrient use
efficiency. The American Naturalist , 119 , 553–572.
Wang, H., Holden, J., Spera, K., Xu, X., Wang, Z., Luan, J., et
al. (2013). Phosphorus fluxes at the sediment-water interface in
subtropical wetlands subjected to experimental warming: a microcosm
study. Chemosphere , 90 , 1794–1804.
Wang, Y., Wang, H., He, J. S., & Feng, X. et al. (2017).
Iron-mediated soil carbon response to water-table decline in an alpine
wetland. Nat. Commun. , 8 , 15972.
Wieder, W. R., Cleveland, C. C., Smith, W. K., &
Todd-Brown, K. (2015). Future productivity and carbon storage
limited by terrestrial nutrient availability. Nat. Geosci .,8 , 441–444.
Wu, T., Liu, S., Lie, Z., Zheng, M., Duan, H., Chu, G., et al.(2020). Divergent effects of a 6-year warming experiment on the nutrient
productivities of subtropical tree species. Forest Ecol. Manag .,461 , 117952.
You, C., Wu, F., Yang, W., Xu, Z., Tan, B., Zhang, L., et al.(2018). Does foliar nutrient resorption regulate the coupled
relationship between nitrogen and phosphorus in plant leaves in response
to nitrogen deposition? Sci. Total Environ. , 645 ,
733–742.
Yuan, Z. Y., & Chen, H. Y. (2015). Decoupling of
nitrogen and phosphorus in terrestrial plants associated with global
changes. Nat. Clim. Change , 5 , 465–469.
Yuan, Z. Y., & Chen, H. Y. (2009). Global-scale
patterns of nutrient resorption associated with latitude, temperature
and precipitation. Global Ecol. Biogeogr. , 18 , 11–18.
Zhang, Z., Wang, H., Zhou, J., Li, H., He, Z., Van Nostrand,
J. D. et al. (2015). Redox potential and microbial
functional gene diversity in wetland sediments under simulated warming
conditions: implications for phosphorus mobilization.
Hydrobiologia , 743 , 1–235.
Zhang, Z. J, Wang, Z. D., Holden, J., Xu, X. H., Hang
W., Ruan J. H., et al. (2012). The release of phosphorus
from sediment into water in subtropical wetlands: a warming microcosm
experiment. Hydrol. Process. , 26 , 15–26.
Zhou, X., Chen, C., Wang, Y., Xu, Z., Han, H., Li, L., & Wan, S.(2013). Warming and increased precipitation have differential effects on
soil extracellular enzyme activities in a temperate grassland.
Sci.Total Environ. , 444 , 552–558.
Zi, H. B., Hu, L., Wang, C. T., Wang, G. X., Wu,
P. F., Lerdau, M., & Ade, L. J. (2018). Responses of
soil bacterial community and enzyme activity to experimental warming of
an alpine meadow. Eur. J. Soil Sci. , 69 , 429–438.
Zong, N., Shi, P., & Chai, X. (2018). Effects of warming and nitrogen
addition on nutrient resorption efficiency in an alpine meadow on the
northern Tibetan Plateau. Soil Sci. Plant Nutr. , 64 ,
482–490.
Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J., & Peñuelas,
J. (2020). Effects of seasonal and decadal warming on soil
enzymatic activity in a P-deficient Mediterranean shrubland.
Global Change Biol. , 26 , 3698–3714.