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Abstract1

This paper concerns the impact of environmental noise on the intra-layer2

synchronization of the duplex networks. A duplex network contains two3

layers. Different from the previous works [1, 2], environmental noise is in-4

troduced into the dynamical system of the duplex network. We incorporate5

both the inter-layer delay and the intra-layer delay into the dynamical sys-6

tem. Both of the delays are time-varying. However, the paper [1] only con-7

sidered the intra-layer delays and they are assumed as the constants. While8

the paper [2] did not consider the inter-layer delay or intra-layer delay. When9

the system does not achieve automatic intra-layer synchronization, we intro-10

duce two controllers: one is the state-feedback controller, the other is the11

adaptive state-feedback controller. Interestingly, we find that the intra-layer12

synchronization will achieve automatically if the inter-layer coupling strength13

is large enough and the intra-layer coupling strength is small enough under14

the situation that the time-varying inter-layer delays are absent. Finally,15

some interesting simulation results are obtained for the Chua-Chua chaotic16

system with application of our theoretic results, which show the feasibility17

and effectiveness of our control schemes.18

Keywords: intra-layer synchronization, duplex network, adaptive con-19

trol20



1 Introduction1

Nowadays, the complexity of the networks grows rapidly. Usually, the scale2

of the networks is unbelievable large. A single network is not very reasonable3

in the real world application. It does not involve a single network isolatedly,4

but depends on the interactions between subnetworks. In the past few years,5

scholars paid attention to synchronization problems in multi-layer networks6

and multi-agent systems. However, we focus on multiplex networks in this7

paper. Multiplex networks are a special kind of multi-layer networks. The8

interactions on the different layers in multiplex networks have the same set9

of nodes. It is possible to be distinct for the state of the node on each layer,10

and it is possible to be unique of the connectivity pattern on each layer.11

Recently, Tang, Lu, Lü [1] proposed a duplex network setting of Rössler12

oscillators as follows.13 

ẋi(t) =
[
f(xi(t))− c2

N∑
j=1

lijH(xj(t− ζ1))

−c1[Γ(xi(t− ζ2))− Γ(yi(t− ζ2))]
]
,

ẏi(t) =
[
f(yi(t))− c2

N∑
j=1

lijH(yj(t− ζ1))

−c1[Γ(yi(t− ζ2))− Γ(xi(t− ζ2))]
]
,

(1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T and yi(t) = (yi1(t), yi2(t), · · · , yin(t))T14

are the x-state and the y-state of the i-th node, respectively. The states of all15

nodes in both layers exhibit the same isolated nodal dynamics, i.e., ẋ = f(x)16

and ẏ = f(y). c1 is the coupling strength between the two layers, and c217

is the coupling strength within each layer. H(·) is the intra-layer coupling18

function within each layer, and Γ(·) is the inter-layer coupling function be-19

tween the two layers. As you see, it is possible that the intra-layer coupling20

function is different from that of the inter-layer. ζ1 is the constant coupling21

delay within each layer, and ζ2 is the constant coupling delays between the22

two layers. Moreover, both layers have the same topological structure and23

the common Laplacian matrix is represented by L = (lij)N×N . The element24

lij represents the link between node i and node j within x-layer and y-layer.25

That is lij = −1 if node i and node j are linked through x-layer and y-layer.26

Finally, the Laplacian matrix satisfies the diffusion property, i.e., the zero27

row sum condition. That is lii = −
∑N

j=1 lij.28

In the last few decades, to control the chaos in the complex networks, a29

lot of synchronization schemes have been developed. For examples, global30

synchronization (see e.g. Cao et al [3], Wang et al [4],Duan et al [5], Lu et31

al. [6, 7]), ), finite-time synchronization (e.g. Liu et al [8], Liu et al [9], Li32
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et al [10, 11], Yang et al [12], Yang and Huang [13]), synchronization based1

on impulsive control (e.g. Li et al[14], Li et al [15], Peng et al [16], Zhao et2

al [17], Lu et al[6], Lu et al [7],Yang et al [18, 12], adaptive synchronization3

(see e.g [6, 19, 20]), periodically (aperiodically) intermittent adaptive control4

(Guo et al [21], pinning synchronization (Liu et al. [22], Wang et al [23]),5

fractional synchronization (e.g. Xu et al[24, 25], Tan et al [26], Zhu [27, 28]),6

anti-synchronization (Al-sawalha and Noorani [29]) and so on. In particu-7

lar, a lot of researchers are interested in the multiplex networks. However,8

most of them concentrated on the complete synchronization. Few papers9

studied the intra-layer synchronization. Tang, Lu, and Lü [1] showed that10

the inter-layer coupling functions have great influence on intra-layer synchro-11

nization regions, as well as on the intra-layer synchronizability. However, the12

unpredicted external perturbations such as the white noise (it can be seen13

as the derivative of a stochastic nature of Brownian motion) can cause great14

uncertainty. Thus, many scientists argued that the stochastic differential15

equations (SDE) is a powerful tool to model the Brownian motion on the16

complex systems (see e.g. Wang et al [23], Tan et al [26], Raj et al [32], Yang17

et al [12], Shi et al [33],Zhu [27],Zhu and Wang[28], Zhuang et al [34]Li et al18

[35] ).19

So far, there is no result considering the intra-layer synchronization prob-20

lem for duplex networks with stochastic perturbations. Therefore, we inves-21

tigate a duplex dynamic networks with stochastic perturbations based on22

additive couplings in this paper. The contributions of this paper are listed23

below.24

1. Environmental noise is introduced into the dynamical system on the25

duplex network, which is described by the stochastic differential equa-26

tions. While in [1, 2, 36], the authors did not consider this factor.27

2. When the system does not achieve automatic intra-layer synchroniza-28

tion, we introduce two controllers: one is the state-feedback controller,29

the other is the adaptive state-feedback controller.30

3. We incorporate both the inter-layer delay and the intra-layer de-31

lay into the dynamical system. Both of the delays are time-varying.32

The paper [1] only considered the intra-layer delays and the delays are33

assumed as the constants. While the paper [2] did not consider the34

inter-layer delay or intra-layer delay.35

4. Interestingly, we find that the intra-layer synchronization will be achieved36

automatically if the inter-layer coupling strength is large enough and37

the intra-layer coupling strength is small enough under the situation38

that the time-varying inter-layer delays are absent.39
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2 Preliminary and model formulation1

In this paper, we will study the synchronization criteria of the following du-2

plex networked system with time-varying delays and stochastic perturbations3

[1, 2, 36]4 

dxi(t) =
[
f̃x(xi(t))− c2

N∑
j=1

lxijH(xj(t− ζ1(t))) + uxi (t)

−c1[Γ(xi(t− ζ2(t)))− Γ(yi(t− ζ2(t)))]
]
dt+ σ̃xi (t, xi(t))dB(t),

dyi(t) =
[
f̃ y(yi(t))− c2

N∑
j=1

lyijH(yj(t− ζ1(t))) + uyi (t)

