References
Abiria, S. A., & Colbran, R. J. (2010). CaMKII associates with CaV 1.2 L-type calcium channels via selected β subunits to enhance regulatory phosphorylation. Journal of Neurochemistry ,112 (1), 150–161. https://doi.org/10.1111/j.1471-4159.2009.06436.x
Alexander, S. P. H., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., Aldrich, R. W., Becirovic, E., Biel, M., Catterall, W. A., Conner, A. C., Davies, P., … Zhu, M. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology , 176 (S1), S142–S228. https://doi.org/10.1111/bph.14749
Angaut-Petit, D., Molgo, J., Connold, A. L., & Faille, L. (1987). The levator auris longus muscle of the mouse: A convenient preparation for studies of short- and long-term presynaptic effects of drugs or toxins.Neuroscience Letters , 82 (1), 83–88. https://doi.org/10.1016/0304-3940(87)90175-3
Atchison, W. D. (1989). Dihydropyridine-sensitive and -insensitive components of acetylcholine release from rat motor nerve terminals.Journal of Pharmacology and Experimental Therapeutics ,251 (2), 672–678.
Balezina, O. P., Fedorin, V. V., & Gaidukov, A. E. (2006). Effect of nicotine on neuromuscular transmission in mouse motor synapses.Bulletin of Experimental Biology and Medicine , 142 (1), 17–21. https://doi.org/10.1007/s10517-006-0280-3
Bowersox, S. S., Miljanich, G. P., Sugiura, Y., Li, C., Nadasdi, L., Hoffman, B. B., Ramachandran, J., & Ko, C. P. (1995). Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel ω-conopeptides and ω-agatoxin-IVA.Journal of Pharmacology and Experimental Therapeutics ,273 (1), 248–256. https://pubmed.ncbi.nlm.nih.gov/7714772/
Bowman, W. C., Prior, C., & Marshall, I. G. (1990). Presynaptic Receptors in the Neuromuscular Junction. Annals of the New York Academy of Sciences , 604 (1), 69–81. https://doi.org/10.1111/j.1749-6632.1990.tb31983.x
Ciani, S., & Edwards, C. (1963). The effect of acetylcholine on neuromuscular transmission in the frog. The Journal of Pharmacology and Experimental Therapeutics , 142 , 21–23. http://www.ncbi.nlm.nih.gov/pubmed/14076518
Crawford, A. C. (1974). The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents. The Journal of Physiology , 240 (2), 255–278. https://doi.org/10.1113/jphysiol.1974.sp010609
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology , 175 (7), 987–993. https://doi.org/10.1111/bph.14153
Del Castillo, J., & Katz, B. (1957). Interaction at end-plate receptors between different choline derivatives. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society (Great Britain) , 146 (924), 369–381. https://doi.org/10.1098/rspb.1957.0018
Flink, M. T., Atchison, W. D., & Atchison, B. (2003). Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. Journal of Pharmacology and Experimental Therapeutics ,305 (2), 646–652. https://doi.org/10.1124/jpet.102.046102
Garduño, J., Galindo-Charles, L., Jiménez-Rodríguez, J., Galarraga, E., Tapia, D., Mihailescu, S., & Hernandez-Lopez, S. (2012). Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus. Journal of Neuroscience , 32 (43), 15148–15157. https://doi.org/10.1523/JNEUROSCI.0941-12.2012
Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: From structure to pathology. Progress in Neurobiology , 74 (6), 363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006
Hess, P., Lansman, J. B., & Tsien, R. W. (1984). Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature , 311 (5986), 538–544. https://doi.org/10.1038/311538a0
