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1 Introduction

In a turbulent flow, almost all physical quantities vary so rapidly in space and time
that the actual instantaneous values of these quantities cannot be determined. Instead,
people usually measures the moments, or some averaged values of physical quantities.
In other words, a statistical description of the turbulent flow is available. Statistical
solution is a rigorous mathematical notion, which has been introduced to formalize
the object of ensemble average. Foias and Prodi in [1] first introduced the concept of
time-dependent statistical solutions (or simply statistical solutions), which is a family
of time-parameterized probability measures defined on the phase space of Navier-Stokes
equations and describes the probability distribution of the velocity field of the flow at
each time. Moreover, statistical solutions represent the time evolution of the probability
distribution functions associated with the fluid flows and are closely relevant to the
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invariant measures defined on the phase space of the corresponding system. At present,
statistical solutions and invariant measures have been extensively used to describe the
turbulence in different fluids.

The invariant measures have been investigated in many references (see e.g. [2–8]).
For example, Foias et al. in [3] used the notion of Generalized Banach limit, which can
link ensemble and time average without “ergodic hypothesis”, to construct invariant
measures for the Navier-Stokes equations. Wang in [6] studied the existence and upper
semi-continuity of invariant measures for a class of uniformly dissipative systems. Based
on works [3, 6],  Lukaszewicz, Real and Robinson in [4] constructed invariant measures
for the continuous dynamical systems. Chekroun and Glatt-Holtz in [2] generalized
and simplified the proof of [4] to construct invariant measures for general autonomous
dissipative dynamical systems.  Lukaszewicz and Robinson in [5] extended the result of
[2] to construct invariant measures for a class of non-autonomous dissipative dynamical
systems.

There are also a series of references investigating the relationship between invariant
measures and statistical solutions or stationary statistical solutions (see e.g. [3, 9–14]).
For instance, Foias et al. systematically investigated the relationship between invariant
measures, stationary statistical solutions and statistical solutions for the Navier-Stokes
equations;  Lukaszewicz in [11] investigated the relationship between pullback attractors,
invariant measures, and statistical solutions for the 2D non-autonomous Navier-Stokes
equations; Kloeden, Maŕın-Rubio and Real in [10] proved the equivalence between sta-
tionary statistical solutions and invariant measures for the 3D autonomous globally
modified Navier-Stokes equations. Recently, Zhao, the first author,  Lukaszewicz proved
the existence of invariant measurers for the 2D non-autonomous magneto-micropolar
fluid system in [13] and revealed that the invariant measure satisfies a Liouville-type
equation and is actual a statistical solution for the system. Moreover, they also got
the partial degenerate regularity of the statistical solution when the Grashof number
corresponding to the system was small enough.

In this article, we continue to investigate statistical solution for the following 2D
non-autonomous magneto-micropolar fluid equations:

∂u

∂t
− (κ+ χ)∆u+ u · ∇u+∇(p+

1

2
|h|2) = 2χ∇× ω + γh · ∇h+ f,

k
∂ω

∂t
− µ∆ω + 4χω + ku · ∇ω = 2χ∇× u+ g,

∂h

∂t
− α∆h+ u · ∇h− h · ∇u = 0,

divu = 0, divh = 0,

(1.1)

where the unknown functions u = (u1(x, t), u2(x, t)), ω = ω3(x, t), h = (h1(x, t), h2(x, t)),
p = p(x, t) denote the velocity, micro-rotational velocity, magnetic field and the pressure,
respectively, and

∇× u =
∂u2

∂x1

− ∂u1

∂x2

, divu =
∂u1

∂x1

+
∂u2

∂x2

, ∇× ω = (
∂ω

∂x2

, − ∂ω
∂x1

).
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Moreover, the given functions f = (f1(x, t), f2(x, t)) and g = g3(x, t), respectively,
denote external force and moments, and κ, χ, γ, k, µ, α are positive constants related
to properties of the material. For simplicity, we take γ = k = 1. As in [13], we consider
(1.1) in a bounded domain Ω ⊂ R2 with suitable smooth boundary ∂Ω and assume it
satisfies the following initial and boundary conditions

w(x, τ) = (u(x, τ), ω(x, τ), h(x, τ)) = (uτ (x), ωτ (x), hτ (x)), x ∈ Ω, τ ∈ R, (1.2)

u(x, t) = ω(x, t) = h(x, t) = 0, (x, t) ∈ ∂Ω× [τ,+∞). (1.3)

The mathematical studies for system (1.1)-(1.3) have been widely done due to its im-
portant physical background (see e.g. [15–23]).

At the present paper, we investigate the equivalence between invariant measure and
statistical solution for Eq. (1.1)-(1.3). The first goal is to prove the statistical solution
for Eq. (1.1)-(1.3) possesses following regularity properties:

(i) the support of the statistical solution is included in some regular space;

(ii) the statistical solution satisfies a stronger form of Liouville-type equation.

We recall that the support of statistical solution {mt}t∈R given in [13] is included in
the pullback attractor ÂDĤσ of Eq. (1.1)-(1.3). Naturally, to get the regularity of the
statistical solution, we first prove the regularity of pullback attractor of the equations
and then investigate the regularity of the statistical solution. The second goal is to
prove that the statistical solution of Eq. (1.1)-(1.3) is actual an invariant measure for
the equations, which is the inverse result of [13, Theorem 4.2], and therefore we can
get the equivalence between invariant measure and statistical solution for the equations.
We remark that the regularity properties (i) and (ii) play an essential role in this proof
(for details see the proof of Theorem 4.3).

The article is organized as follows. In next section, we present some preliminaries
and results related to the solution of Eq. (1.1)-(1.3). In section 3, we devote to prove
the existence and regularity of pullback attractor for the associated solution operators
process {S(t, τ)}t>τ . In section 4, we first recall the result on the existence of statistical
solution of Eq. (1.1)-(1.3) and then we prove the statistical solution possesses some
regularity properties. Furthermore, we verify that the statistical solution with these
properties is an invariant measure for the equations.

2 Preliminaries

In this section, we first introduce some notations and operators. Then, we give the
results of existence and uniqueness of solutions for problem (1.1)-(1.3).

At the present paper, we denote by V the set of all divergence free vector functions
in (C∞0 (Ω))2 i.e. V = {u = (u1, u2) ∈ (C∞0 (Ω))2 : divu = 0}. We will often use the
following notations and function spaces:

H = the closure of V in (L2(Ω))2;
V = the closure of V in (H1(Ω))2;
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Ĥ= H × L2(Ω)×H with norm ‖ · ‖Ĥ = ‖ · ‖ and inner product (·, ·) defined by

‖w‖ = (‖u‖2 + ‖ω‖2 + ‖h‖2)1/2,

(w1, w2) = (u1, u2) + (ω1, ω2) + (h1, h2), wi = (ui, ωi, hi) ∈ Ĥ, i = 1, 2;

V̂= V ×H1
0 (Ω)× V with norm ‖ · ‖V̂ and inner product ((·, ·)) defined by

‖w‖V̂ = (‖u‖2
V + ‖ω‖2

1,2 + ‖h‖2
V )1/2,

((w1, w2)) = (Ou1,Ou2) + (Oω1,Oω2) + (Oh1,Oh2), wi = (ui, ωi, hi) ∈ V̂ , i = 1, 2;

V̂ ∗-the dual space of V̂ ;
〈·, ·〉-the dual paring between V̂ and V̂ ∗.
For simplicity, the inner product in L2(Ω) or H is also denoted by the same notation

(·, ·) if no confusion arises. In addition, we use distM(X, Y ) to denote the Hausdorff
semidistance between X ⊆M and Y ⊆M defined by

distM(X, Y ) = sup
x∈X

inf
y∈Y
‖x− y‖M .