−c1[Γ(yi(t− ζ2(t)))− Γ(xi(t− ζ2(t)))]
]
dt+ σ̃yi (t, y(t))dB(t),

(2)

i = 1, 2, · · · , N , where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T is the x-state of5

the i-th node, yi(t) = (yi1(t), yi2(t), · · · , yin(t))T is the y-state of the i-th6

node, uxi (t), u
y
i (t) are the controllers. ẋ = f̃x(x) and ẏ = f̃ y(y) represent7

the isolated nodal x-dynamics and y-dynamics, respectively. Moreover, σ̃xi8

and σ̃yi are noise intensity functions, c1 is the coupling strength between the9

two layers, and c2 is the coupling strength within each layer. ζ1(t) is the10

coupling delay within each layer, and ζ2(t) is the coupling delays between11

the two layers. The Laplacian matrices of the two layers are represented12

by Lx = (lxij)N×N and Ly = (lyij)N×N , respectively. The elements lxij and13

lyij represent the link between node i and node j within x-layer and y-layer14

respectively. That is lxij = −1 if node i and node j are linked within x-15

layer, otherwise lxij = 0. lyij’s are similarly defined. Both the Laplacian16

matrices satisfy the diffusion property, i.e., the zero row sum condition. That17

is lxii = −
∑N

j=1 l
x
ij, l

y
ii = −

∑N
j=1 l

y
ij. Similar to [1] or [2], we assume that both18

the intra-layer coupling function H(·) and the inter-layer coupling function19

Γ(·) are linear, i.e., H(x) = Hx and Γ(x) = Γx, where H and Γ are two20

matrices.21

System (2) achieves intra-layer synchronization, when the states of all22

nodes in x-layer approach an identical state sx(t), and those of all nodes23

in y-layer approach an identical state sy(t) in the mean time. Then the24

dynamics of the intra-layer synchronous states can be described as follows.25 {
dsx(t) =

[
f̃x(sx(t))− c1[Γ(sx(t− ζ2(t)))− Γ(sy(t− ζ2(t)))]

]
dt,

dsy(t) =
[
f̃ y(sy(t))− c1[Γ(sy(t− ζ2(t)))− Γ(sx(t− ζ2(t)))]

]
dt.

(3)

Let exi (t) = xi(t)−sx(t) and eyi (t) = yi(t)−sy(t) be the x-layer and y-layer26

intra-layer synchronization errors respectively. Moreover, set σxi (t, exi (t)) =27
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σ̃xi (t, sx(t)+exi (t)) and σyi (t, e
y
i (t)) = σ̃yi (t, s

y(t)+eyi (t)). Then system (2) can1

be rewritten as2 

dxi(t) =
[
f̃x(xi(t))− c2

N∑
j=1

lxijH(xj(t− ζ1(t))) + uxi (t)

−c1[Γ(xi(t− ζ2(t)))− Γ(yi(t− ζ2(t)))]
]
dt+ σxi (t, exi (t))dB(t),

dyi(t) =
[
f̃ y(yi(t))− c2

N∑
j=1

lyijH(yj(t− ζ1(t))) + uyi (t)

−c1[Γ(yi(t− ζ2(t)))− Γ(xi(t− ζ2(t)))]
]
dt+ σyi (t, e

y
i (t))dB(t),

(4)

for i = 1, 2, · · · , N . For convenience, we may also call system (3) as the3

(virtual) drive system and system (4) as the (virtual) response system, re-4

spectively.5

Substracting (4) from (3), we obtain the dynamical system of the errors,6 

dexi (t) =
[
fx(exi (t))− c2

N∑
j=1

lxijHe
x
j (t− ζ1(t)) + uxi (t)

−c1[Γ(exi (t− ζ2(t)))− Γ(eyi (t− ζ2(t)))]
]
dt+ σxi (t, exi (t))dB(t),

deyi (t) =
[
f y(eyi (t))− c2

N∑
j=1

lyijH(eyj (t− ζ1(t))) + uyi (t)

−c1[Γ(eyi (t− ζ2(t)))− Γ(exi (t− ζ2(t)))]
]
dt+ σyi (t, e

y
i (t))dB(t),

(5)

where fx(exi (t) = f̃x(xi(t)) − f̃x(sx(t)), fx(eyi (t) = f̃ y(yi(t)) − f̃ y(sy(t)), i =7

1, 2, · · · , N . The system can also be written in the following compact forms.8 
dex(t) =

[
fx(ex(t))− c2(Lx ⊗H)ex(t− ζ1(t)) + ux(t)

−c1[(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))]
]
dt+ σx(t, ex(t))dB(t),

dey(t) =
[
f y(ey(t))− c2(Ly ⊗H)ey(t− ζ1(t)) + uy(t)

−c1[(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))]
]
dt+ σy(t, ey(t))dB(t),

(6)
where ex(t) = (exT1 (t), · · · , exTN (t))T , ey(t) = (eyT1 (t), · · · , eyTN (t))T , fx(ex(t)) =9

(fxT (ex1(t)), · · · , fxT (exN(t)))T , f y(ey(t)) = (f yT (ey1(t)), · · · , f yT (eyN(t)))T , σx(t, ex(t))10

= (σxT1 (t, ex1(t)), · · · , σxTN (t, exN(t)))T , σy(t, ey(t)) = (σyT1 (t, ey1(t)), · · · , σ
yT
N (t, eyN(t)))T .11

Or12

de(t) =

[(
fx(e(t))
f y(e(t))

)
− c2

(
(Lx ⊗H)ex(t− ζ1(t))
(Ly ⊗H)ey(t− ζ1(t))

)
−c1

(
(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))
(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

)
4



+

(
ux(t)
uy(t)

)]
dt+

(
σx(t, ex(t))
σy(t, ey(t))

)
dB(t)

For simplicity, we also set e(t) = (exT (t), eyT (t))T , f(e(t)) = (fxT (ex(t)), f yT (ey(t)))T ,1

and σ(t, e(t)) = (σxT (t, ex(t)), σyT (t, ey(t)))T .2

We also make the following assumptions.3

Assumption (A1) Each system of (3) and (4) admits a unique solution,4

respectively.5

Assumption (A2) There exist diagonal matrices U1 and U2 such that6

(f̃xi (z1)− f̃xi (z2))
T (f̃xi (z1)− f̃xi (z2)) ≤ (z1 − z2)TU1(z1 − z2),

(f̃ yi (z1)− f̃ yi (z2))
T (f̃ yi (z1)− f̃ yi (z2)) ≤ (z1 − z2)TU2(z1 − z2),

for all z1, z2 ∈ Rn, i = 1, 2, · · · , N .7

Assumption (A3)[20, 37] There exist positive constants ζ, ρ1 and ρ28

satisfying 0 ≤ ζ1(t) ≤ ζ, 0 ≤ ζ2(t) ≤ ζ, 0 ≤ ζ̇1(t) ≤ ρ1 < 1 and 0 ≤ ζ̇2(t) ≤9

ρ2 < 1.10

Assumption (A4)[20, 32, 37] There are positive semi-definite matrices
Σx,Σy such that

trace[σxTi (t, z)σxi (t, z)] ≤ zTΣxz and trace[σyTi (t, z)σyi (t, z)] ≤ zTΣyz

for all z ∈ Rn, t ∈ R+, and i = 1, 2, · · · , N .11

Definition 2.1 The duplex networked system (2) achieves stochastic intra-
layer synchronization almost surely, if

lim
t→+∞

(xi(t)− xj(t)) = 0, a.s. and lim
t→+∞

(yi(t)− yj(t)) = 0, a.s.

for i, j = 1, 2, · · · , N , or quivalently,

lim
t→+∞

(xi(t)− sx(t)) = 0, a.s. and lim
t→+∞

(yi(t)− sy(t)) = 0, a.s.

