Spatiotemporal dynamics of foot and mouth disease outbreaks in India, 2008-2016
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Summary
Foot-and-mouth disease (FMD) is endemic in India, where circulation of serotypes O, A and Asia 1 is frequent. In the past two decades, many of the most widespread and significant FMD lineages globally have emerged from the South Asia region. Here, we provide an epidemiological assessment of the ongoing mass vaccination programs in regard to post-vaccination monitoring and outbreak occurrence. The objective of this study was to quantify the spatiotemporal dynamics of FMD outbreaks and to assess the impact of the mass vaccination program between 2008 to 2016 with available antibody titer data from the vaccination monitoring program, alongside other risk factors that facilitate FMD spread in the country. We first conducted a descriptive analysis of epidemiological outcomes of governmental vaccination programs in India, focusing on antibody titer data from >1 million animals sampled as part of pre- and post-vaccination monitoring and estimates of standardized incidence ratios calculated from reported outbreaks per state/administrative unit. The percent of animals with inferred immunological protection (based on ELISA) was highly variable across states, but there was a general increase in the overall percent of animals with inferred protection through time. In addition, the number of outbreaks in a state was negatively correlated with the percent of animals with inferred protection. Because standardized incidence ratios of outbreaks were heterogeneously distributed over the course of eight years, we analyzed the distribution of reported FMD outbreaks using a Bayesian space-time model to map high-risk areas. This model demonstrated a ~50% reduction in the relative risk of outbreaks in states that were part of the vaccination program. In addition, states that did not have an international border experienced reduced risk of FMD outbreaks. These findings help inform risk-based control strategies for India as the country progresses towards reducing reported clinical disease. 
Introduction
Foot-and-mouth Disease (FMD) is caused by an aphthovirus in the Picornaviridae family that affects cattle, buffalo, pigs, and other domestic and wild ungulates. Classical infection produces clinical signs of fever and vesicles in the mouth, tongue, hoof, and udder, affecting production and leading to economic losses (Arzt et al., 2011). However, FMDV is also known to cause various forms of subclinical infection (Stenfeldt and Arzt, 2020) and has been associated with abortion in cattle in India (Ranjan et al., 2016). FMD is endemic across much of Asia, South America, and Africa, where estimated economic losses range from $6.5 to 21 billion USD annually (Knight-Jones and Rushton, 2013). Preventing the transboundary spread of FMD into disease-free countries, including many countries in Europe and North America, plays a major role in shaping international trade policies (Shanafelt and Perrings, 2017). In the past two decades, several widespread viral lineages of serotypes O, A and Asia1 have emerged from the Indian sub-continent, suggesting that this region is a hotspot for viral evolution and subsequent transboundary spread (Brito et al., 2017b). For example, the O/PanAsia II lineage of FMD emerged in 2003 in the Indian sub-continent, and O/ME-SA/Ind2001d emerged in 2001, re-emerged in 2008 (Knowles et al., 2016,Dahiya et al., 2020, Subramaniam et al., 2015), and has spread to adjacent regions such as North Africa, Middle East, and Southeast Asia through approximately 13 transboundary escape events (Bachanek-Bankowska et al., 2018,Vu et al., 2017). Some of these lineages were first reported from India, possibly due to having a relatively more robust surveillance system compared to other parts of the South Asia region. Therefore, understanding the epidemiology of FMD in India is critical for supporting regional FMD control initiatives and controlling the disease globally.
India has a population of 302.3 million cattle and buffalo (20th livestock census, 2019), with some of Indian states and administrative units having bovine population sizes on par with individual countries in Africa, Asia, and Europe. In addition, the country is the largest global producer and consumer of dairy, with dairy products contributing ~70% of total livestock income of India, and the third largest beef exporter (Kumar, 2012, Hemme et al., 2003). Infection by FMDV can cause significant reductions in milk production, manifesting in losses of up to $200 USD per animal in India, but economic losses bourn by farmers also include treatment, loss in draught power, opportunity costs related to labor, and distress sales (Govindaraj et al., 2021).
Presently, a trivalent vaccine, which confers protection against serotypes O, A, and Asia1 has been used in the country. The National FMD Control Program (FMDCP) was started in 54 selected districts in 2003-04, and subsequently expanded in a phased manner. Indian states were enrolled in either of two regular vaccination programs, namely, the central government vaccination program (FMDCP) or the Assistance to States to Control Animal Disease (ASCAD) program, with different states beginning the programs in different years. FMDCP is a biannual vaccination program in which the trivalent vaccine is administered to cattle and buffaloes, while ASCAD is an annual vaccination program (Hegde et al., 2014). For FMDCP, vaccine production, monitoring, and surveillance are conducted by the Indian government. Pre- and post-vaccination monitoring includes the determination of antibody titers by ELISA before and after each round of vaccination (Pattnaik et al., 2012). At the population-level, it is desirable for 80% of animals to have adequate protection (inferred through antibody titers) to minimize the risk of widespread outbreaks (Metwally and Münstermann, 2016). 
The World Animal Health Organization (OIE) and the World Food and Agriculture Organization (FAO) have developed a set of outcome-oriented guidelines for FMD endemic countries to reach FMD-free status, which is known as the Progressive Control Pathway (PCP) (OIE). Most countries in Asia, including India, are in stage 1, 2 or 3 of the PCP. During stage 1, risk from FMD and available control options are identified. By stage 2, a country is expected to have a risk-based strategic control plan with an FMD monitoring and evaluation system in place. In stage 3, a country should continue to monitor disease risk, analyze passive and active surveillance data to show progressive reductions in FMDV occurrence, and implement its strategic control plan, which may include pursuing FMD-free zones with vaccination within the country. Vaccination plays a major role in achieving this task. To date, very few studies have been carried out to identify risk factors for FMD and the spatial distribution of risk in the country (Hegde et al., 2014, Sharma et al., 2014). In addition, an evaluation of the success of vaccination programs in reducing outbreaks is key to understanding the role of such programs in controlling FMD and achieving FMD zonal freedom with vaccination. Several studies have recognized the importance of optimizing the vaccination program, controlling animal movements, and conducting effective surveillance for FMD control in India (Biswal et al., 2019, Pattnaik et al., 2012). However, rigorous spatial epidemiological methods have yet to be applied to understand how vaccination and other factors relate to the spatiotemporal pattern of outbreaks in a changing epidemiological scenario in relation to population immunity.
The objective of the current study was to model the spatiotemporal dynamics of FMD outbreaks and assess the contribution of mass vaccination campaigns in reducing FMD outbreaks in India. We first assessed vaccination outputs through an evaluation of antibody titer data collected as part of pre- and post-vaccination monitoring. Using a Bayesian space-time model that accounts for underlying spatial dependencies often present in disease data (Machado et al., 2019,  (Branscum et al., 2008, Chhetri et al., 2010), we then investigated the impact of mass vaccination programs on the occurrence of reported FMD outbreaks over time alongside other factors that have the potential to influence spread, such as variables related to animal movement, intermingling of animals at grazing areas, proximity to international borders, and environmental factors. Results presented here will ultimately contribute to evaluation of progress of India’s mass vaccination campaigns and support country progress in the context of the progressive control pathway for the control of the disease.
Material and Methods