For any w = (u, ω, h) ∈ V̂ , the operators A and R : V̂ 7→ V̂ ∗ are defined by

〈Aw,Φ〉 = (κ+ χ)(∇u,∇ξ) + µ(∇ω,∇η) + α(∇h,∇ζ), ∀Φ = (ξ, η, ζ) ∈ V̂ ,

〈R(w),Φ〉 = −2χ(∇× ω, ξ)− 2χ(∇× u, η) + 4χ(ω, η), ∀Φ = (ξ, η, ζ) ∈ V̂ .

Obviously, the operator A is a positive self-adjoint linear elliptic operator with compact inverse
in V̂ . It follows by the classical spectral theory of elliptic operators that there exists a sequence
{λn}∞n=1 satisfying

0 < λ1 6 λ2 6 · · ·λn 6 · · · , λn → +∞ as n→∞,

and a family of elements {ξn}∞n=1 ⊆ D(A), which forms a basis of V̂ and is orthonormal in Ĥ,
such that

Aξn = λnξn, n = 1, 2, · · · .

From this, we have the Poincaré inequality

λ1‖w‖2 6 ‖w‖2
V̂
, ∀w ∈ V̂ . (2.1)

In what follows, we denote by Pm the orthogonal projector of Ĥ onto the space spanned by
ξ1, ξ2, · · · , ξm. Then we get the following inequalities:

‖w − Pmw‖2 ≤ λm‖w − Pmw‖2V̂ , ∀w ∈ V̂ , ∀m ∈ N+. (2.2)

Moreover, we also need to define two trilinear forms b1(·, ·, ·) and b2(·, ·, ·) by

b1(u, φ, ξ) =

2∑
i,j=1

∫
Ω
ui
∂φj
∂xi

ξjdx, ∀u, φ, ξ ∈ V,
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b2(u, ϕ, η) =
2∑
i=1

∫
Ω
ui
∂ϕ

∂xi
ηdx, ∀u ∈ V, ϕ, η ∈ H1

0 (Ω).

It is not difficult to testify that b1(u, φ, ξ) and b2(u, ϕ, η) satisfy

b1(u, φ, ξ) = −b1(u, ξ, φ), b1(u, φ, φ) = 0, ∀u, φ, ξ ∈ V, (2.3)

b2(u, ϕ, η) = −b2(u, η, ϕ), b2(u, ϕ, ϕ) = 0, ∀u ∈ V, ∀ϕ, η ∈ H1
0 . (2.4)

Using above trilinear forms, we define a bilinear continuous operator B : V̂ × V̂ 7→ V̂ ∗ by

〈B(w, v),Φ〉 = b1(u, φ, ξ) + b2(u, ϕ, η) + b1(u, ψ, ζ)− b1(h, φ, ζ)− b1(h, ψ, ξ),

for any w = (u, ω, h), v = (φ, ϕ, ψ) ∈ V̂ , Φ = (ξ, η, ζ). It follows from (2.3) and (2.4) that

〈B(w, v), v〉 = 0, ∀w, Ψ ∈ V̂ . (2.5)

Now, we can write the weak form of Eq. (1.1)-(1.3) as follows:

d

dt
w(t) +Aw(t) +B(w(t), w(t)) +R(w(t)) = F (t) in D′((τ,+∞), V̂ ∗), (2.6)

w(τ) = (u(τ), ω(τ), h(τ)) = wτ , τ ∈ R, (2.7)

where F (t) = (f(t), g(t), 0).

Definition 2.1 A function w is called a weak solution to problem (2.6)-(2.7), if for any
T > τ ,

(1) w ∈ L∞(τ, T ; Ĥ) ∩ L2(τ, T ; V̂ );

(2) w satisfies the equation

(
d

dt
w(t),Ψ) + 〈Aw(t),Ψ〉+ 〈B(w(t), w(t)),Ψ〉+ 〈R(w(t)),Ψ〉 = 〈F (t),Ψ〉, ∀Ψ ∈ V̂ ,

in the distribution sense of D′(τ,+∞).

Moreover, if w ∈ L∞(τ, T ; V̂ ) ∩ L2(τ, T ;D(A)) for all T > τ , then w is said to be strong
solution of problem (2.6)-(2.7).

The existence and uniqueness of the solution to problem (2.6)-(2.7) have been proved in
[20, 21] via Galerkin method, which we present as the following results.

Lemma 2.1

(1) If F (t) ∈ L2(τ, T ; V̂ ∗) and wτ ∈ Ĥ, then problem (2.6)-(2.7) has a unique weak solution
w(t; τ, wτ ) satisfying

w(t; τ, wτ ) ∈ C([τ, T ]; Ĥ) ∩ L2(τ, T ; V̂ ) ∩ L∞(τ, T ; Ĥ), for all T > τ. (2.8)

(2) If F (t) ∈ L2(τ, T ; Ĥ) and wτ ∈ V̂ , then problem (2.6)-(2.7) has a unique strong solution
w(t; τ, wτ ) satisfying

w(t; τ, wτ ) ∈ C([τ, T ]; V̂ ) ∩ L2(τ, T ;D(A)) ∩ L∞(τ, T ; V̂ ), for all T > τ. (2.9)
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In fact, we can obtain that the solution of problem (2.6)-(2.7) depends continuously on its
initial value in Ĥ or V̂ . Then by Lemma 2.1, we get the family of solution operators

S(t, τ) : wτ ∈ X 7→ S(t, τ)wτ = w(t; τ, wτ ) ∈ X, ∀t > τ,

generates a continuous process {S(t, τ)}t>τ on X, X = Ĥ or V̂ .

We complete this section with the following lemma which plays an important role in the
proof of existence and regularity of pullback attractors and statistical solution for Eq. (2.6)-
(2.7).

Lemma 2.2

(1) There is positive constant c1 such that

|〈B(w, v),Φ〉| 6 c1‖Aw‖‖v‖V̂ ‖Φ‖, ∀w ∈ D(A), v ∈ V̂ ,Φ ∈ Ĥ. (2.10)

|〈B(w, v),Φ〉| 6 c1‖u‖
1
2 ‖w‖

1
2

V̂
‖v‖

1
2 ‖v‖

1
2

V̂
‖Φ‖V̂ , ∀w, v, Φ ∈ V̂ . (2.11)

(2) There are two constants δ1 and δ2 such that

δ1‖w‖2V̂ 6 〈Aw,w〉+ 〈R(w), w〉, ∀w ∈ V̂ , (2.12)

‖R(w)‖ 6 δ2‖w‖2V̂ ,∀w ∈ V̂ , (2.13)

where δ1 = min{κ, µ, α} and δ2 depends only on χ and Ω.

Item (1) and item(2) of Lemma 2.2 have been prove in [3] and [13] respectively, and we omit
the proof here.

3 Existence and regularity of pullback attractors

The main purpose of this section is to establish the existence and regularity of pullback
attractors for problem (2.6)-(2.7). We begin by recalling some definitions about the pullback
attractors.