for i = 1, 2, · · · , N .12

In what follows, the LaSalle-type invariance lemma [38] for stochastic13

differential delay equations is recalled to proved our results. Consider the14

following n-dimensional stochastic differential delay equation15

dx(t) = f(t, x(t), x(t− ζ))dt+ σ(t, x(t), x(t− ζ))dB(t). (7)
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Lemma 2.1 [38] Assume that system (7) has a unique solution x(t, ξ) on1

t > 0 for any given initial data {x(θ) : −ζ ≤ θ} = ξ ∈ Cb
F0

([−ζ, 0];Rn).2

Moreover, both f(x, y, t) and σ(t, x, y) are locally bounded in (x, y) and uni-3

formly bounded in t. If there exist a function V ∈ C2,1(R+ × Rn;R+),4

β ∈ L1(R+,R+) and ω1, ω2 ∈ C(Rn;R+) such that5

LV (t, x, y) ≤ β(t)− ω1(x) + ω2(y), (t, x, y) ∈ R+ × Rn × Rn, (8)

ω1(x) > ω2(x), ∀x 6= 0, (9)

lim
‖x‖→∞

inf
0≤t<∞

V (t, x) =∞. (10)

Then lim
t→∞

x(t, ξ) = 0 a.s. for every ξ ∈ Cb
F0

([−ζ, 0];Rn).6

3 Main Results7

3.1 Synchronization with state-feedback controller8

Assume that the controller is defined as follows{
uxi (t) = −kxi exi (t),
uyi (t) = −kyi e

y
i (t)

for i = 1, 2, · · · , N , i.e.,9 (
ux(t)
uy(t)

)
=

(
−(Kx ⊗ In)ex(t)
−(Ky ⊗ In)ey(t)

)
, (11)

where kxi ’s and kyi ’s are constant control gains, ux(t) = (uxT1 (t), · · · , uxTN (t))T ,10

uy(t) = (uyT1 (t), · · · , uyTN (t))T , Kx = diag{kx1 , · · · , kxN} andKy = diag{ky1 , · · · , k
y
N}11

Theorem 3.1 Assume that (A1)-(A4) hold. Under the controller (11), the12

duplex network (4) and (3) are stochastically synchronized almost surely if13

there exist two positive numbers λ1, µ1 and positive definite matrices P1, P2, P3,14

Q1, Q2, Q3, such that15

P1 ≤ λ1In and Q1 ≤ µ1In (12)
16

Π =



Π11 0 IN ⊗ P1 0 Π15 0 Π17 Π18

0 Π22 0 IN ⊗Q1 0 Π26 Π27 Π28

∗ 0 −IN ⊗ In 0 0 0 0 0
0 ∗ 0 −IN ⊗ In 0 0 0 0
∗ 0 0 0 Π55 0 0 0
0 ∗ 0 0 0 Π66 0 0
∗ ∗ 0 0 0 0 Π77 0
∗ ∗ 0 0 0 0 0 Π88


< 0, (13)

6



where1

Π11 = −2Kx ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + P3 + U1),

Π15 = −c2Lx ⊗ P1H,

Π17 = −c1IN ⊗ P1Γ,

Π18 = c1IN ⊗ P1Γ,

Π22 = −2Ky ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 +Q3 + U2),

Π26 = −c2Ly ⊗Q1H,

Π27 = c1IN ⊗Q1Γ,

Π28 = −c1IN ⊗Q1Γ,

Π55 = −(1− ρ1)(IN ⊗ P2),

Π66 = −(1− ρ1)(IN ⊗Q2),

Π77 = −(1− ρ2)(IN ⊗ P3),

Π88 = −(1− ρ2)(IN ⊗Q3).

Proof. We choose a Lyapunov functional2

V (t, e(t), e(t− ζ1(t)), e(t− ζ2(t))) = eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
e(t)

+

∫ t

t−ζ1(t))
eT (s)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(s)ds

+

∫ t

t−ζ2(t))
eT (s)

(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(s)ds.

Thus,3

LV (t, e(t), e(t− ζ1(t)), e(t− ζ2(t)))

= 2eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)[(
fx(ex(t))
f y(ey(t))

)
−c2

(
(Lx ⊗H)ex(t− ζ1(t))
(Ly ⊗H)ey(t− ζ1(t))

)
− c1

(
(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))
(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

)
−
(

(Kx ⊗ In)ex(t)
(Ky ⊗ In)ey(t)

)]
+trace

[
σT (t, e(t))

(
IN ⊗ P1 0

0 IN ⊗Q1

)
σ(t, e(t))

]
+eT (t)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t)

−(1− ζ̇1(t))eT (t− ζ1(t))
(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t− ζ1(t))

7



+eT (t)

(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(t)

−(1− ζ̇2(t))eT (t− ζ2(t))
(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(t− ζ2(t))

≤ 2exT (t)(IN ⊗ P1)f
x(ex(t)) + 2eyT (t)(IN ⊗Q1)f

y(ey(t))

−2c2e
xT (t)(IN ⊗ P1)(L

x ⊗H)ex(t− ζ1(t))− 2c2e
yT (t)(IN ⊗Q1)(L

y ⊗H)ey(t− ζ1(t))
−2exT (t)(IN ⊗ P1)(K

x ⊗ In)ex(t)− 2eyT (IN ⊗Q1)(K
y ⊗ In)ey(t)

−2c1e
xT (t)(IN ⊗ P1)(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))

−2c1e
yT (t)(IN ⊗Q1)(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

+trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

+ trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ζ̇1(t))(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t)) + eyT (t− ζ1(t))(IN ⊗Q2)e

y(t− ζ1(t)))
+exT (t)(IN ⊗ P3)e

x(t) + eyT (t)(IN ⊗Q3)e
y(t)

−(1− ζ̇2(t))(exT (t− ζ2(t))(IN ⊗ P3)e
x(t− ζ2(t)) + eyT (t− ζ2(t))(IN ⊗Q3)e

y(t− ζ2(t)))
+exT (t)(IN ⊗ U1)e

x(t)− fxT (ex(t))fx(ex(t)) + eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t)),

using Assumption (A2). Moreover, with the assumption (A4), one obtains1

that2

trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

= trace

(
N∑
i=1

σxTi (t, exi (t))P1σ
x
i (t, exi (t))

)

≤ λmax(P1)
N∑
i=1

trace
(
σxTi (t, ei(t))σ

x
i (t, ei(t))

)
≤ λ1

N∑
i=1

exTi (t)Σxei(t) ≤ λ1e
xT (t)(IN ⊗ Σx)ex(t).

Similarly, one also obtains that

trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]
≤ µ1e

yT (t)(IN ⊗ Σy)ey(t).