2.1 Study area and data sources
There are 29 states and seven union territories in India, and each state is further subdivided into administrative districts. The first phase (Phase I) of the FMDCP began in 2003 as a pilot study (Mahapatra et al., 2015). At the beginning of the FMDCP Phase I, nine states and one union territory were part of the mass vaccination program, and not all districts within each state were included. In the second phase of FMDCP (starting between 2010 and 2011, depending on the state), all districts within the participating states were part of the vaccination program except for Uttar Pradesh (an administrative unit in northern India with 50.2 million bovine population). In Uttar Pradesh, only 16 of 75 districts participated in the vaccination program as of 2018. By 2018, all seven union territories and 11 of 29 states were covered by FMDCP without exceptions. During phase 2 of the FMDCP vaccination program, 38% of the total cattle and buffalo population of India were estimated to have been vaccinated (Mahapatra et al., 2015). The 3PD50 potency trivalent (serotypes O, A, and Asia1) vaccine used in India contains three times the protective dose required to protect 50% of the animal population (Pattnaik et al., 2012).
Data on pre- and post-vaccination FMDV antibody titers (see below) and annual reported number of outbreaks from each state were obtained from the annual summaries of the Directorate of Foot and Mouth Disease of the Indian Council of Agricultural Research (ICAR-DFMD, Ministry of Agriculture), which is the national referral center for FMD diagnosis. Outbreak data were generated through passive surveillance, where an outbreak was defined as a report of clinically FMD-infected animals from the same village/district (OIE) which was further confirmed by laboratory tests conducted on referred clinical samples. The number of infected animals was not available for a given outbreak. Outbreak data were reported at the state and not the district level.
2.2 Serological data
As outlined above, mass vaccination of cattle and buffalo was carried out by the Indian government once every six months in the selected states and districts that were part of FMDCP. To determine antibody titers pre-vaccination, sera samples were collected at the time of vaccination for each biannual round of vaccination. Sera samples were also collected at 21 to 30 days post-vaccination. Sampled animals were selected at random and the pre- and post-vaccination samples may or may not come from the same animal. On average, the number of animals per state from which samples were collected ranged from 100 to 1000 animals per sampling round.
Sera samples were tested for reactivity against FMDV using Liquid Phase Blocking (LPB)-ELISA, which was used to infer protective antibody titers against FMDV structural proteins at an inferred protection level of log 10 titer of 1.8. Change of log titer values were similar for all three serotypes O, A and Asia 1 as vaccination was conducted with a trivalent vaccine. Since serotype O accounts for more than 80% of the outbreaks (Britto et al., 2017b), only antibody titer change for serotype O are shown in the main text. For this study, antibody titer data was only available from states that were part of FMDCP phase I. Because LPB-ELISA cannot discriminate between antibody responses induced by vaccination verses natural infection, we could not determine whether inferred protection was the sole result of vaccination and not from previous natural exposure to FMDV. Data regarding the percent of animals with inferred protection pre- and post-vaccination were summarized for each six-month round of vaccination. 
In contrast to LPB-ELISA, non-structural protein (NSP)-based ELISA differentiates vaccinated animals from naturally infected animals based on elicitation of a response to nonstructural proteins that should be absent in vaccine preparations. There is evidence that vaccination can elicit a transient NSP response in vaccinated animals in India (Mohapatra et al., 2011, Hayer et al., 2018). However, the majority of samples by NSP-based ELISA are expected to be from previously infected individuals. Annual information on antibody titers of NSP ELISA were available only for certain states/administrative units for some years. Further, the animals sampled for NSP ELISA once in a year are not necessarily the same ones as sampled for LPB-ELISA.
2.3 Descriptive analysis
Data from pre- and post-vaccination monitoring obtained through LPB-ELISA from the phase I were analyzed to identify whether there was an increase in percent of animals with inferred protection before and after each individual round of vaccination, as well as to identify trends in inferred protection over time across multiple successive rounds of vaccination.
To evaluate whether there was a correlation between population immunity and FMDV circulation, the association between the percent of animals in each state over a period of eight years (2008-2016) with inferred protection via LPB-ELISA (an indicator of population immunity) and percent of NSP ELISA-positive animals (an indicator of previous natural exposure) was evaluated using a Spearman’s correlation test. 
Bovine (cattle and buffalo) population data were obtained from the Department of Animal Husbandry and the Dairying census, Government of India, which was available for the years 2008 and 2012. We averaged the two values to represent bovine population size per state. The reported number of outbreaks per state per year along with bovine population size per state was used to calculate a standardized incidence ratio (SIR) at the state level for the years 2008 to 2016. Population size and nationwide outbreak counts were used to calculate the expected number of outbreaks per state per year (eit) if the distribution of outbreaks across space and time was proportional to population size, such that