Let P(X) be the family of all subsets of X, and consider a family of nonempty sets
D̂X

0 = {DX
0 (t)|t ∈ R} ⊆ P(X). Denote by DX a class of families parameterized in time

D̂X = {DX(t)|t ∈ R} ⊆ P(X).

Definition 3.1 A family of sets D̂X
0 = {DX

0 (t)|t ∈ R} ⊆ P(X) is called pullback DX -

absorbing for the process {S(t, τ)}t>τ on X if for any t ∈ R and any D̂X = {DX(t)|t ∈ R} ⊆
DX , there exists a τ0(t, D̂X) 6 t such that S(t, τ)DX(τ) ⊆ DX

0 (t) for all τ 6 τ0(t, D̂X).

Definition 3.2 The process {S(t, τ)}t>τ on X is called pullback D̂X
0 -asymptotically compact

if for any t ∈ R and any sequences {τn} ⊆ (−∞, t] and {xn} ⊆ X satisfying τn 7→ −∞ and
xn ∈ DX

0 (τn) for all n, the sequence {S(t, τn)xn} is precompact inX. If the process {S(t, τ)}t>τ
on X is pullback D̂X -asymptotically compact for any D̂X ∈ DX , it is said to be pullback DX -
asymptotically compact.

Definition 3.3 A family of sets ÂDX = {ADX (t)|t ∈ R} ⊆ P(X) is called the minimal
pullback DX -attractor for process {S(t, τ)}t>τ in X if it satisfies the following properties:
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(1) for any t ∈ R, ADX (t) is a nonempty compact subset of X;

(2) ÂDX is invariant in the following sense

S(t, τ)ADX (τ) = ADX (t), ∀ t > τ ;

(3) ÂDX is pullback DX -attracting i.e.

lim
τ→−∞

distX(S(t, τ)DX(τ),ADX (t)) = 0, ∀ D̂X = {DX(t)|t ∈ R} ∈ DX , t > τ ;

(4) the family of sets ADX is minimal in the sense that if

Ô = {O(t)|t ∈ R} ⊆ P(X)

is another family of closed sets such that for any D̂ = {D(t)|t ∈ R} ∈ D,

lim
τ→−∞

distX(S(t, τ)D(τ), O(t)) = 0,

then ADX ⊆ O(t) for t ∈ R.

3.1 pullback attractors in Ĥ

The pullback asymptotic behavior of the process {S(t, τ)}t>τ corresponding to problem
(2.6)-(2.7) in Ĥ have been investigated in our previous article [13], and we only present the
main results here. In fact, these results in Ĥ can also be illustrated in a similar but simpler
way than that will be used in V̂ .

Lemma 3.1 Assume F (t) ∈ L2(τ, T ; V̂ ∗) with any T > τ . Let w(t; τ, wτ ) be a solution to
Eq. (2.6)-(2.7) with initial datum wτ ∈ Ĥ. Then there exists some σ ∈ (0, 2δ1λ1) such that

‖w(t; τ, wτ )‖2 6 eσ(τ−t)‖wτ‖2 +
e−σt

2δ1 − λ−1
1 σ

∫ t

−∞
eσs‖F (s)‖2

V̂ ∗
ds, ∀t > τ. (3.1)

Denote by DĤσ the collection of all families of nonempty subsets D̂Ĥ(t) = {DĤ(t) : t ∈
R} ⊆ P(Ĥ) such that

lim
τ→−∞

(eστ sup
w∈D(τ)

‖w‖2) = 0. (3.2)

Let function F (·) satisfy the following assumption:

(H1) Assume F (t) ∈ L2(τ, T ; V̂ ∗) with any T > τ , and satisfies∫ t

−∞
eσθ‖F (θ)‖2

V̂ ∗
dθ < +∞, for some σ ∈ (0, 2δ1λ1).

Corollary 3.1 Let assumption (H1) hold. Then the family

D̂Ĥ
0 = {B̄(0, r1/2

σ (t)) : t ∈ R}

is pullback DĤσ -absorbing for the process {S(t, τ)}t>τ in Ĥ, where

r1/2
σ (t) = 1 +

e−σt

2δ1 − λ−1
1 σ

∫ t

−∞
eσθ‖F (θ)‖2

V̂ ∗
dθ.

Theorem 3.1 Suppose assumption (H1) holds. Then the process {S(t, τ)}t>τ is pullback

DĤσ -asymptotically compact in space Ĥ and possesses the minimal pullback DĤσ -attractor

ÂDĤσ =
{
ADĤσ (t)|t ∈ R

}
.
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3.2 pullback attractors in V̂

The purpose of this subsection is to prove the existence of pullback attractors for the
process {S(t, τ)}t>τ in V̂ and the regularity of the pullback attractors. Here, we need the
function F (t) to satisfy the following assumption.

(H2) Assume F (t) ∈ L2(τ, T ; Ĥ) with any T > τ , and there exists some σ ∈ (0, 2δ1λ1)
such that ∫ t

−∞
eσθ‖F (θ)‖2dθ < +∞.

Lemma 3.2 Let assumption (H2) hold. Then for any fixed t ∈ R and D̂Ĥ(t) ∈ DĤσ , there

exists τ1(D̂Ĥ , t) < t − 3 such that for any τ 6 τ1(D̂Ĥ , t) and any wτ ∈ DĤ(τ), the solution
w(·; τ, wτ ) satisfies,

‖w(s; τ, wτ )‖2 6 ρ1(t), ∀s ∈ [t− 3, t], (3.3)

‖w(s; τ, wτ )‖2
V̂
6 ρ2(t), ∀s ∈ [t− 2, t], (3.4)∫ s

s−1
‖Aw(θ; τ, wτ )‖2dθ 6 ρ3(t), ∀s ∈ [t− 1, t], (3.5)∫ s

s−1
‖w′(θ; τ, wτ )‖2dθ 6 ρ4(t), ∀s ∈ [t− 1, t], (3.6)

where

ρ1(t) :=1 +
e−σt

2δ1λ1 − σ

∫ t

−∞
eσθ‖F (θ)‖2dθ, (3.7)

ρ2(t) := max
s∈[t−2,t]

{
c(δ2, δ1, λ1)

(
ρ1(s) +

∫ s

s−1
‖F (θ)‖2dθ

)
× exp

[
c(c3, δ1, λ1)

(
ρ2

1(s) + ρ1(s)

∫ s

s−1
‖F (θ)‖2dθ

)]}
, (3.8)

ρ3(t) :=c(δ2, c3)
(
ρ2(t) +

∫ t

t−2
‖F (θ)‖2dθ + ρ2

2(t)ρ1(t)
)
, (3.9)

ρ4(t) :=c(c1, δ2)
(
ρ2(t) +

∫ t

t−2
‖F (θ)‖2dθ + ρ2(t)ρ3(t)

)
. (3.10)

Proof. Let wτ ∈ Ĥ. For each integer n > 1, denote by wn(t) = wn(t; τ, wτ ) =
n∑
k=1

dn,k(t)ξk

Galerkin approximate solution of problem (2.6)-(2.7), which satisfies

d

dt
(wn(t), ξk) + 〈Awn(t), ξk〉+ 〈B(wn(t), wn(t)), ξk〉+ 〈R(wn(t)), ξk〉

= (F (t), ξk), t > τ, (3.11)