Therefore,3

LV (t, e(t), e(t− ζ1(t)), e(t− ζ2(t)))
≤ 2exT (t)(IN ⊗ P1)f

x(ex(t)) + 2eyT (t)(IN ⊗Q1)f
y(ey(t))

−2c2e
xT (t)(Lx ⊗ P1H)ex(t− ζ1(t))− 2c2e

yT (t)(Ly ⊗Q1H)ey(t− ζ1(t))
−2exT (t)(Kx ⊗ P1)e

x(t)− 2eyT (Ky ⊗Q1)e
y(t)
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−2c1e
xT (t)(IN ⊗ P1Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))

−2c1e
yT (t)(IN ⊗Q1Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

+λ1e
xT (t)(IN ⊗ Σx)ex(t) + µ1e

yT (t)(IN ⊗ Σy)ey(t)

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ρ1)(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t)) + eyT (t− ζ1(t))(IN ⊗Q2)e

y(t− ζ1(t)))
+exT (t)(IN ⊗ P3)e

x(t) + eyT (t)(IN ⊗Q3)e
y(t)

−(1− ρ2)(exT (t− ζ2(t))(IN ⊗ P3)e
x(t− ζ2(t)) + eyT (t− ζ2(t))(IN ⊗Q3)e

y(t− ζ2(t)))
+exT (t)(IN ⊗ U1)e

x(t)− fxT (ex(t))fx(ex(t)) + eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t))

= zT (t)Πz(t) ≤ λmax(Π)zT (t)z(t) , −ω(z)

where zT (t) = (exT (t), eyT , fxT (exT (t)), f yT (eyT (t)), exT (t − ζ1(t)), e
yT (t −

ζ1(t)), e
xT (t− ζ2(t)), eyT (t− ζ2(t))) and

Π =



Π11 0 IN ⊗ P1 0 Π15 0 Π17 Π18

0 Π22 0 IN ⊗Q1 0 Π26 Π27 Π28

∗ 0 −IN ⊗ In 0 0 0 0 0
0 ∗ 0 −IN ⊗ In 0 0 0 0
∗ 0 0 0 Π55 0 0 0
0 ∗ 0 0 0 Π66 0 0
∗ ∗ 0 0 0 0 Π77 0
∗ ∗ 0 0 0 0 0 Π88


,

where1

Π11 = −2Kx ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + P3 + U1),

Π15 = −c2Lx ⊗ P1H,

Π17 = −c1IN ⊗ P1Γ,

Π18 = c1IN ⊗ P1Γ,

Π22 = −2Ky ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 +Q3 + U2),

Π26 = −c2Ly ⊗Q1H,

Π27 = c1IN ⊗Q1Γ,

Π28 = −c1IN ⊗Q1Γ,

Π55 = −(1− ρ1)(IN ⊗ P2),

Π66 = −(1− ρ1)(IN ⊗Q2),

Π77 = −(1− ρ2)(IN ⊗ P3),

Π88 = −(1− ρ2)(IN ⊗Q3).

By Lemma 2.1, the proof is complete.2
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Note that each node in one layer is the replica of the node in another layer.1

Therefore, ζ2(t) should be significantly smaller than ζ1(t). In the following2

result, we assume that ζ2(t) ≡ 0.3

Theorem 3.2 Assume that (A1)-(A4) hold. under the controller (11), the4

duplex network (4) and (3) are stochastically synchronized almost surely, if5

there exist two positive numbers λ1, µ1 and positive definite matrices P1, P2, Q1, Q2,6

such that7

P1 ≤ λ1In and Q1 ≤ µ1In (14)
8

Σ =


Σ11 Σ12 IN ⊗ P1 0 Σ15 0
∗ Σ22 0 IN ⊗Q1 0 Σ26

∗ 0 −IN ⊗ In 0 0 0
0 ∗ 0 −IN ⊗ In 0 0
∗ 0 0 0 Σ55 0
0 ∗ 0 0 0 Σ66

 < 0, (15)

where9

Σ11 = −2Kx ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + U1 − 2c1P1Γ),

Σ12 = c1IN ⊗ (P1 +Q1)Γ

Σ15 = −c2Lx ⊗ P1H,

Σ22 = −2Ky ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 + U2 − 2c1Q1Γ),

Σ26 = −c2Ly ⊗Q1H,

Σ55 = −(1− ρ1)(IN ⊗ P2),

Σ66 = −(1− ρ1)(IN ⊗Q2),

Proof. Consider the Lyapunov functional10

V (t, e(t), e(t− ζ1(t))) = eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
e(t)

+

∫ t

t−ζ1(t))
eT (s)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(s)ds.

Thus,11

LV (t, e(t), e(t− ζ1(t)))

= 2eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)[(
fx(ex(t))
f y(ey(t))

)
−c2

(
(Lx ⊗H)ex(t− ζ1(t))
(Ly ⊗H)ey(t− ζ1(t))

)
− c1

(
(IN ⊗ Γ)(ex(t)− ey(t))
(IN ⊗ Γ)(ey(t)− ex(t))

)
10



−
(

(Kx ⊗ In)ex(t)
(Ky ⊗ In)ey(t)

)]
+trace

[
σT (t, e(t))

(
IN ⊗ P1 0

0 IN ⊗Q1

)
σ(t, e(t))

]
+eT (t)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t)

−(1− ζ̇1(t))eT (t− ζ1(t))
(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t− ζ1(t))

≤ 2exT (t)(IN ⊗ P1)f
x(ex(t)) + 2eyT (t)(IN ⊗Q1)f

y(ey(t))

−2c2e
xT (t)(IN ⊗ P1)(L

x ⊗H)ex(t− ζ1(t))− 2c2e
yT (t)(IN ⊗Q1)(L

y ⊗H)ey(t− ζ1(t))
−2exT (t)(IN ⊗ P1)(K

x ⊗ In)ex(t)− 2eyT (IN ⊗Q1)(K
y ⊗ In)ey(t)

−2c1e
xT (t)(IN ⊗ P1)(IN ⊗ Γ)(ex(t)− ey(t))

−2c1e
yT (t)(IN ⊗Q1)(IN ⊗ Γ)(ey(t)− ex(t))

+trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

+ trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ζ̇1(t))(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t)) + eyT (t− ζ1(t))(IN ⊗Q2)e

y(t− ζ1(t)))
+exT (t)(IN ⊗ U1)e

x(t)− fxT (ex(t))fx(ex(t)) + eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t)),

using Assumption (A2). Moreover, with the assumption (A4), one obtains1

that2

trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

= trace

(
N∑
i=1

σxTi (t, exi (t))P1σ
x
i (t, exi (t))

)

≤ λmax(P1)
N∑
i=1

trace
(
σxTi (t, ei(t))σ

x
i (t, ei(t))

)
≤ λ1

N∑
i=1

exTi (t)Σxei(t) ≤ λ1e
xT (t)(IN ⊗ Σx)ex(t).

Similarly, one also obtains that

trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]
≤ µ1e

yT (t)(IN ⊗ Σy)ey(t).