Where Pit is the population of state i in year t, and Yit is the number of FMD cases in state i in year t. SIR was defined as the observed to expected ratio (Yit/eit). SIRs were plotted as choropleth maps for all years. 	            	 
2.4 Conceptual framework of outbreak risk
A conceptual diagram was created to represent pathways by which hypothesized risk factors could influence the reported number of outbreaks per state (Figure 1). Details on risk factor data are shown in Supplementary Table S1. Disease spread is expected to be influenced by contact, which is in turn influenced by host density, environmental factors, animal movement, organized farming practices, and other community activities like animal fairs. In addition to cattle and buffalo, goats and pigs are also affected by FMD and can transmit the virus to cattle and buffalo. If transmission is density dependent, then higher host densities are expected to translate to rapid spread and more outbreaks via increased contact frequency (Hegde et al., 2014). Under Indian socio-ecological conditions, bovine and caprine species are often reared by the same households. Livestock population data of goat density and pig density were therefore included in our model as categorical variables (high/low, split at the mean). The density of livestock was calculated per square km at the state level.
Disease spread is also influenced by transmissibility, which is influenced in part by environmental factors that may affect the survivability of the virus outside the host. From previous studies, it has been identified that droplet nuclei of the virus can occur to a distance of 20 km and can persist in the environment for about a week at a temperature of 200C (Alexandersen et al., 2003). FMDV can survive in temperatures up to 270C, but not extremely high temperatures (Donaldson, 1972, Mikkelsen et al., 2003). Temperature may be an important factor not only because of the optimal temperature for the survival of the virus outside the host, but also the efficacy of vaccines in the field depends on storage temperature (OIE Chapter 2.1.5). Wind speeds between 5 and 10 knots have been identified as favorable for FMDV transmission (2.57–5.14 m/s) (Gibbens et al., 2001). Therefore, annual averages for wind speed, rainfall, and temperature were included to capture environmental factors related to outbreak risk (Abatzoglou et al., 2018). Evaluation of intra-annual and seasonal variation was not possible since outbreak reporting was an annual value. However, to quantify areas with more extreme seasonality, annual variance (calculated across 12 months) of each environmental variable was also included. All environmental variables were centered at the mean and standardized. In addition, higher outbreak numbers have been reported in dryer agroclimatic zones in some parts of India (Hegde 2014), potentially due to environmental conditions within those regions or husbandry practices typical of different climatic conditions. For example, communal grazing increases local mixing among livestock herds, and could enhance disease spread. Climatic factors in combination with land cover (waterbody and forest density) may capture variation in husbandry practices common to different agroclimatic zones (Hegde et al., 2014). Thus, these with variables were included in the model (split into high/low categories at the mean, Supplementary Table S1).
Animal transport within India (represented by road density as a proxy measure) or across international borders for trading and slaughter may promote disease spread and the occurrence of outbreaks. India is bordered by Pakistan, China, Nepal, Bhutan, Myanmar, and Bangladesh. FAO/OIE has categorized India and the surrounding endemic countries into different “pools” of FMD based on the predominant circulating serotypes and topotypes in each area (Paton et al., 2018). The country and its neighbors are categorized into three different pools. Pool 1 includes Nepal, Bhutan, Myanmar, and China; pool 2 includes India, Sri Lanka, Bangladesh; and pool 3 includes Pakistan. Dummy variables were introduced to the analysis indicating whether each state was bordered by a pool1, pool2 or pool3 country, or if the state did not have any international land borders (Supplementary table S1). 
For each year, states were categorized into two groups based on whether they were part of the FMDCP. In addition, the presence and efficiency of veterinary services within a state may influence both vaccination as well as outbreak reporting. The coverage of veterinary services in each state was calculated based on the percentage of veterinarians available relative to the number of veterinarians estimated to be required by that state. This value was obtained from the OIE Performance of Veterinary Services (PVS) analysis for India. There was no substantial correlation between any variables (Supplementary Figure 1-2).
Figure 1. 
2.5 Bayesian space-time hierarchical model
The observed number of outbreaks per state per year was assumed to follow a Poisson distribution ), with yit  representing the number of FMD outbreaks in state i in year t;   representing the expected number of outbreaks defined as above, and  is the yearly relative risk for each state. This relative risk incorporated both spatially structured (spatial correlation amongst neighboring states) and unstructured (i.e., random variation) effects, such that:

Where α is the intercept representing the overall level of risk in country, ʋi is the structured spatial effect, and νi is the unstructured spatial effect that functions as a random effect for each state. Variables (fixed effects) that modify relative risk are represented by β. This model is known as the BYM2 model (Riebler et al., 2016). Penalized priors were used in the Bayesian analysis following previous studies (Fuglstad et al., 2019).
2.5.1 Spatial-only model
Because data for many of the risk factors were only available for a single point in time, a spatial-only model was initially built to screen important risk factors among potential predictors. Although we do not expect substantial annual variation in such variables (i.e., cattle population sizes are not expected to change rapidly), the spatial-only model was done so that significance of variables was not inflated due to replication of predictor data across years.
For model selection purposes, univariable analyses were first performed separately for each variable. Backward selection was then performed from a full multivariable model by removing the variables with the widest confidence interval that overlapped zero. From among those different models, the simplest model that was <2 DIC from the model with the lowest DIC value was considered the best-fit spatial-only model (Spiegelhalter et al., 2002). Risk factors in the best-fit spatial-only model were considered as candidate variables in the space-time model alongside temporally variable risk factors (in which yearly data were available from 2008-2016).
2.5.2 Space-time model
To incorporate temporal effects into the model of risk, a BYM2 model was used (Riebler et al., 2016).  Several possible model structures exist to incorporate the temporal effect (summarized in Table 1): time (year) can be considered as a random effect (ωt , Equation 1 in Table 1), a structured effect (γt), in which a random walk is used to account for between-year dependencies (ωt + γt, Equation 2) and/or as a random, structured, and space-time interaction (ωt + γt + δit, Equation 3).The best model structure was selected from amongst these models using DIC. This structure was then used to evaluate the contribution of hypothesized risk factors in shaping relative risk. Table 1
We also calculated how much variability is explained by each component that made up the final model structure. Once the best model structure was selected, variable selection was performed as described for the spatial-only model, including temporally variable risk factors and spatial-only factors from the spatial-only model as candidate fixed effects. Excess risk (ER) for a given state was calculated as the proportion of the posterior for each fitted θit that exceeded 0.8.
2.5.3 Prior sensitivity analysis
We used non-informative penalized complexity priors, which are applicable for a large class of hierarchical models (Simpson et al., 2014). Since prior distributions can influence model results, we conducted a sensitivity analysis on the priors. Penalized priors consider that there is a base model and that the complex model that we obtain is a result of deviation from the base model. For Gaussian Random Field distributions, the base model can be given as π(x/ᶓ) where ᶓ=0. The objective of using the penalized priors is to make the model similar as possible to the base model. It has been identified that penalized priors can also account for model overdispersion (Simpson et al., 2014).
The model was refitted with different penalized complexity priors and non-informative priors to evaluate the extent to which our results were sensitive to different prior assumptions (Supplementary figure S3).
2.5.4 Model diagnostics
The fit of the final model (selected based on DIC, as described above) was evaluated using posterior predictive p-values, defined as p(yi* ≤ y𝑖|y), where yi* is the posterior of the predicted distribution from the model. Posterior predictive p-values can be interpreted as an approximation of the proportion of the predicted distribution for yi that is more extreme than the observed value, and values of p (yi* ≤ y𝑖|y) near 0 and 1 indicate poor model fit. If the model is performing well, then a greater portion of the posterior of the predicted values should be >0.1 and <0.9 (Blangiardo and Cameletti, 2015). In addition, the proportion of marginal variance for random effects and each model component was checked in the final model. The explained variability from the covariates was obtained as a percentage of change of standard deviation from the null model to the model with all the selected covariates. We also calculated the correlation between the predicted and observed values (Spearman’s correlation). 
 