Hill, J. M., Alewood, P. F., & Craik, D. J. (1996). Three-dimensional solution structure of μ-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Biochemistry , 35 (27), 8824–8835. https://doi.org/10.1021/bi960073o
Hogg, R. C., Raggenbass, M., & Bertrand, D. (2003). Nicotinic acetylcholine receptors: from structure to brain function. InReviews of physiology, biochemistry and pharmacology (Vol. 147, pp. 1–46). Rev Physiol Biochem Pharmacol. https://doi.org/10.1007/s10254-003-0005-1
Houlihan, L. M., Slater, E. Y., Beadle, D. J., Lukas, R. J., & Bermudez, I. (2000). Effects of diltiazem on human nicotinic acetylcholine and GABA(A) receptors. Neuropharmacology ,39 (13), 2533–2542. https://doi.org/10.1016/S0028-3908(00)00116-7
Karadsheh, M. S., Shah, M. S., Tang, X., Macdonald, R. L., & Stitzel, J. A. (2004). Functional characterization of mouse α4β2 nicotinic acetylcholine receptors stably expressed in HEK293T cells. Journal of Neurochemistry , 91 (5), 1138–1150. https://doi.org/10.1111/j.1471-4159.2004.02801.x
Katsura, M., Mohri, Y., Shuto, K., Hai-Du, Y., Amano, T., Tsujimura, A., Sasa, M., & Ohkuma, S. (2002). Up-regulation of L-type voltage-dependent calcium channels after long term exposure to nicotine in cerebral cortical neurons. Journal of Biological Chemistry ,277 (10), 7979–7988. https://doi.org/10.1074/jbc.M109466200
Katz B. (1969). The release of neural transmitter substances.Liverpool University Press , 5–39. https://ci.nii.ac.jp/naid/10009658302
Katz, E., Ferro, P. A., Weisz, G., & Uchitel, O. D. (1996). Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. Journal of Physiology ,497 (3), 687–697.
Khaziev, E., Samigullin, D., Zhilyakov, N., Fatikhov, N., Bukharaeva, E., Verkhratsky, A., & Nikolsky, E. (2016). Acetylcholine-induced inhibition of presynaptic calcium signals and transmitter release in the frog neuromuscular junction. Frontiers in Physiology ,7 (DEC), 1–10. https://doi.org/10.3389/fphys.2016.00621
Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F., & Minor, D. L. (2008). Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure , 16 (10), 1455–1467. https://doi.org/10.1016/j.str.2008.07.010
Lansman, J. B., Hess, P., & Tsien, R. W. (1986). Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+s: voltage and concentration dependence of calcium entry into the pore. Journal of General Physiology , 88 (3), 321–347. https://doi.org/10.1085/jgp.88.3.321
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology , 177 (16), 3611–3616. https://doi.org/10.1111/bph.15178
Miller, R. J. (1990). Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology , 4 (15), 3291–3299. http://www.ncbi.nlm.nih.gov/pubmed/1979294
Miller, R. J. (1998). Presynaptic receptors. Annual Review of Pharmacology and Toxicology , 38 , 201–227. https://doi.org/10.1146/annurev.pharmtox.38.1.201
Moroni, M., Zwart, R., Sher, E., Cassels, B. K., & Bermudez, I. (2006). α4β2 nicotinic receptors with high and low acetylcholine sensitivity: Pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Molecular Pharmacology , 70 (2), 755–768. https://doi.org/10.1124/mol.106.023044
Nachshen, D. A., & Blaustein, M. P. (1979). The effects of some organic calcium antagonists on calcium influx in presynaptic nerve terminals.Molecular Pharmacology , 16 (2).