Therefore,3

LV (t, e(t), e(t− ζ1(t)))
≤ 2exT (t)(IN ⊗ P1)f

x(ex(t)) + 2eyT (t)(IN ⊗Q1)f
y(ey(t))

−2c2e
xT (t)(Lx ⊗ P1H)ex(t− ζ1(t))− 2c2e

yT (t)(Ly ⊗Q1H)ey(t− ζ1(t))
−2exT (t)(Kx ⊗ P1)e

x(t)− 2eyT (Ky ⊗Q1)e
y(t)

−2c1e
xT (t)(IN ⊗ P1Γ)(ex(t)− ey(t))
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−2c1e
yT (t)(IN ⊗Q1Γ)(ey(t)− ex(t))

+λ1e
xT (t)(IN ⊗ Σx)ex(t) + µ1e

yT (t)(IN ⊗ Σy)ey(t)

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ρ1)(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t))

+eyT (t− ζ1(t))(IN ⊗Q2)e
y(t− ζ1(t)))

+exT (t)(IN ⊗ U1)e
x(t)− fxT (ex(t))fx(ex(t))

+eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t))

= zT (t)Σz(t) ≤ λmax(Σ)zT (t)z(t) , −ω(z)

where zT (t) = (exT (t), eyT , fxT (ex(t)), f yT (ey(t)), exT (t−ζ1(t)), eyT (t−ζ1(t)))
and

Σ =


Σ11 Σ12 IN ⊗ P1 0 Σ15 0
∗ Σ22 0 IN ⊗Q1 0 Σ26

∗ 0 −IN ⊗ In 0 0 0
0 ∗ 0 −IN ⊗ In 0 0
∗ 0 0 0 Σ55 0
0 ∗ 0 0 0 Σ66

 ,

where1

Σ11 = −2Kx ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + U1 − 2c1P1Γ),

Σ12 = c1IN ⊗ (P1 +Q1)Γ

Σ15 = −c2Lx ⊗ P1H,

Σ22 = −2Ky ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 + U2 − 2c1Q1Γ),

Σ26 = −c2Ly ⊗Q1H,

Σ55 = −(1− ρ1)(IN ⊗ P2),

Σ66 = −(1− ρ1)(IN ⊗Q2),

By Lemma 2.1, the proof is complete.2

Remark 3.1 Comparing (13) and (15), one can see that it is easier to ob-3

tain a feasible solution to the linear inequalities in the case ζ2(t) ≡ 0. More-4

over, different from Theorem 3.1, one can easily find that (15) is diagonally5

dominant if the inter-layer coupling strength c1 is large enough and the intra-6

layer coupling strength is small enough. In such situation, there always exist7

feasible solutions to (14) and (15) without control input which means that8

the intra-layer synchronization would be automatically achieved without any9

control input.10
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3.2 Synchronization with adaptive state-feedback con-1

troller2

Assume that the controller is defined as follows{
uxi (t) = −kxi (t)exi (t),
uyi (t) = −kyi (t)e

y
i (t),

for i = 1, 2, · · · , N , i.e.,3 (
ux(t)
uy(t)

)
=

(
−(Kx(t)⊗ In)ex(t)
−(Ky(t)⊗ In)ey(t)

)
, (16)

where ux(t) = (uxT1 (t), · · · , uxTN (t))T , uy(t) = (uyT1 (t), · · · , uyTN (t))T , Kx(t) =4

diag{kx1 (t), · · · , kxN(t)} and Ky(t) = diag{ky1(t), · · · , kyN(t)}. Besides, kxi (t)’s5

and kyi (t)’s are adaptive control gains and updated by6 {
k̇xi (t) = δxi e

xT
i (t)exi (t),

k̇yi (t) = δyi e
yT
i (t)eyi (t),

(17)

where δxi , δ
y
i are some positive constants to be designed.7

Theorem 3.3 Assume that (A1)-(A4) hold. Under the controller (16), the8

duplex network (4) and (3) are stochastically synchronized almost surely, if9

there exist two positive numbers λ1, µ1 and positive definite matrices P1 =10

p1In, P2, P3, Q1 = q1In, Q2, Q3, such that11

P1 ≤ λ1In and Q1 ≤ µ1In (18)
12

Ξ =



Ξ11 0 IN ⊗ P1 0 Ξ15 0 Ξ17 Ξ18

0 Ξ22 0 IN ⊗Q1 0 Ξ26 Ξ27 Ξ28

∗ 0 −IN ⊗ In 0 0 0 0 0
0 ∗ 0 −IN ⊗ In 0 0 0 0
∗ 0 0 0 Ξ55 0 0 0
0 ∗ 0 0 0 Ξ66 0 0
∗ ∗ 0 0 0 0 Ξ77 0
∗ ∗ 0 0 0 0 0 Ξ88


< 0, (19)

where13

Ξ11 = −2K̄x ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + P3 + U1),

Ξ15 = −c2Lx ⊗ P1H,

Ξ17 = −c1IN ⊗ P1Γ,
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Ξ18 = c1IN ⊗ P1Γ,

Ξ22 = −2K̄y ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 +Q3 + U2),

Ξ26 = −c2Ly ⊗Q1H,

Ξ27 = c1IN ⊗Q1Γ,

Ξ28 = −c1IN ⊗Q1Γ,

Ξ55 = −(1− ρ1)(IN ⊗ P2),

Ξ66 = −(1− ρ1)(IN ⊗Q2),

Ξ77 = −(1− ρ2)(IN ⊗ P3),

Ξ88 = −(1− ρ2)(IN ⊗Q3),

and K̄x = diag{k̄x1 , · · · , k̄xN}, K̄y = diag{k̄y1 , · · · , k̄
y
N}.1

Proof. Consider the Lyapunov functional2

V (t, e(t), e(t− ζ1(t)), e(t− ζ2(t))) = eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
e(t)

+

∫ t

t−ζ1(t))
eT (s)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(s)ds+ p1

N∑
i=1

1

δxi
(kxi (t)− k̄xi )2

+

∫ t

t−ζ2(t))
eT (s)

(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(s)ds+ q1

N∑
i=1

1

δyi
(kyi (t)− k̄

y
i )

2

Thus,3

LV (t, e(t), e(t− ζ1(t)), e(t− ζ2(t)))

= 2eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
[(

fx(ex(t))
f y(ey(t))

)
− c2

(
(Lx ⊗H)ex(t− ζ1(t))
(Ly ⊗H)ey(t− ζ1(t))

)
−c1

(
(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))
(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

)
−
(

(Kx(t)⊗ In)ex(t)
(Ky(t)⊗ In)ey(t)

)]

+trace
[
σT (t, e(t))

(
IN ⊗ P1 0

0 IN ⊗Q1

)
σ(t, e(t))

]
+2exT (t)(Kx(t)⊗ P1)e

x(t)− 2exT (K̄x ⊗ P1)e
x(t) + 2eyT (t)(Ky(t)⊗Q1)e

y(t)

−2eyT (K̄y ⊗ P1)e
y(t)
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+eT (t)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t)

−(1− ζ̇1(t))eT (t− ζ1(t))
(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t− ζ1(t))

+eT (t)

(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(t)

−(1− ζ̇2(t))eT (t− ζ2(t))
(
IN ⊗ P3 0

0 IN ⊗Q3

)
e(t− ζ2(t))

≤ 2exT (t)(IN ⊗ P1)f
x(ex(t)) + 2eyT (t)(IN ⊗Q1)f

y(ey(t))

−2c2e
xT (t)(IN ⊗ P1)(L

x ⊗H)ex(t− ζ1(t))
−2c2e

yT (t)(IN ⊗Q1)(L
y ⊗H)ey(t− ζ1(t))

−2exT (t)(IN ⊗ P1)(K̄
x ⊗ In)ex(t)

−2eyT (IN ⊗Q1)(K̄
y ⊗ In)ey(t)

−2c1e
xT (t)(IN ⊗ P1)(IN ⊗ Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))

−2c1e
yT (t)(IN ⊗Q1)(IN ⊗ Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

+trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

+trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ζ̇1(t))(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t))

+eyT (t− ζ1(t))(IN ⊗Q2)e
y(t− ζ1(t)))

+exT (t)(IN ⊗ P3)e
x(t) + eyT (t)(IN ⊗Q3)e

y(t)

−(1− ζ̇2(t))(exT (t− ζ2(t))(IN ⊗ P3)e
x(t− ζ2(t))

+eyT (t− ζ2(t))(IN ⊗Q3)e
y(t− ζ2(t)))

+exT (t)(IN ⊗ U1)e
x(t)− fxT (ex(t))fx(ex(t))

+eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t)),

using Assumption (A2). Moreover, with the assumption (A4), one obtains1

that2

trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

= trace

(
N∑
i=1

σxTi (t, exi (t))P1σ
x
i (t, exi (t))

)

≤ λmax(P1)
N∑
i=1

trace
(
σxTi (t, ei(t))σ

x
i (t, ei(t))

)
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≤ λ1

N∑
i=1

exTi (t)Σxei(t) ≤ λ1e
xT (t)(IN ⊗ Σx)ex(t).