(wn(τ), ξk) = (wτ , ξk). (3.12)

Multiplying (3.11) with dn,k(t) and summing from k = 1 to n, then using (2.5) and (2.12), we
have

1

2

d

dθ
‖wn(θ)‖2 + δ1‖wn(θ)‖2

V̂
6 〈F (θ), wn(θ)〉. (3.13)
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Multiplying (3.13) with eσθ and applying Poincaré inequality (2.1), we have

d

dθ
(eσθ‖wn(θ)‖2) + 2δ1λ1e

σθ‖wn(θ)‖2 6 2eσθ〈F (θ), wn(θ)〉+ σeσθ‖wn(θ)‖2. (3.14)

By Cauchy inequality, we get

2|〈F (θ), wn(θ)〉| 6 (2λ1δ1 − σ)‖wn(θ)‖2 +
1

2δ1λ1 − σ
‖F (θ)‖2. (3.15)

It follows from (3.14) and (3.15) that

d

dθ
(eσθ‖wn(θ)‖2) 6

eσθ

2δ1λ1 − σ
‖F (θ)‖2, a.e. θ > t,

which implies

‖wn(t)‖2 6 eσ(τ−t)‖wτ‖2 +
e−σt

2δ1λ1 − σ

∫ t

−∞
eσθ‖F (θ)‖2dθ. (3.16)

By (3.2), we get there exists τ1(D̂Ĥ , t) < t−3 such that, for any D̂Ĥ(t) ∈ DĤσ and τ 6 τ1(D̂Ĥ , t),

‖wn(t)‖2 6 1 +
e−σt

2δ1λ1 − σ

∫ t

−∞
eσθ‖F (θ)‖2dθ, wτ ∈ DĤ(τ). (3.17)

Then from Lemma 2.1, the fact that wn(t) ⇀ w(t) weakly in L2(τ, t; V̂ ) and w(t) ∈ C([τ, T ]; Ĥ),
we can take the limit in (3.17) as n→∞ to get (3.3).

Multiplying Eq. (3.11) with λkdn,k(t) and then summing from k = 1 to n, we obtain

1

2

d

dθ
‖wn(θ)‖2

V̂
+ ‖Awn(θ)‖2 + 〈B(wn(θ), wn(θ)), Awn(θ)〉+ 〈R(wn(θ)), Awn(θ)〉

=(F (θ), Awn(θ))

6‖F (θ)‖2 +
1

4
‖Awn(θ)‖2, a.e.θ > τ. (3.18)

According to the definition of operator B(·, ·) and using Hölder inequality, Ladyzhenskaya
inequality and Young inequality, we conclude that there exists a constant c3 such that

|〈B(wn(θ), wn(θ)), Awn(θ)|〉 6 c3‖wn(θ)‖(L4)2×L4×((L4))2‖∇wn(θ)‖(L4)2×L4×((L4))2‖Awn(θ)‖

6 c3‖wn(θ)‖
1
2 ‖∇wn(θ)‖

1
2 ‖∇wn(θ)‖

1
2 ‖Awn(θ)‖

1
2 ‖Awn(θ)‖

6 c3‖wn(θ)‖
1
2 ‖∇wn(θ)‖‖Awn(θ)‖

3
2

6
1

4
‖Aw(θ)‖2 +

27

4
c4

3‖wn(θ)‖2‖wn(θ)‖4
V̂
. (3.19)

Applying (2.13) and Cauchy inequality, we compute

|〈R(wn(θ)), Awn(θ)〉| 6 δ2‖wn(θ)‖V̂ ‖Awn(θ)‖

6
1

4
‖Awn(θ)‖2 + δ2

2‖wn(θ)‖2
V̂
. (3.20)
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It then follows from (3.18)-(3.20) that

d

dθ
‖wn(θ)‖2

V̂
+

1

2
‖Awn(θ)‖2 6 2‖F (θ)‖2 +

27

2
c4

3‖wn(θ)‖2‖wn(θ)‖4
V̂

+ 2δ2
2‖wn(θ)‖2

V̂
. (3.21)

By setting

Hn(θ) = ‖wn(θ)‖2
V̂
,

In(θ) = 2‖F (θ)‖2 + 2δ2
2‖wn(θ)‖2

V̂
,

Kn(θ) =
27

2
c4

3‖wn(θ)‖2‖wn(θ)‖2
V̂
,

inequality (3.21) implies

d

dθ
Hn(θ) 6 In(θ) +Kn(θ)Hn(θ). (3.22)

Apply Gronwall inequality to (3.22) with τ 6 s− 1 6 r 6 s, and then we have

Hn(s) 6
(
Hn(r) +

∫ s

s−1
In(θ)dθ

)
exp
(∫ s

s−1
Kn(θ)dθ

)
=
(
‖wn(r)‖2

V̂
+

∫ s

s−1
In(θ)dθ

)
exp
(∫ s

s−1
Kn(θ)dθ

)
. (3.23)

Integrating (3.23) with respect to r between s− 1 and s, we obtain

Hn(s) 6
(∫ s

s−1
‖wn(r)‖2

V̂
dr +

∫ s

s−1
In(θ)dθ

)
exp
(∫ s

s−1
Kn(θ)dθ

)
. (3.24)

Now, by (3.13), (2.1) and Cauchy inequality we have

d

dθ
‖wn(θ)‖2 + δ1‖wn(θ)‖2

V̂
6
‖F (θ)‖2

δ1λ1
, a.e. s > τ. (3.25)

Integrating (3.25) over [s− 1, s], we can get

‖wn(s)‖2 + δ1

∫ s

s−1
‖wn(θ)‖2

V̂
dθ 6 ‖wn(s− 1)‖2 +

1

δ1λ1

∫ s

s−1
‖F (θ)‖2dθ. (3.26)

It follows from (3.26) that∫ s

s−1
‖wn(r)‖2

V̂
dr +

∫ s

s−1
In(θ)dθ 6 c(δ2, δ1, λ1)

(
‖wn(s− 1)‖2 +

∫ s

s−1
‖F (θ)‖2dθ

)
. (3.27)

By (3.3) and (3.26), we can also obtain that∫ s

s−1
Kn(θ)dθ =

27

2
c4

3

∫ s

s−1
‖wn(θ)‖2‖wn(θ)‖2

V̂
dθ

6 c(c3, δ1, λ1) sup
θ∈[s−1,s]

‖wn(θ)‖2
(
‖wn(s− 1)‖2 +

∫ s

s−1
‖F (θ)‖2dθ

)
. (3.28)
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Combining (3.3), (3.24), (3.27)and (3.28), we get that, for any τ 6 τ1(D̂Ĥ , t) and any wτ ∈
DĤ(τ),

‖wn(s; τ, wτ )‖2
V̂
6 ρ2(t), ∀s ∈ [t− 2, t], (3.29)

where ρ2(t) is given by (3.8). Integrating (3.21) on [s− 1, s], we get that∫ s

s−1
‖Awn(θ)‖2dθ 62‖wn(s− 1)‖2

V̂
+ 4

∫ s

s−1
‖F (θ)‖2dθ + 4δ2

2

∫ s

s−1
‖wn(θ)‖2

V̂
dθ

+ 27c4
3

∫ s

s−1
‖wn(θ)‖2‖wn(θ)‖4

V̂
dθ, (3.30)

which implies that∫ s

s−1
‖Awn(θ; τ, wτ )‖2dθ 6 ρ3(t), ∀s ∈ [t− 1, t], τ 6 τ1(D̂Ĥ , t), wτ ∈ DĤ(τ), (3.31)

where ρ3(t) is given by (3.9).
Now, multiplying (3.11) with (dk,m)′(t), and then summing from k = 1 to n, we get