Nikolsky, E. E., Vyskocil, F., Bukharaeva, E. A., Samigullin, D., & Magazanik, L. G. (2004). Cholinergic regulation of the evoked quantal release at frog neuromuscular junction. The Journal of Physiology , 560 (Pt 1), 77–88. https://doi.org/10.1113/jphysiol.2004.065805
Oliveira, L., Timóteo, M. A., & Correia-de-Sá, P. (2002). Modulation by adenosine of both muscarinic M1-facilitation and M2-inhibition of [3H]-acetylcholine release from the rat motor nerve terminals.European Journal of Neuroscience , 15 (11), 1728–1736. https://doi.org/10.1046/j.1460-9568.2002.02020.x
Pagani, R., Song, M., Mcenery, M., Qin, N., Tsien, R. W., Toro, L., Stefani, E., & Uchitel, O. D. (2004). Differential expression of α1 and β subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse.Neuroscience , 123 (1), 75–85. https://doi.org/10.1016/j.neuroscience.2003.09.019
Papke, R. L., Wecker, L., & Stitzel, J. A. (2010). Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes. Journal of Pharmacology and Experimental Therapeutics , 333 (2), 501–518. https://doi.org/10.1124/jpet.109.164566
Penner, R., & Dreyer, F. (1986). Two different presynaptic calcium currents in mouse motor nerve terminals. Pflügers Archiv European Journal of Physiology , 406 (2), 190–197. https://doi.org/10.1007/BF00586682
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology , 18 (7). https://doi.org/10.1371/journal.pbio.3000410
Perissinotti, P. P., Tropper, B. G., & Uchitel, O. D. (2008). L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction. European Journal of Neuroscience ,27 (6), 1333–1344. https://doi.org/10.1111/j.1460-9568.2008.06113.x
Picciotto, M. R. (2003). Nicotine as a modulator of behavior: Beyond the inverted U. In Trends in Pharmacological Sciences (Vol. 24, Issue 9, pp. 493–499). Elsevier Ltd. https://doi.org/10.1016/S0165-6147(03)00230-X
Polo-Parada, L., Bose, C. M., & Landmesser, L. T. (2001). Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron , 32 (5), 815–828. https://doi.org/10.1016/S0896-6273(01)00521-9
Prior, C., & Singh, S. (2000). Factors influencing the low-frequency associated nicotinic ACh autoreceptor-mediated depression of ACh release from rat motor nerve terminals. British Journal of Pharmacology ,129 (6), 1067–1074. https://doi.org/10.1038/sj.bjp.0703161
Prior, C., Tian, L., Dempster, J., & Marshall, I. G. (1995). Prejunctional actions of muscle relaxants: Synaptic vesicles and transmitter mobilization as sites of action. In General Pharmacology (Vol. 26, Issue 4, pp. 659–666). Gen Pharmacol. https://doi.org/10.1016/0306-3623(94)00246-J
Protti, D. A., Szczupak, L., Scornik, F. S., & Uchitel, O. D. (1991). Effect of ω-conotoxin GVIA on neurotransmitter release at the mouse neuromuscular junction. Brain Research , 557 (1–2), 336–339. https://doi.org/10.1016/0006-8993(91)90156-P
Protti, D. A., & Uchitel, O. D. (1993). Transmitter release and presynaptic ca2+ currents blocked by the spider toxin ω-aga-IVA.NeuroReport , 5 (3), 333–336. https://doi.org/10.1097/00001756-199312000-00039
Radford Deckera, E., & Dani, J. A. (1990). Calcium permeability of the nicotinic acetylcholine receptor: The single-channel calcium influx is significant. Journal of Neuroscience , 10 (10), 3413–3420. https://doi.org/10.1523/jneurosci.10-10-03413.1990
Samigullin, D. V., Khaziev, E. F., Zhilyakov, N. V., Bukharaeva, E. A., & Nikolsky, E. E. (2017). Loading a calcium dye into frog nerve endings through the nerve stump: calcium transient registration in the frog neuromuscular junction. Journal of Visualized Experiments ,125 . https://doi.org/10.3791/55122
Samigullin, D. V., Khaziev, E. F., Zhilyakov, N. V., Sudakov, I. A., Bukharaeva, E. A., & Nikolsky, E. E. (2017). Calcium transient registration in response to single stimulation and during train of pulses in mouse neuromuscular junction. BioNanoScience ,7 (1), 162–166. https://doi.org/10.1007/s12668-016-0318-6