2.6 Software
All analyses were performed in R statistical software. Different packages such as tidyverse 1.2.123 (Wickham 2017), spdep 0.7–425 (Bivand et al.,2015), dplyr, stringr, and ggplot2 were used. For the Bayesian models, INLA 19.09.03 (Rue et al., 2019) was used, and model results were processed with INLAOutputs 19.09.03 (Baquero et al., 2018).
Results
3.1 Descriptive results
A total of 3282 outbreaks were reported over a period of nine years from 2008 to 2016, with substantial heterogeneity in the spatial and temporal occurrence of outbreaks (as shown by SIR values) across states and years (Figure 2). During this time period, we summarize the antibody titer data measured in 1,002,437 animals via LBP-ELISA. Antibody titer data were only available for states that were part of FMDCP phase I. This pre- and post-vaccination monitoring demonstrated that the percent of animals with inferred protection for serotype O generally increased after vaccination, but there was high variation between states and through years (Figure 3). Similar trends were observed for serotypes A and Asia1 (Supplementary Figure S4).
Figure 2. Figure 3. 
For years in which NSP-ELISA data were available (2009-2016), there was a statistically significant negative correlation between the percent of animals positive to LPB-ELISA and NSP-ELISA at the state level (σ = -0.39, p<0.01). There was no significant correlation between NSP sero-prevalence and the number of outbreaks per state per year (σ = 0.17, p-value=0.10) or SIR (σ = 0.11, p-value=0.32). However, the percent of animals with inferred protection via LBP-ELISA was negatively correlated with raw outbreak numbers (σ = -0.29, p<0.001) and SIR (σ = - 0.25, p-value=0.03). 
3.2 Bayesian modeling results
3.2.1 Selection of best model structure
Table 1 shows the different space-time models that were tested to select the best fitting model structure based on DIC. For the selected model structure that best fit the data (Eq 4, Table 1), the unstructured spatial effect accounted for 62% of the variability, whereas the structured spatial effect accounted for only 14.6% of the variability (Supplementary Table S2). This means there was relatively little correlation in the occurrence of reported outbreaks across neighboring states through time. The other factor that accounted for substantial variability was the space-time interaction effect.  
3.2.2 Univariable analyses of potential risk factors
Variables for which data were only available for one year were first screened in univariable spatial-only models, whereas time-varying variables were screened in univariable spatiotemporal models. Variables that were associated with reported outbreaks (credible interval of odds ratio does not overlap one) are shown in the Table 2. The complete list of variables is included in the supplementary materials (Supplementary table S3 and S4). In the spatial-only models, bordering a country of pool 1, having higher pig density and higher forest coverage was associated with increased relative risk of outbreaks, whereas states with no international border had reduced numbers of reported outbreaks. In the space-time univariable analysis, the risk of reported outbreaks decreased if a given state was in the vaccination program. All univariable models included the underlying terms that accounted for spatially structured and unstructured effects, as well as temporal effects if applicable. Table 2
3.2.3 Best-fit multivariable model
[bookmark: _Hlk59658587]Fixed effects identified from the best-fit multivariable spatial-only model were bordering a pool 1 country, not having an international border, waterbody density, road density, pig density, forest coverage, and veterinary service fulfillment percentage at the state level (Supplementary Table S5).These variables were included as candidates in the multivariable space-time model. Two predictors were retained in the final space-time model: No international border and participation in the vaccination program (Table 3). Fitted relative risk values calculated from the best-fit model for each state are shown in Figure 4. Most border areas show continuous high risk throughout the years. In addition, relative risk increased in some areas while decreased in others. Excess risk peaked in many states between 2011 and 2013 (Supplementary figure S5).
The sensitivity analysis of model priors demonstrated that similar DIC and p-values were produced regardless of choice of priors. Fitted and observed values have a Spearman’s correlation of 0.93. Table 3
Figure 4. Fitted relative risk of outbreaks for each state from the best-fit multivariable model.Relative Risk