‖w′n(θ)‖2 +
1

2

d

dθ
‖wn(θ)‖2

V̂
+ 〈B(wn(θ), wn(θ)), w′n(θ)〉+ 〈R(wn(θ)), w′n(θ)〉

= (F (θ), w′n(θ))

6
1

4
‖w′n(θ)‖2 + ‖F (θ)‖2. (3.32)

Using (2.10), (2.13) and Cauchy inequality, we have

〈B(wn(θ), wn(θ)), w′n(θ)〉 6 |〈B(wn(θ), wn(θ)), w′n(θ)〉|
6 c1‖∇wn(θ)‖‖Awn(θ)‖‖w′n(θ)‖

6
1

4
‖w′n(θ)‖2 + c2

1‖Awn(θ)‖2‖wn(θ)‖2
V̂
, (3.33)

and

〈R(w(θ)), w′n(θ)〉 6 |〈R(wn(θ)), w′n(θ)〉|
6 δ2‖wn(θ)‖V̂ ‖w

′
n(θ)‖

6
1

4
‖w′n(θ)‖2 + δ2

2‖wn(θ)‖2
V̂
. (3.34)

Combining (3.32)-(3.34), we get that

‖w′n(θ)‖2 + 2
d

dθ
‖wn(θ)‖2

V̂
6 4‖F (θ)‖2 + 4δ2

2‖wn(θ)‖2
V̂

+ 4c2
1‖wn(θ)‖2

V̂
‖Awn(θ)‖2, a.e θ > τ.

(3.35)

Integrating (3.35) between s− 1 and s, we have∫ s

s−1
‖w′n(θ)‖2dθ 62‖wn(s− 1)‖2

V̂
+ 4

∫ s

s−1
‖F (θ)‖2dθ + 4δ2

2

∫ s

s−1
‖wn(θ)‖2

V̂
dθ
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+ 4c2
1 sup
θ∈[s−1,s]

‖wn(θ)‖2
V̂

∫ s

s−1
‖Awn(θ)‖2dθ. (3.36)

From (3.29), (3.31) and (3.36), we can easily deduce that∫ s

s−1
‖w′n(θ; τ, wτ )‖2dθ 6 ρ4(t), τ 6 τ1(D̂Ĥ , t), wτ ∈ DĤ(τ), (3.37)

where ρ4(t) is given by (3.10). By Lemma 2.1 and the fact that wn(t) ⇀ w(t) weakly in
L2(t− 2, t;D(A)), w′n(t) ⇀ w′(t) weakly in L2(t− 2, t; Ĥ), and w(t) ∈ C([t− 2, t]; V̂ ), and then
taking the limits as n→∞ in (3.29), (3.31) and (3.37), we can get the desired results. 2

Hereinafter, we denote by DĤ,V̂σ the class of all families D̂V̂ of elements of P(V ), where

D̂V̂ is defined by D̂V̂ = {DĤ(t) ∩ V̂ |t ∈ R}, D̂Ĥ = {DĤ(t)|t ∈ R} ∈ DĤσ . In addition, if the
assumption (H2) holds, it is obvious that

lim
τ→−∞

eστρ1(t) = 0,

that is, the family {B̄(0, ρ
1/2
1 (t))|t ∈ R} belongs to DĤσ .

Corollary 3.2 Let the assumption (H2) hold. Then the family

D̂V̂
0 = {B̄(0, ρ

1/2
1 (t)) ∩ V̂ |t ∈ R} ⊆ DĤ,V̂σ ⊆ DĤσ

is pullback DĤ,V̂σ -absorbing for the process {S(t, τ)}t>τ in space V̂ . Moreover, for any t ∈ R
and any D̂Ĥ ∈ DĤσ , there also exists some τ(D̂Ĥ , t) < t such that

S(t, τ)DĤ(τ) ⊆ DV̂
0 (t) for all τ 6 τ(D̂Ĥ,t).

Next, we prove the pullback asymptotic compactness of the process {S(t, τ)}t>τ in V̂ by
energy method.

Lemma 3.3 Suppose assumption (H2) holds. Then the process {S(t, τ)}t>τ is pullback

DĤ,V̂σ -asymptotically compact in V̂ .

Proof. Given t ∈ R, a family D̂V̂ ∈ DĤ,V̂σ , a sequence {τn} ⊆ (−∞, t] with τn → −∞, and a

sequence {wτn} ⊆ V̂ with wτn ∈ DV̂ (τn) for all n, we need to demonstrate that the sequence
{w(t; τn, wτn)} is precompact in V̂ . For simplicity, we write w(n) = w(n)(s) = w(s; τn, wτn).

Lemma 3.2 indicates that there exists some τ1(D̂Ĥ , t) < t − 3, such that sequences

{w(n)|τn 6 τ1(D̂Ĥ , t)} and {(w(n))′|τn 6 τ1(D̂Ĥ , t)} are, respectively, uniformly bounded in
L∞(t− 2, t; V̂ )∩L2(t− 2, t;D(A)) and in L2(t− 2, t; Ĥ). Then from Aubin-Lions compactness
lemma, we get that there exists a subsequence of {w(n)}, which we do not relabel, and an
element w ∈ L∞(t− 2, t; V̂ ) ∩ L2(t− 2, t;D(A)) with w′ ∈ L2(t− 2, t; Ĥ), such that

w(n) ∗⇀ w weakly-star in L∞(t− 2, t; V̂ ), (3.38)

w(n) ⇀ w weakly in L2(t− 2, t;D(A)), (3.39)

(w(n))′ ⇀ w′ weakly in L2(t− 2, t; Ĥ), (3.40)
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w(n) → w strongly in L2(t− 2, t; V̂ ), (3.41)

w(n)(s)→ w(s) strongly in V̂ , a.e. s ∈ (t− 2, t). (3.42)

From (3.38)-(3.42) and the fact w ∈ C([t − 2, t]; V̂ ), it obvious that w satisfies the following
equation on [t− 2, t],

d

dt
(w(t),Ψ) + 〈Aw(t),Ψ〉+ 〈B(w(t), w(t)),Ψ〉+ 〈R(w(t)),Ψ〉 = (F (t),Ψ), ∀Ψ ∈ V̂ . (3.43)

Since {(w(n))′} is uniformly bounded on L2(t−2, t; Ĥ), then we can get that {w(n)} is equicon-
tinuous in Ĥ as follows:

‖w(n)(t1)− w(n)(t2)‖

6‖
∫ t2

t1

(w(n))′(s)ds‖ 6
∫ t2

t1

‖(w(n))′(s)‖ds

6(t2 − t1)
1
2

(∫ t2

t1

‖(w(n))′(s)‖2ds
) 1

2
, t1, t2 ∈ [t− 2, t],with t2 > t1.