Similarly, one also obtains that

trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]
≤ µ1e

yT (t)(IN ⊗ Σy)ey(t).

Therefore,1

LV (t, e(t), e(t− ζ1(t)), e(t− ζ2(t)))
≤ 2exT (t)(IN ⊗ P1)f

x(ex(t)) + 2eyT (t)(IN ⊗Q1)f
y(ey(t))

−2c2e
xT (t)(Lx ⊗ P1H)ex(t− ζ1(t))− 2c2e

yT (t)(Ly ⊗Q1H)ey(t− ζ1(t))
−2exT (t)(K̄x ⊗ P1)e

x(t)− 2eyT (K̄y ⊗Q1)e
y(t)

−2c1e
xT (t)(IN ⊗ P1Γ)(ex(t− ζ2(t))− ey(t− ζ2(t)))

−2c1e
yT (t)(IN ⊗Q1Γ)(ey(t− ζ2(t))− ex(t− ζ2(t)))

+λ1e
xT (t)(IN ⊗ Σx)ex(t) + µ1e

yT (t)(IN ⊗ Σy)ey(t)

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ρ1)(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t))

+eyT (t− ζ1(t))(IN ⊗Q2)e
y(t− ζ1(t)))

+exT (t)(IN ⊗ P3)e
x(t) + eyT (t)(IN ⊗Q3)e

y(t)

−(1− ρ2)(exT (t− ζ2(t))(IN ⊗ P3)e
x(t− ζ2(t))

+eyT (t− ζ2(t))(IN ⊗Q3)e
y(t− ζ2(t)))

+exT (t)(IN ⊗ U1)e
x(t)− fxT (ex(t))fx(ex(t))

+eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t))

= zT (t)Ξz(t) ≤ λmax(Ξ)zT (t)z(t) , −ω(z)

where zT (t) = (exT (t), eyT , fxT (exT (t)), f yT (eyT (t)), exT (t − ζ1(t)), e
yT (t −

ζ1(t)), e
xT (t− ζ2(t)), eyT (t− ζ2(t))) and

Ξ =



Ξ11 0 IN ⊗ P1 0 Ξ15 0 Ξ17 Ξ18

0 Ξ22 0 IN ⊗Q1 0 Ξ26 Ξ27 Ξ28

∗ 0 −IN ⊗ In 0 0 0 0 0
0 ∗ 0 −IN ⊗ In 0 0 0 0
∗ 0 0 0 Ξ55 0 0 0
0 ∗ 0 0 0 Ξ66 0 0
∗ ∗ 0 0 0 0 Ξ77 0
∗ ∗ 0 0 0 0 0 Ξ88


,

where2

Ξ11 = −2K̄x ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + P3 + U1),
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Ξ15 = −c2Lx ⊗ P1H,

Ξ17 = −c1IN ⊗ P1Γ,

Ξ18 = c1IN ⊗ P1Γ,

Ξ22 = −2K̄y ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 +Q3 + U2),

Ξ26 = −c2Ly ⊗Q1H,

Ξ27 = c1IN ⊗Q1Γ,

Ξ28 = −c1IN ⊗Q1Γ,

Ξ55 = −(1− ρ1)(IN ⊗ P2),

Ξ66 = −(1− ρ1)(IN ⊗Q2),

Ξ77 = −(1− ρ2)(IN ⊗ P3),

Ξ88 = −(1− ρ2)(IN ⊗Q3).

By Lemma 2.1, the proof is complete.1

For the special case where ζ2(t) ≡ 0, we have the following result.2

Theorem 3.4 Assume that (A1)-(A4) hold. Under the controller (16), the3

duplex network (4) and (3) are stochastically synchronized almost surely, if4

there exist two positive numbers λ1, µ1 and positive definite matrices P1 =5

p1In, P2, Q1 = q1In, Q2,, such that6

P1 ≤ λ1In and Q1 ≤ µ1In (20)
7

Λ =


Λ11 Λ12 IN ⊗ P1 0 Λ15 0
∗ Λ22 0 IN ⊗Q1 0 Λ26

∗ 0 −IN ⊗ In 0 0 0
0 ∗ 0 −IN ⊗ In 0 0
∗ 0 0 0 Λ55 0
0 ∗ 0 0 0 Λ66

 < 0, (21)

where8

Λ11 = −2K̄x ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + U1 − 2c1P1Γ),

Λ12 = c1IN ⊗ (P1 +Q1)Γ

Λ15 = −c2Lx ⊗ P1H,

Λ22 = −2K̄y ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 + U2 − 2c1Q1Γ),

Λ26 = −c2Ly ⊗Q1H,

Λ55 = −(1− ρ1)(IN ⊗ P2),

Λ66 = −(1− ρ1)(IN ⊗Q2),
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and K̄x = diag{k̄x1 , · · · , k̄xN}, K̄y = diag{k̄y1 , · · · , k̄
y
N}.1

Proof. Consider the Lyapunov functional2

V (t, e(t), e(t− ζ1(t)))

= eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
e(t)

+

∫ t

t−ζ1(t))
eT (s)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(s)ds

+p1

N∑
i=1

1

δxi
(kxi (t)− k̄xi )2 + q1

N∑
i=1

1

δyi
(kyi (t)− k̄

y
i )

2

Thus,3

LV (t, e(t), e(t− ζ1(t)))

= 2eT (t)

(
IN ⊗ P1 0

0 IN ⊗Q1

)
[(

fx(ex(t))
f y(ey(t))

)
− c2

(
(Lx ⊗H)ex(t− ζ1(t))
(Ly ⊗H)ey(t− ζ1(t))

)
−c1

(
(IN ⊗ Γ)(ex(t)− ey(t))
(IN ⊗ Γ)(ey(t)− ex(t))

)
−
(

(Kx(t)⊗ In)ex(t)
(Ky(t)⊗ In)ey(t)

)]

+trace
[
σT (t, e(t))

(
IN ⊗ P1 0

0 IN ⊗Q1

)
σ(t, e(t))

]
+2exT (t)(Kx(t)⊗ P1)e

x(t)

−2exT (K̄x ⊗ P1)e
x(t) + 2eyT (t)(Ky(t)⊗Q1)e

y(t)

−2eyT (K̄y ⊗ P1)e
y(t) + eT (t)

(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t)

−(1− ζ̇1(t))eT (t− ζ1(t))
(
IN ⊗ P2 0

0 IN ⊗Q2

)
e(t− ζ1(t))