Discussion
In this study, we first conducted a descriptive analysis of epidemiological outcomes of governmental FMDV vaccination programs in India. For states where the FMD-CP vaccination program was implemented, our analysis showed that the percent of animals with inferred protective antibody titers fluctuated across years and states, but there was a general increase in the percent of animals with protective antibody titers after each round of vaccination and across time. We then analyzed the distribution of reported FMD outbreaks by using a Bayesian space-time model to map high-risk areas and identify factors that influence risk in order to inform risk-based control strategies. This model demonstrated that states that were included in the vaccination program and did not have an international border experienced reduced risk of FMD outbreaks. This result warrants more stringent vaccination and sero-monitoring and movement restrictions at international borders.
India has used FMDV vaccination as a control measure since the 1980s. The trivalent vaccine produced in India has a protective effect against the circulating outbreak strains of serotype O, A, and Asia1, and studies have been carried out on vaccine safety and efficacy (Mahapatra et al., 2015, Mohanty et al., 2015, Subramaniam et al., 2015). Approximately one third of India’s cattle and buffalo population have been vaccinated through the government’s FMDCP program (Pattnaik 2012). At the beginning of the program, only some districts in each state were included in the program, but the number of districts and states included has increased through time. Following PCP guidelines for stage 3, India has conducted pre- and post-vaccination sero-monitoring according to OIE guidelines to monitor the population-level immunity since 2008. For a given round of vaccination, as expected, antibody titers were higher post-vaccination compared to pre-vaccination (Figure 3A, Supplementary Figure S4). However, there was substantial heterogeneity across states and between years (Figure 3B and C), and the percentage of animals with inferred protection often fell below OIE’s recommendation of >80% coverage (Metwally and Münstermann, 2016).
Population demographics, turnover, and waning immunity all may contribute to periodic dips below the 80% threshold (Knight-Jones et al., 2016). According to a study conducted in Turkey, biannual mass vaccination can leave gaps in population-level immunity. Among other factors, young animals may have received insufficient vaccine doses to attain long-lasting immunity, and also animals in late pregnancy are sometimes not vaccinated, resulting in declines in population-level immunity just prior to the subsequent round of vaccination (Knight-Jones et al., 2016). Due to herd demographics and semi-intensive management practices, it was concluded that vaccination without biosecurity may not be able to control FMD in Turkey (Knight-Jones et al., 2016). Similar dynamics may also occur in India, as shown by the high spatial and temporal variation in the percent of animals with inferred protection, and these spatial and temporal gaps in herd immunity may allow for the persistence and spread of FMDV in the country. The proportion of animals with inferred protection could also have been influenced by inconsistent vaccine administration, delay in re-vaccination, lack of booster doses in the primo-vaccinated calves, transboundary introduction of naïve animals, and transport conditions, which could have contributed to variable antibody titers.
We also investigated the relationship between the occurrence of FMDV within states and vaccination data (i.e., participation in FMDCP or the percent of animals with inferred protection via LPB-ELISA). We used two imperfect measures to quantify the extent of FMD circulation: standardized incidence ratios (SIR, based on reported outbreaks) and NSP-based sero-prevalence. Outbreak reporting can be inconsistent and likely provides an incomplete picture of FMDV incidence. In contrast, the NSP-ELISA data captured the percentage of animals with an anti-NSP response, which is indicative of natural infection. A naturally infected animal is also expected to be positive on LPB-ELISA, thus the percent of animals with inferred protection (based on LPB-ELISA) cannot discriminate between immunity due to vaccination or natural infection However, during the period under study, the percent of animals positive on LBP-ELISA and NSP-ELISA was negatively correlated. These results suggest that a) LPB-ELISA data can be interpreted as an indicator of vaccine coverage rather than natural virus circulation, and b) areas with higher vaccine coverage experienced reduced circulation of FMDV (as shown by low NSP sero-prevalence and fewer reported outbreaks). These results are in agreement with a cross-sectional study conducted in 2014, which identified that herds in states in the biannual vaccination program reported lower disease incidence (Sharma et al., 2014). In our study, fewer outbreaks and lower SIRs were reported in states with higher LPB seroprevalence. Once we accounted for spatiotemporal dynamics in the space-time model, participation in the FMDCP reduced outbreaks by ~55%. 
To better understand heterogeneities in outbreak occurrence within India, we developed a Bayesian space-time model that allowed us to examine risk factors associated with outbreak risk alongside model components that accounted for the spatial interdependency of risk across states. Although reported outbreak numbers are likely an underestimate of the true number of outbreaks, analyzing patterns of reported outbreak occurrence does advance our understanding about the factors that cause outbreaks. An examination of the variance explained by each component making up the model’s structural backbone (Supplementary table S2) revealed initial insights into processes shaping outbreak risk. First, the unstructured spatial effect (which essentially operates as a random effect for each state) contributed the most to explaining variability in the outcome, which suggests that there were unaccounted for variables at the state level that were important in structuring outbreak risk. These could include animal movement for grazing and trading, and human movement related to biosecurity of farms, among others. In contrast, the structured spatial effect explained relatively little variation, indicating that the outbreak risk in one state was not closely correlated with the occurrence of outbreaks in neighboring states. Likely, this pattern may be because states in India are large, and a smaller spatial scale would better capture the local spatial dynamics of outbreak propagation. Also, this result suggests that outbreaks or control programs in one state would not have large impacts on the adjacent state.
From our model, it is evident that relative risk of outbreaks changes through time and space, though there are some states that were more consistently at higher risk (Figure 4). The two variables retained in the final model were participation in the FMDCP vaccination program and not having an international border. The relative risk of outbreaks in states that were part of the FMDCP during 2008 to 2016 was about one half that of states that were not part of the program. This is consistent with our descriptive analysis on the importance of vaccination. It is also notable that we observe a benefit of the FMDCP in the number of reported outbreaks state-wide, despite the observed variability in percent of animals with inferred protection and that the FMDCP did not always extend to all districts within the state.
The other important risk factor identified by the model was a ~70% reduction in the relative risk of outbreaks in states with no international border. Thus, international borders increased the relative risk of outbreaks. In a longitudinal study conducted in 2014 to determine serological herd immunity, it was identified that for that year, border states such as Assam, Rajasthan, Jammu and Kashmir, West Bengal, and Uttar Pradesh were at high risk due to low population immunity. There were also instances where high incidence of FMD was observed in border states even where herd immunity was high (Sharma et al., 2014). We observed the same pattern of border states having greater excess risk (Supplementary Figure S5), including the states of Meghalaya, Assam, Arunachal, and Jammu & Kashmir.