Consider that the sequence {w(n)} is uniformly bounded in C([t− 2, t]; V̂ ) and the embedding
V̂ ↪→ Ĥ is compact. Then, by Ascoli-Arzelá Theorem, we obtain that

w(n) → w strongly in C([t− 2, t]; Ĥ). (3.44)

Using again the uniform boundedness of {w(n)} in C([t− 2, t]; V̂ ), we can get

w(n)(tn) ⇀ w(t∗) weakly in V̂ , ∀{tn} ⊆ [t− 2, t] with tn → t∗, (3.45)

and the weak limit is identified by (3.44). Actually, we can get that

w(n) → w strongly in C([t− 2, t]; V̂ ), (3.46)

which implies the desired relative compactness. If (3.46) is not true, then there exists a
sequence {sn} ⊆ [t− 2, t] (without loss of generality we can assume that it converges to some
s∗) such that for some ε0 > 0 and each n > 1,

‖w(n)(sn)− w(s∗)‖V̂ > ε0. (3.47)

From (3.45) and using the lower semi-continuity of the norm, we have

‖w(s∗)‖V̂ 6 lim inf
n→∞

‖w(n)(sn)‖V̂ . (3.48)

Notice that V̂ is a Hilbert space, if we can prove that

‖w(s∗)‖V̂ > lim sup
n→∞

‖w(n)(sn)‖V̂ , (3.49)

then inequality (3.48)-(3.49) will contradict to (3.47). Thus, we just need to prove inequality
(3.49).
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Now, using the enstrophy inequality (3.21) for w and w(n), for all t − 2 6 s1 6 s2 6 t we
have that

‖w(n)(s2)‖2
V̂

+
1

2

∫ s2

s1

‖Aw(n)(θ)‖2dθ

6‖w(n)(s1)‖2
V̂

+ 2

∫ s2

s1

‖F (θ)‖2dθ + 2δ2
2

∫ s2

s1

‖w(n)(θ)‖2
V̂

dθ

+
27

2
c4

3

∫ s2

s1

‖w(n)(θ)‖2‖w(n)(θ)‖4
V̂

dθ, (3.50)

and

‖w(s2)‖2
V̂

+
1

2

∫ s2

s1

‖Aw(θ)‖2dθ

6‖w(s1)‖2
V̂

+ 2

∫ s2

s1

‖F (θ)‖2dθ + 2δ2
2

∫ s2

s1

‖w(θ)‖2
V̂

dθ

+
27

2
c4

3

∫ s2

s1

‖w(θ)‖2‖w(θ)‖4
V̂

dθ. (3.51)

Define

Qn(s) :=‖w(n)(s)‖2
V̂
− 2

∫ s

t−2
‖F (θ)‖2dθ − 2δ2

2

∫ s

t−2
‖w(n)(θ)‖2

V̂
dθ

− 27

2
c4

3

∫ s

t−2
‖w(n)(θ)‖2‖w(n)(θ)‖4

V̂
dθ, (3.52)

and

Q(s) :=‖w(s)‖2
V̂
− 2

∫ s

t−2
‖F (θ)‖2dθ − 2δ2

2

∫ s

t−2
‖w(θ)‖2

V̂
dθ

− 27

2
c4

3

∫ s

t−2
‖w(θ)‖2‖w(θ)‖4

V̂
dθ. (3.53)

Then we have,

Qn(s2)−Qn(s1) =‖w(n)(s2)‖2
V̂
− ‖w(n)(s1)‖2

V̂
− 2

∫ s2

s1

‖F (θ)‖2dθ − 2δ2
2

∫ s2

s1

‖w(n)(θ)‖2
V̂

dθ

− 27

2
c4

3

∫ s2

s1

‖w(n)(θ)‖2‖w(n)(θ)‖4
V̂

dθ

6− 1

2

∫ s2

s1

‖Aw(n)(θ)‖2 6 0, for all t− 2 6 s1 6 s2 6 t. (3.54)

Thus, for every n > 1, Qn(·) is a non-increasing function on [t − 2, t]. Similarly, Q(·) is
also a non-increasing function on interval [t − 2, t]. Now, by relations (3.42) and (3.44), we
have ‖w(n)(θ)‖V̂ → ‖w(θ)‖V̂ and ‖w(n)(θ)‖2‖w(n)(θ)‖4

V̂
→ ‖w(θ)‖2‖w(θ)‖4

V̂
a.e. θ ∈ (t −

2, t). Furthermore, the boundedness of sequence {‖w(n)(θ)‖‖w(n)(θ)‖4
V̂
} in L∞(t− 2, t) can be

obtained by the boundedness of sequence {w(n)} in L∞(t−2, t; V̂ ) ⊆ L∞(t−2, t; Ĥ). Therefore,
using the Lebesgue Dominated Convergence Theorem, one can show that∫ s

t−2
‖w(n)(θ)‖2‖w(n)(θ)‖4

V̂
dθ →

∫ s

t−2
‖w(θ)‖2‖w(θ)‖4

V̂
dθ, for any s ∈ [t− 2, t].
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Thus we have,

Qn(s)→ Q(s), a.e. s ∈ (t− 2, t). (3.55)

Hence, there exists a sequence {s̃k} ⊆ [t− 2, s∗] such that s̃k → s∗ as k →∞, and

lim
n→∞

Qn(s̃k) = Q(s̃k), for all k.

Considering that Q is continuous, for an arbitrary ε > 0, there exists some kε such that

|Q(s̃k)−Q(s∗)| <
ε

2
, ∀k > kε. (3.56)

By (3.55), we can choose n(kε) such that ∀n > n(kε), it holds

sn > s̃kε and |Qn(s̃kε)−Q(s̃kε)| <
ε

2
. (3.57)

Since, for any n > 1, Qn are non-increasing function, we deduce from estimates (3.56)-(3.57)
that for all n > n(kε),

Qn(sn)−Q(s∗) 6 Qn(s̃kε)−Q(s∗)

6 |Qn(s̃kε)−Q(s∗)|
6 |Qn(s̃kε)−Q(s̃kε)|+ |Q(s̃kε)−Q(s∗)|
< ε, (3.58)

which implies that

lim sup
n→∞

Qn(sn) 6 Q(s∗). (3.59)

By (3.38)-(3.42) and (3.59), we get (3.49). The proof is completed. 2

Theorem 3.2 Let assumption (H2) hold. Then there exists the minimal pullback DĤ,V̂σ -
attractor

Â
DĤ,V̂σ

= {A
DĤ,V̂σ

(t)|t ∈ R}

for the process {S(t, τ)}t>τ in V̂ . Moreover, we have the following relationship

ADĤσ (t) = A
DĤ,V̂σ

(t). (3.60)

Proof. Combining Lemma 3.3, Corollary 3.2 and [24, Theorem 3.11], we immediately get

the existence of the minimal pullback DĤ,V̂σ -attractor Â
DĤ,V̂σ

.

We next prove the equality (3.60). For any t ∈ R, it is obvious holds A
DĤ,V̂σ

(t) ⊆ ADĤσ (t).

Consequently, we just need to prove A
DĤ,V̂σ

(t) ⊇ ADĤσ (t). Firstly, by the pullback attracting

property of attractor Â
DĤ,V̂σ

we know

lim
τ→−∞

distV̂
(
S(t, τ)DV̂ (τ),A

DĤ,V̂σ
(t)
)

= 0.

Then from Corollary 3.2 and the embedding V̂ ↪→ Ĥ, we obtain

lim
τ→−∞

distĤ
(
S(t, τ)D(τ),A

DĤ,V̂σ
(t)
)

= 0.