≤ 2exT (t)(IN ⊗ P1)f
x(ex(t)) + 2eyT (t)(IN ⊗Q1)f

y(ey(t))

−2c2e
xT (t)(IN ⊗ P1)(L

x ⊗H)ex(t− ζ1(t))
−2c2e

yT (t)(IN ⊗Q1)(L
y ⊗H)ey(t− ζ1(t))

−2exT (t)(IN ⊗ P1)(K̄
x ⊗ In)ex(t)

−2eyT (IN ⊗Q1)(K̄
y ⊗ In)ey(t)

−2c1e
xT (t)(IN ⊗ P1)(IN ⊗ Γ)(ex(t)− ey(t))
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−2c1e
yT (t)(IN ⊗Q1)(IN ⊗ Γ)(ey(t)− ex(t))

+trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

+trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)

−(1− ζ̇1(t))(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t))

+eyT (t− ζ1(t))(IN ⊗Q2)e
y(t− ζ1(t)))

+exT (t)(IN ⊗ U1)e
x(t)− fxT (ex(t))fx(ex(t))

+eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t)),

using Assumption (A2). Moreover, with the assumption (A4), one obtains1

that2

trace
[
σxT (t, ex(t))(IN ⊗ P1)σ

x(t, ex(t))
]

= trace

(
N∑
i=1

σxTi (t, exi (t))P1σ
x
i (t, exi (t))

)

≤ λmax(P1)
N∑
i=1

trace
(
σxTi (t, ei(t))σ

x
i (t, ei(t))

)
≤ λ1

N∑
i=1

exTi (t)Σxei(t) ≤ λ1e
xT (t)(IN ⊗ Σx)ex(t).

Similarly, one also obtains that

trace
[
σyT (t, ey(t))(IN ⊗Q1)σ

y(t, ey(t))
]
≤ µ1e

yT (t)(IN ⊗ Σy)ey(t).

Therefore,3

LV (t, e(t), e(t− ζ1(t)), e(t))
≤ 2exT (t)(IN ⊗ P1)f

x(ex(t)) + 2eyT (t)(IN ⊗Q1)f
y(ey(t))

−2c2e
xT (t)(Lx ⊗ P1H)ex(t− ζ1(t))

−2c2e
yT (t)(Ly ⊗Q1H)ey(t− ζ1(t))

−2exT (t)(K̄x ⊗ P1)e
x(t)

−2eyT (K̄y ⊗Q1)e
y(t)

−2c1e
xT (t)(IN ⊗ P1Γ)(ex(t)− ey(t))

−2c1e
yT (t)(IN ⊗Q1Γ)(ey(t)− ex(t))

+λ1e
xT (t)(IN ⊗ Σx)ex(t) + µ1e

yT (t)(IN ⊗ Σy)ey(t)

+exT (t)(IN ⊗ P2)e
x(t) + eyT (t)(IN ⊗Q2)e

y(t)
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−(1− ρ1)(exT (t− ζ1(t))(IN ⊗ P2)e
x(t− ζ1(t))

+eyT (t− ζ1(t))(IN ⊗Q2)e
y(t− ζ1(t)))

+exT (t)(IN ⊗ U1)e
x(t)

−fxT (ex(t))fx(ex(t)) + eyT (t)(IN ⊗ U2)e
y(t)− f yT (ey(t))f y(ey(t))

= zT (t)Λz(t) ≤ λmax(Λ)zT (t)z(t) , −ω(z)

where zT (t) = (exT (t), eyT , fxT (ex(t)), f yT (ey(t)), exT (t−ζ1(t)), eyT (t−ζ1(t)))
and

Λ =


Λ11 Λ12 IN ⊗ P1 0 Λ15 0
∗ Λ22 0 IN ⊗Q1 0 Λ26

∗ 0 −IN ⊗ In 0 0 0
0 ∗ 0 −IN ⊗ In 0 0
∗ 0 0 0 Λ55 0
0 ∗ 0 0 0 Λ66

 ,

where1

Λ11 = −2K̄x ⊗ P1 + IN ⊗ (λ1Σ
x + P2 + U1 − 2c1P1Γ),

Λ12 = c1IN ⊗ (P1 +Q1)Γ

Λ15 = −c2Lx ⊗ P1H,

Λ22 = −2K̄y ⊗Q1 + IN ⊗ (µ1Σ
y +Q2 + U2 − 2c1Q1Γ),

Λ26 = −c2Ly ⊗Q1H,

Λ55 = −(1− ρ1)(IN ⊗ P2),

Λ66 = −(1− ρ1)(IN ⊗Q2),

By Lemma 2.1, the proof is complete.2

Remark 3.2 Comparing (19) and (21), one finds that it is easier to obtain3

a feasible solution to the linear inequalities in the case ζ2(t) ≡ 0. Moreover,4

similar to Remark 3.1, the intra-layer synchronization would be automatically5

achieved without any control input when the inter-layer coupling strength c16

is large enough and the intra-layer coupling strength c2 is small enough.7

4 Numerical simulations8

To verify our main results, we construct a Chua-Chua chaotic system in this9

section.10

A Chua-Chua chaotic system. In the synchronous states (3), we
choose the following settings of the Chua chaotic systems

f̃x(z) = Axz − αxhx(z) and f̃ y(z) = Ayz − αyhy(z),
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where z = (z1, z2, z3)
T ,

Ax =

 −αx αx 0
1 −1 1
0 βx 0

 and Ay =

 −αy αy 0
1 −1 1
0 βy 0

 ,

and hx(z) = (mx
1z1 + 1

2
(mx

0 −mx
1)(|z1 + 1| − |z1− 1|), 0, 0)T , hy(z) = (my

1z1 +
1
2
(my

0 − my
1)(|z1 + 1| − |z1 − 1|), 0, 0)T . Moreover, we choose the following

parameters αx = 9, βx = 100/7, mx
0 = −8/7, mx

1 = −5/7, αy = 8, βx =
110/7, mx

0 = −10/7, mx
1 = −4/7, c1 = 0.05, ζ2(t) = 0.4 sin(t) + 0.6,

Γ =

 1 1 1
1 1 1
1 1 1

 .

With some efforts, we obtain that U1 = 2diag{(αx)2 + 3, (αx)2 + (βx)2 +1

1, 3} + 2(αx)2diag{(mx
1)2 + (mx

0 − mx
1)2, 0, 0} ≤ diag{281, 573, 3} and U2 ≤2

diag{270, 624, 3}. Figure 1 gives the dynamical behavior of the drive system3

(3).

Figure 1: The dynamic behavior of the drive system (3).
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(a) Dynamic behavior x-state of the drive
system.
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(b) Dynamic behavior y-state of the drive
system.

4

The duplex network. Our duplex network consists x-layer and y-layer,
where each layer has 100 Chua chaotic oscillators. We use Watts-Strogatz
small-world graph [39] to construct the x-layer by taking initial degree d = 4
and rewiring probability p = 0.2. The y-layer is a scale-free graph [40, 41]
where the node degree follows a power law distribution with exponent 2.2.
The intra-layer inner coupling matrix is chosen as the identity matrix H = I3.
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We also set c2 = 0.05 and ζ1(t) = 0.5 cos(t) + 0.5. The noise intensity
functions are chosen as

σxi (t, exi (t)) = 0.5(exi (t), exi (t)),
σyi (t, e

y
i (t)) = 0.3(eyi (t), eyi (t)),

for i = 1, 2, · · · , N . Therefore, Σx = 2 · 0.52I3,Σ
y = 2 · 0.32I3. Moreover,1

we use the Euler-Maruyama method [42] to compute the trajectories of the2

stochastic differential equations.3

The dynamical behaviors of the (4) are shown in Figure 2.