The potential for transboundary introductions of novel FMDVs into India from neighboring countries may in part explain the risks associated with international borders. This may occur through movement of subclinically infected animals or fomites (Stenfeldt and Arzt, 2020). Alternatively, transboundary value chains may result in high risk in certain border states if animals are transported to border states from elsewhere within India prior to exportation. Legal and illegal animal movement occurs between neighboring countries, but the extent of such transboundary movements depends on the countries involved (Landes et al., 2017). Previous studies have identified that cattle and buffaloes are transported from India to Malaysia through Myanmar and Vietnam (all pool 1 countries), which may lead to the dissemination of FMDV  (Rweyemamu et al., 2008, Smith et al., 2016), and OIE has identified that the virus can spread extensively to the Southeast Asia region due to intensive livestock trade (Bartels et al., 2017). Bayesian phylogeographic reconstruction has effectively demonstrated transboundary and within-country movements of lineages of FMDV O/ME-SA/PanAsia (Brito et al., 2017). Interestingly, our spatial-only model suggests that bordering a country in pool 1 carried a higher risk, which would be consistent with the idea that transboundary movements with pool 1 countries shapes FMD risk within India, although this variable was not retained in the space-time model. 
Interestingly, excess risk peaked between 2009, 2011 and 2013 in almost all the states (Supplementary Figure S5). During 2013, widespread FMD outbreaks occurred in India, caused by the strain O/ME-SA/Ind2001d within serotype O. This strain also spread to other countries in the Middle East and Southeast Asia at this time (Subramaniam et al., 2015, Brito et al., 2017a), suggesting that periods of excess risk in India may also translate to heightened frequencies of transboundary transmission. 
India is in the stage 3 of the Progressive Control Pathway (PCP) for FMD. Countries within this stage should engage in ongoing monitoring of risk and implementation of risk-based strategic to define a pathway to obtain freedom from FMD (with vaccination) in at least one geographic zone, including analysis of passive/active surveillance data to document epidemiological evidence of reductions  in FMD incidence. Related to this, our results suggest that a feasible strategy may be to continue trying to decrease prevalence in identified high risk areas to mitigate the impact of the disease with special focus on states that are part of international borders. Alternatively, low risk areas identified from this spatial analysis could help delineate areas in which zonal freedom may be more readily attainable.
There are several caveats to the interpretation of the serological data that present limitations to this study. First, NSP data were available only from 24 states out of 29 states for six years. In addition, transient increases of NSP titers can occur within 21 days of vaccination in up to 15% percent of previously uninfected animals, which complicates the interpretation of NSP results particularly if vaccination history is not available (Hayer et al., 2018, Mohapatra 2011). Second, animals can be positive on an LPB-ELISA from either vaccination or natural infection. The negative correlation between NSP-ELISA and LPB-ELISA data suggests that a) rates of LPB-ELISA positivity likely represented vaccination rather than natural infection, and b) rates of NSP-ELISA positivity were not coupled with vaccination. However, serial testing and monitoring for clinical signs is necessary to identify the changes in antibody titers in infected and vaccinated animals to determine whether animals have acquired antibodies due to infection or vaccination (Mohanty et al., 2015). Related to this, when pre- and post-vaccination antibody titers were compared at the state level, samples were not coming from the same animal which limits the conclusions we can draw from this comparison. Finally, data for years beyond 2016 was included in the present study because the country began using Solid Phase Competitive ELISA (SPCE) assessment of herd immunity, and this different diagnostic technique could create inconsistencies and confusion in the interpretation of patterns of protection at population level.
Another limitation of this study related to the space-time modeling is that outbreak data coming from passive surveillance, and there may be substantial under-reporting. If there are spatial biases in the extent to which outbreaks are under-reported, then this could introduce spatial biases to the SIR data and the data used for the space-time model.  We attempted to partially address this by including veterinary service coverage as a potential predictor, though it is unclear whether veterinary service coverage is a useful proxy for variable reporting and this factor was not retained in the final model. These types of potential bias are common in observational epidemiological studies that rely on passive surveillance; however, we believe there is still value in describing large-scale patterns of FMD incidence. In addition, we have no information about the number of animals infected in each outbreak, which means that small and large outbreaks receive equal weight in our analysis. Finally, no environmental or climatic factors were retained in our best-fit model. This may be an artefact and limitation of the state-level spatial and yearly temporal scale of our analysis, which did not allow us to capture finer-scale spatial variation or seasonal effects. For example, it is suspected viral spread and FMD incidence increases with monsoon heavy rains in November through January, and more outbreaks are reported after the rains (ICAR reports). Future analyses could overcome the limitations imposed by the spatial and temporal resolution of our outbreak data by tabulating outbreak data on a finer spatiotemporal scale, thus enabling a better evaluation of the importance of environmental risk factors. 
Conclusion
In this study, we have shown that the standardized incidence of FMD outbreaks has reduced over time with the implementation of mass vaccination, though the percent of animals with inferred protection was highly variable through space and time and often fell below the desired threshold of >80%. Over the same time period, the percentage of animals with inferred protection was negatively correlated with the number of reported outbreaks in a state. Through implementing a Bayesian space-time model, we have demonstrated that states that were part of the FMDCP experienced a ~50% reduction in the risk of reported outbreaks. Our results also demonstrate a substantial risk of outbreaks associated with international borders, suggesting a role of transboundary movements of animals or fomites in shaping FMD incidence. For India to proceed with a risk-based strategic control plan, it is important to reinforce surveillance activities and animal movement control at states with international borders. This study advances understanding of risk factors associated with high risk areas, which will contribute to a better understanding of viral circulation and contribute towards efforts to reduce disease prevalence. 
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Table 1. Specification of different model structures, including DIC and posterior predictive p-values. Each model adds additional components to the previous model. * DIC for the spatial-only model is not comparable to space-time model.        	
	Model
	Specification
	DIC
	P-values (lower, upper) 