Finally, it follows from the minimality property of ÂDĤσ that ADĤσ (t) ⊆ A
DĤ,V̂σ

(t). The proof

is therefore completed. 2
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4 Invariant measures and regularity of statistical so-

lutions

In this section, we first present result on the existence of invariant measure and statistical
solution for Eq. (2.6)-(2.7) proved in [13], and then we prove the regularity of the statistical
solution and reveal the equivalence between invariant measure and statistical solution for the
equations. Hereinafter, Pr(X) denotes the set of all Borel probability measures on X of B(X)
that is the collection of Borel measurable sets of X, and for any µt ∈ Pr(X), supp(µt) denotes
the smallest closed set E such that µt(E) = 1.

To get the regularity of the statistical solution for Eq. (2.6)-(2.7), we need to recall some
definitions of statistical solutions. We begin with the definition of a class of test functions.

Definition 4.1 ([13, 14]) We denote by T the class of real-valued functionals Υ = Υ(w) on
Ĥ that are bounded on bounded subset of Ĥ and satisfy

(a) for any w ∈ V̂ , the Fréchet derivative Υ′(w) exists, that is, for each w ∈ V̂ there exists
an element Υ′(w) such that

|Υ(w + v)−Υ(w)− 〈Υ′(w), v〉|
‖v‖V̂

−→ 0 as ‖v‖V̂ → 0, v ∈ V̂ ;

(b) Υ′(w) ∈ V̂ for all w = (u, ω, h) ∈ V̂ , and the mapping w 7−→ Υ′(w) is continuous and
bounded as a function from V̂ to V̂ .

We rewrite the Eq. (2.6) as follows:

dw(t)

dt
= F(t, w(t)) = F (t)−Aw(t)−B(w(t), w(t))−R(w(t)). (4.1)

Notice that for any Υ ∈ T , if w(t) is the solution of Eq. (4.1), then it holds

d

dt
Υ(w(t)) = 〈Υ′(w(t)),F(t, w(t))〉. (4.2)

Definition 4.2 ([13, 14]) A family of measures {mt}t∈R ⊆ Pr(Ĥ) is said to be a statistical
solution of Eq. (2.6) if it satisfies the following conditions:

(a) the mapping t 7→
∫
Ĥ

Γ(w)dmt(w) is continuous for all Γ ∈ Cb(Ĥ) (the collection of all

continuous and bounded functions on Ĥ);

(b) for almost t ∈ R, supp(mt) is included in Ĥ and the function w 7→ 〈φ,F(w, t)〉 is
mt-integrable for each φ ∈ V̂ . In addition, the mapping

t 7→
∫
Ĥ
〈φ,F(w, t)〉dmt(w)

belongs to L1
loc(R) for all φ ∈ V̂ ;
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(c) for each Υ ∈ T , the following Liouville-type equation holds∫
Ĥ

Υ(w)dρt(w)−
∫
Ĥ

Υ(w)dmτ (w) =

∫ t

τ

∫
Ĥ
〈Υ′(w),F(w, s)〉dms(w)ds,

for all t, τ ∈ R with t > τ .

Before we present the result on the existence of invariant measure and statistical solution
of Eq. (2.6)-(2.7), we recall the definition of generalized Banach limit.

Definition 4.3 ([3]) Denote by S+ the collection of all bounded real-valued functions on
[0,+∞). A linear functional defined on S+ is called a generalized Banach limit denoted by
LIMt→+∞, if it satisfies

(1) LIMt→+∞Y(t) > 0 for all nonnegative functions Y(·) on [0,+∞);

(2) LIMt→+∞Y(t) = lim
t→+∞

Y(t) if the usual limit lim
t→+∞

Y(t) exists.

Any generalized Banach limit LIMt→+∞ possesses the following useful property (see in [2]):

|LIMt→+∞Y(t)| 6 lim sup
t→+∞

|Y(t)|, ∀Y(·) ∈ B+. (4.3)

In this article, we consider the “pullback” asymptotic behavior of (2.6). Hence, we need
generalized limits when τ goes to negative infinity. Toward this end, for any real-valued
function Y defined on (−∞, 0] and any given Banach limit LIMt→+∞, we define by

LIMt→−∞Y(t) = LIMt→+∞Y(−t).

Theorem 4.1 ([13]) Suppose that assumption (H1) holds. Let LIMτ→−∞ be a given general-

ized Banach limit and ADĤσ = {ADĤσ (t)|t ∈ R} be the pullback DĤσ -attractor given in Theorem

3.1. Then for any continuous mapping w : R 7→ Ĥ satisfying w(·) ∈ DĤσ , there exists a unique
family of measures {µt}t∈R ⊆ Pr(Ĥ) and supp(µt) ⊆ ADĤσ (t) such that it holds

LIMτ→−∞
1

t− τ

∫ t

τ
ψ(S(t, s)w(s))ds =

∫
Ĥ
ψ(w)dµt(w)

=

∫
A
DĤσ

(t)
ψ(w)dµt(w), (4.4)

for each real-valued continuous functional ψ on Ĥ and satisfies the following generalized in-
variance ∫

Ĥ
ψ(w)dµt(w) =

∫
Ĥ
ψ(S(t, τ)w)dµτ (w). (4.5)

Moreover, the family of invariant measures {µt}t∈R is a statistical solution of Eq. (2.6).

We next investigate the regularity of the statistical solution for Eq. (2.6). As described in
[3], here we need a class of time-dependent test functions Ψ = Ψ(t, w), which are continuous
real-valued functions defined on R× V̂ and Fréchet differentiable in the sense that:
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(i) there exists some element Ψ′(s, w) = (Ψ′s(t, w),Ψ′w(t, w)) in R× V̂ that satisfies

|Ψ(s+ q, w + v)−Ψ(s, w)− qΨ′s(s, w)− (v,Ψ′w(w))|
‖v‖+ |q|

−→ 0 as ‖v‖+ |q| → 0,

(ii) Ψ′(s, w) is continuous from R× V̂ into R× V̂ , where Ψ′w(s, w) is uniformly bounded in
V̂ and Ψ′s(s, w) has at most a linear growth in ‖w‖.

Theorem 4.2 Suppose that assumption (H2) holds. Then the statistical solution {µt}t∈R of
Eq. (2.6) given by Theorem 4.1 possesses the following regularity properties:

(a) for any given t > τ, τ ∈ R, the support of µt is included and bounded in V̂ , that is

supp(µt) ⊆ {w(t; τ, wτ ) ∈ V̂ ; ‖w(t; τ, wτ )‖V̂ 6 c(t)}; (4.6)

(b) for any time-dependent test function Ψ satisfying above conditions (i) and (ii), the fol-
lowing stronger form of Liouville-type equation holds,∫
Ĥ

Ψ(t, w)dµt(w)−
∫
Ĥ

Ψ(τ, w)dµτ (w) =

∫ t

τ

∫
Ĥ

Ψ′s(s, w) + 〈Φ′w(s, w),F(s, w)〉dµs(w)ds,

(4.7)

for every t ∈ [τ, T ].