Santafé, M. M., Salon, I., Garcia, N., Lanuza, M. A., Uchitel, O. D., & Tomàs, J. (2003). Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. European Journal of Neuroscience , 17 (1), 119–127. https://doi.org/10.1046/j.1460-9568.2003.02428.x
Santafé, M. M., Salon, I., Garcia, N., Lanuza, M. A., Uchitel, O. D., & Tomàs, J. (2004). Muscarinic autoreceptors related with calcium channels in the strong and weak inputs at polyinnervated developing rat neuromuscular junctions. Neuroscience , 123 (1), 61–73. https://doi.org/10.1016/j.neuroscience.2003.09.012
Seth, P., Cheeta, S., Tucci, S., & File, S. E. (2002). Nicotinic-serotonergic interactions in brain and behaviour. InPharmacology Biochemistry and Behavior (Vol. 71, Issue 4, pp. 795–805). Elsevier Inc. https://doi.org/10.1016/S0091-3057(01)00715-8
Slutsky, I., Wess, J., Gomeza, J., Dudel, J., Parnas, I., & Parnas, H. (2003). Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release.Journal of Neurophysiology , 89 (4), 1954–1967. https://doi.org/10.1152/jn.00668.2002
Starke, K., Göthert, M., & Kilbinger, H. (1989). Modulation of neurotransmitter release by presynaptic autoreceptors.Physiological Reviews , 69 (3), 864–989. http://www.ncbi.nlm.nih.gov/pubmed/2568648
Stauderman, K. A., Mashaffi, L. S., M, A., Veliçelebi, G., Chavez-Noriega, L. E., Crona, J. H., Johnson, E. C., Elliott, K. J., Gillespie, A., Reid, R. T., Adams, P., Harpold, M. M., & Corey-Naeve, J. (2000). Characterization of the recombinant human neuronal nicotinic acetylcholine receptors α3β2 and α4β2 stably expressed in HEK293 cells.Neuropharmacology , 39 (13), 2543–2560. https://doi.org/10.1016/S0028-3908(00)00134-9
Thesleff, S. (1958). A study of the interaction between neuromuscular blocking agents and acetylcholine at the mammalian motor end-plate.Acta Anaesthesiologica Scandinavica , 2 (2), 69–79. https://doi.org/10.1111/j.1399-6576.1958.tb05252.x
Tian, L., Prior, C., Dempster, J., & Marshall, I. G. (1994). Nicotinic antagonist‐produced frequency‐dependent changes in acetylcholine release from rat motor nerve terminals. The Journal of Physiology ,476 (3), 517–529. https://doi.org/10.1113/jphysiol.1994.sp020151
Urbano, F. J., Rosato-Siri, M. D., & Uchitel, O. D. (2002). Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q-type deficient neuromuscular junctions. Molecular Membrane Biology , 19 (4), 293–300. https://doi.org/10.1080/0968768021000035087
Van der Kloot, W. (1993). Nicotinic agonists antagonize quantal size increases and evoked release at frog neuromuscular junction. The Journal of Physiology , 468 (1), 567–589. https://doi.org/10.1113/jphysiol.1993.sp019789
Wang, X., Michael McIntosh, J., & Rich, M. M. (2018). Muscle nicotinic acetylcholine receptors may mediate trans-synaptic signaling at the mouse neuromuscular junction. Journal of Neuroscience ,38 (7), 1725–1736. https://doi.org/10.1523/JNEUROSCI.1789-17.2018
Wheeler, D. G., Barrett, C. F., & Tsien, R. W. (2006). L-type calcium channel ligands block nicotine-induced signaling to CREB by inhibiting nicotinic receptors. Neuropharmacology , 51 (1), 27–36. https://doi.org/10.1016/j.neuropharm.2006.02.010
Wonnacott, S. (2014). Nicotinic ACh receptors. Tocris Scientific Review Series , 1–31.
Zhilyakov, N. V., Khaziev, E. F., Latfullin, A. R., Malomouzh, A. I., Bukharaeva, E. A., Nikolsky, E. E., & Samigullin, D. V. (2019). Changes in calcium levels in motor nerve endings in mice on activation of metabotropic cholinoreceptors and GABA receptors. Neuroscience and Behavioral Physiology , 49 (9), 1092–1095. https://doi.org/10.1007/s11055-019-00844-7