	Eq. 1. Spatial only model 
	log(θit) = α+ vi + υt 
	224.99*
	(15.2,0)

	Eq. 2. Space time model (time as an unstructured effect)
	log(θit) = α+ vi + υt +ωt
	2765.52
	(63.7, 26.1)

	Eq. 3. Space time model (time as a structured effect)
	log(θit) = α+ vi + υt +ωt +ýt 
	2768.51
	(63.7, 26.1)

	Eq. 4. Space time model (space-time interaction)
	log(θit) = α + vi +ut+ ωt + γt δit
 
	1222.6
	(33,0.7)


[bookmark: _Hlk59718557]Table 2.  Results of the univariable analysis for the a) spatial-only model and b) space-time model (coefficients and credible intervals are exponentiated to be on the odds scale).
	 Univariable model
	DIC
	Coefficient (Credible Interval)

	A) Spatial-only models
	 
	 

	No international border
	228.35
	0.52 (0.06,0.74)

	Bordered by country of FMD pool 1 
	229.33
	6.11 (1.72, 21.93)

	Pig density (reference: low)
	229.81
	2.23 (1.06, 4.72)

	Forest coverage density (reference: low)
	230.25
	3.81 (2.07, 7.06)

	               B) Space time model  
	 
	 

	Participation in the vaccination program    (reference: No)
	1224.01
	0.41 (0.22,0.78)


Table 3. Results from the final Bayesian space-time model. Coefficients and credible intervals have been exponentiated to be on the odds scale. 
	Fixed effect
	Coefficient 95% Credible Interval

	Intercept
	1.64 (0.72, 3.68)

	No international border
	0.27 (0.08, 0.99)

	Participation in the vaccination program (reference: No)
	0.45 (0.24, 0.84)


Figure Legends
Figure 1. Pathways by which hypothesized risk factors may influence the reported number of FMD outbreaks per state per year. The outcome of interest is shown in the dark red box and measured risk factors in the shaded pale red boxes. Measured risk factors were interpreted as proxies for processes, shown in white boxes, that could potentially influence the occurrence of outbreaks, and reporting of outbreaks. 
Figure 2. Annual standardized incidence ratio (SIR) of reported FMD outbreaks from 2008 to 2016.
Figure 3. Percent of animals with inferred protection based on antibody titers pre- and post-vaccination (A) overall, (B) for each state summarized across all rounds of vaccination, and (C) post-vaccination through time by state. In (A) and (B), pre- and post-vaccination values are shown in blue and red, respectively, for serotype O. In (C), a Loess smoothed line was plotted to visualize an overall increasing trend. Only states that participated in the FMD PCP phase I are considered.

Figure 4. Fitted relative risk of outbreaks for each state from the best-fit multivariable model.
Supplementary Figure S1. Correlation plot for variables used in the spatial only model. 
Supplementary Figure S2. Correlation plot for variables used in the space time only model.
Supplementary Figure S3. Results from the prior sensitivity analysis showing that different prior combinations produce similar results. A) mean, B) Random effect and C) fixed effects.
Supplementary figure S4.  Pre- and post-vaccination percent of animals with inferred protection for serotype Asia1 and Serotype A.
Supplementary Figure S5. Excess risk plot for years 2008-2016.
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