Figure 2: The dynamic behavior of the response system (4) with no control.
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(a) Dynamic behavior x-state of node 1 of
the response system.
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(b) Dynamic behavior y-state of node 1 of
the response system.

4

To evaluate the performance of the synchronization, the total x-layer and
y-layer errors of the intra-layer synchronization are defined as

‖ex(t)‖ =

(
N∑
i=1

(xi(t)− sx(t))T (xi(t)− sx(t))

)1/2

,

and

‖ey(t)‖ =

(
N∑
i=1

(yi(t)− sy(t))T (yi(t)− sy(t))

)1/2

,

respectively.5

The situation under controller (11). For simplicity, we set kx1 = kx2 =6

· · · = kxN = kx, ky1 = ky2 = · · · = kyN = ky and thus Kx = kxIN , K
y = kyIN .7

Note that (13) is not a linear matrix inequality. Even though, we can search8

the solution to (12) and (13) as follows.9
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• Step 1, we assign large numbers to kx and ky respectively, and then (13)1

becomes a linear matrix inequality of P1, P2, P3, Q1, Q2, Q3 which can2

be solved by the LMI toolbox provided by Matlab.3

• Step 2, if (12) and (13) are feasible by the LMI toolbox, then we de-4

crease the values of kx and ky.5

Repeat Step 2 before the inequalities (12) and (13) become infeasible, we will6

obtain appropriate control gains kx and ky.7

Under the preceding settings, we finally choose kx = 3.5 and ky = 5.5 and
the solution to (12) and (13) is listed as follows, µ1 = 43.6369, λ1 = 14.9600,
P1 = diag{10.5924, 14.5055, 6.9590},

P2 =

 136.3493 −0.0139 −0.0135
−0.0139 103.7976 −0.0149
−0.0135 −0.0149 171.7173

 , P3 =

 124.0841 0.0052 0.0057
0.0052 98.8094 0.0045
0.0057 0.0045 151.8279

 .

Q1 =

 7.3463 0.0001 0.0001
0.0001 10.4292 0.0001
0.0001 0.0001 5.0399

 , Q2 =

 196.0905 −0.0101 −0.0082
−0.0101 172.7337 −0.0094
−0.0082 −0.0094 214.8866

 ,

Q3 =

 170.7531 0.0090 0.0105
0.0090 153.4701 0.0095
0.0105 0.0095 184.6795

 .

Under the controller (11), Figure 3 gives the trajectories of x-state and y-layer8

of node 1.9

To verify the theoretical result, we also give the time evolution of the10

x-layer and y-layer errors in Figure 4.11

The situation under controller (16). For simplicity, we set k̄x1 = k̄x2 =12

· · · = k̄xN = k̄x, k̄y1 = k̄y2 = · · · = k̄yN = k̄y and thus K̄x = k̄xIN , K̄
y = k̄yIN .13

Note that (19) is not a linear matrix inequality. Even though, we can search14

the solution to (18) and (19) similarly to that of controller (11) as follows.15

• Step 1, we assign large numbers to k̄x and k̄y respectively, and then (19)16

becomes a linear matrix inequality of P1, P2, P3, Q1, Q2, Q3 which can17

be solved by the LMI toolbox of Matlab.18

• Step 2, if (18) and (19) are feasible by the LMI toolbox, then we de-19

crease the values of k̄x and k̄y.20

Repeat Step 2 before the inequalities (18) and (19) become infeasible, we are21

going to obtain appropriate control gains k̄x and k̄y.22
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Figure 3: The dynamic behavior of the response system (4) under controller
(11).
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(a) Dynamic behavior x-state of node 1 of
the response system under controller (11).
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(b) Dynamic behavior y-state of node 1 of
the response system under controller (11).

Figure 4: Time evolution of the total errors of the response system under
controller (11).
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(a) Time evolution of the total x-layer er-
ror of the response system under controller
(11).
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(b) Time evolution of the total y-layer er-
ror of the response system under controller
(11).

Under the preceding settings, we finally choose k̄x = 4.5 and k̄y = 6.5 and
the solution to (18) and (19) is listed as follows, µ1 = 166.3930, λ1 = 43.4001,
P1 = 16.4969I3, Q1 = 12.0678I3,

P2 =

 136.3493 −0.0139 −0.0135
−0.0139 103.7976 −0.0149
−0.0135 −0.0149 171.7173

 , P3 =

 124.0841 0.0052 0.0057
0.0052 98.8094 0.0045
0.0057 0.0045 151.8279

 .
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Q2 =

 521.7444 −0.0135 −0.0142
−0.0135 342.7871 −0.0138
−0.0142 −0.0138 656.7347

 , Q3 =

 440.8647 0.0092 0.0094
0.0092 313.9469 0.0093
0.0094 0.0093 536.5883

 .

Under the controller (16), Figure 5 gives the trajectories of x-state and1

y-layer of node 1.2

Figure 5: The dynamic behavior of the response system (4) under controller
(16).
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(a) Dynamic behavior x-state of node 1 of
the response system under controller (16).
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(b) Dynamic behavior y-state of node 1 of
the response system under controller (16).

To verify the theoretical result, we also give the time evolution of the3

x-layer and y-layer errors in Figure 6.4

Figure 7 gives the average x-layer and y-layer control gains under con-
troller (16), which are defined by

k̄x(t) =
1

N

N∑
i=1

kxi (t) and k̄y(t) =
1

N

N∑
i=1

kyi (t),

respectively.5

5 Conclusion6

In the last few decades, a lot of synchronization schemes for the complex7

systems have been proposed. However, many synchronization schemes de-8

signed for a single network is not very reasonable. In this paper, we study the9

intra-layer synchronization of a kind of duplex networks. Different from the10

previous works [1, 2], Stochastic factor is introduced into the duplex network.11

We also incorporate both the inter-layer delay and the intra-layer delay into12
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Figure 6: Time evolution of the total errors of the response system under
controller (16).
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(a) Time evolution of the total x-layer er-
ror of the response system under controller
(16).
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(b) Time evolution of the total y-layer er-
ror of the response system under controller
(16).

Figure 7: Time evolution of the average control gains under controller (16).
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(a) Time evolution of the average x-layer
control gain under controller (16).
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(b) Time evolution of the average y-layer
control gain under controller (16).

the dynamical system. Both of the delays are time-varying. The paper [1]1

only considered the intra-layer delays and they are assumed as the constants.2

While the paper [2] did not consider the inter-layer delay or intra-layer delay.3

When the system does not achieve automatic intra-layer synchronization, we4

introduce two controllers: one is the state-feedback controller, the other is the5

adaptive state-feedback controller. Interestingly, we find that the intra-layer6

synchronization will achieve automatically if the inter-layer coupling strength7

c1 is large enough and the intra-layer coupling strength c2 is small enough8
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when the time-varying inter-layer delays are absent. Finally, the simulations1

show the effectiveness of obtained schemes.2
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