Proof. From Lemma 3.2, Theorem 3.2, and Theorem 4.1, we can easily get item (a). Now,
we prove the family of measures {µt}t∈R satisfies item (b). For any given time-dependent test
function Ψ(t, w) satisfying conditions (i) and (ii), we have

d

ds
Ψ(s, w(s)) = Ψ′s(s, w(s)) + 〈Ψ′w(s, w(s)),F(s, w(s))〉, (4.8)

where w(t) is a solution of Eq. (4.1). Integrating (4.8) on [τ, t] with t > τ , we get

Ψ(t, w(t))−Ψ(τ, w(τ)) =

∫ t

τ
Ψ′s(s, w(s)) +

〈
Ψ′w(s, w(s)),F(s, w(s))

〉
ds. (4.9)

For any θ < τ , we let wθ ∈ V̂ . It then follows from (4.9) and w(s) = S(s, θ)wθ, s > θ that

Ψ(t, S(t, θ)wθ)−Ψ(τ, S(τ, θ)wθ)

=

∫ t

τ
Ψ′s(s, S(s, θ)wθ) + 〈Ψ′w(s, S(s, θ)wθ),F(s, S(s, θ)wθ)〉ds. (4.10)

From (4.6), we find that (4.4) and (4.5) also hold for any real-valued continuous functional ψ
defined on V̂ . Then by (4.4), (4.10) and Fubini Theorem, we can obtain∫

Ĥ
Ψ(t, w(t))dµt(w)−

∫
Ĥ

Ψ(τ, w(τ))dµτ (w)

=LIMM→−∞
1

t−M

∫ t

M
Ψ(t, S(t, θ)wθ)dθ − LIMM→−∞

1

τ −M

∫ τ

M
Ψ(τ, S(τ, θ)wθ)dθ
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=LIMM→−∞
1

τ −M

∫ τ

M

(
Ψ(t, S(t, θ)wθ)−Ψ(τ, S(τ, θ)wθ)

)
dθ

=LIMM→−∞
1

τ −M

∫ τ

M

∫ t

τ
Ψ′s(s, S(s, θ)wθ) +

〈
Ψ′w(s, S(s, θ)wθ),F(s, S(s, θ)wθ)

〉
dsdθ

=

∫ t

τ
LIMM→−∞

1

τ −M

∫ τ

M
Ψ′s(s, S(s, θ)wθ) +

〈
Ψ′w(s, S(s, θ)wθ),F(s, S(s, θ)wθ)

〉
dθds.

(4.11)

It follows from (4.4), (4.5) and S(s, θ) = S(s, τ)S(τ, θ)wθ that

LIMM→−∞
1

τ −M

∫ τ

M
Ψ′s(s, S(s, θ)wθ) +

〈
Ψ′w(s, S(s, θ)wθ),F(s, S(s, θ)wθ)

〉
dθ

=LIMM→−∞
1

τ −M

∫ τ

M
Ψ′s(s, S(s, τ)S(τ, θ)wθ)

+
〈
Ψ′w(s, S(s, τ)S(τ, θ)wθ),F(s, S(s, τ)S(τ, θ)wθ)

〉
dθ

=

∫
Ĥ

Ψ′s(s, S(s, τ)w) +
〈
Ψ′w(s, S(s, τ)w),F(s, S(s, τ)w)

〉
dµτ (w),

=

∫
Ĥ

Ψ′s(s, w) +
〈
Ψ′w(s, w),F(s, w)

〉
dµs(w), (4.12)

which along with (4.11) gets the desired result. 2

The following result implies that a regular statistical solution for Eq. (2.6), i.e. a statistical
solution satisfies regularity properties in Theorem 4.2, is an invariant measure for the equation.

Theorem 4.3 Let the family of probability measures {µt}t∈R ⊆ Pr(Ĥ) be a regular statistical
solution for Eq. (2.6), then µt satisfies the generalized invariance (4.5).

Proof. Since T is dense in C(Ĥ), for the generalized invariance (4.5), we only need to prove∫
Ĥ

Υ(w)dµt(w) =

∫
Ĥ

Υ(S(t, τ)w)dµτ (w), ∀Υ ∈ T .

Denote by Pm the Galerkin projection onto the finite-dimensional space PmĤ spanned by
the first m eigenfunctions of the operator A, and also denote by {Sm(t, τ)}t>τ the solution
operator corresponding to the Galerkin approximate, that is, Sm(t, τ)Pmuτ = um(t) for all
t > τ , where wm(t) is the solution of the following finite-dimensional equation on PmĤ:

dwm
dt

= PmF(t, wm), wm(τ) = Pmwτ ,

where F(t, wm) = F (t)−Awm −R(wm)−B(wm, wm). Set

Ψm(s, w) = Υ(Sm(t, s)Pmw), τ 6 s 6 t, w ∈ Ĥ, (4.13)

where Υ is any test function in the sense of Definition 4.1. It obvious that Ψm = Ψm(s, w) is
a time-dependent test function allowed in (4.7). Then by (4.7) and (4.13), we get∫

Ĥ
Υ(Pmw)dµt(w)−

∫
Ĥ

Υ(Sm(t, τ)Pmw)dµτ (w)
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=

∫ t

τ

∫
Ĥ

(Ψm)′s(s, w) + 〈F(s, w), (Ψm)′w(s, w)〉dµs(w)ds. (4.14)

By Lebesgue dominated convergence theorem, we obtain

lim
m→+∞

∫
Ĥ

Υ(Pmw)dµt(w) =

∫
Ĥ

Υ(w)dµt(w),

and

lim
m→+∞

∫
Ĥ

Υ(Sm(t, τ)Pmw)dµτ (w) =

∫
Ĥ

Υ(S(t, τ)w)dµτ (w).

Hence, we can complete the proof if we prove that the right-hand side of (4.14) vanishes as m
goes to infinity. By the property S(t, τ) = S(t, s)S(s, τ)wτ for any t > s > τ , we have

Ψm(s, Sm(s, τ)Pmw) = Υ(Sm(t, s)Sm(s, τ)Pmw) = Υ(Sm(t, τ)Pmw),

which is independent of s. Therefore, taking derivative with respect to s of Ψm(s, Sm(s, τ)Pmw),
we find for all s > τ that

(Ψm)′s(s, Sm(s, τ)Pmw) + 〈PmF(s, Sm(s, τ)Pmw), (Ψm)′w(s, Sm(s, τ)Pmw)〉 = 0.

Taking τ = s, we get

(Ψm)′s(s, Pmw) + 〈PmF(s, Pmw), (Ψm)′w(s, Pmw)〉 = 0.

Note that Ψm(s, Pmw) = Ψm(s, w) for all w ∈ Ĥ and s ∈ R. Then we have

(Ψm)′s(s, w) + 〈PmF(s, Pmw), (Ψm)′w(s, w)〉 = 0. (4.15)

Therefore, by (4.15), we rewrite the integrand of the right-hand side of (4.14) as

〈F(s, w)− PmF(s, Pmw), (Ψm)′w(s, w)〉. (4.16)

Note that F(s, w) = F (s)−Aw−R(w)−B(w,w) and (Ψm)′w(s, w) belongs to PmĤ. Firstly,
it is obvious that for any w ∈ supp(µs) and all s ∈ [τ, t], we have

〈F (s)− PmF (s), (Ψm)′w(s, w)〉 → 0, m→ +∞, (4.17)

and

〈PmA(Pmw)−Aw, (Ψm)′w(s, w)〉 → 0, m→ +∞. (4.18)

We next prove ∫ t

τ

∫
Ĥ
〈R(Pmw)−R(w), (Ψm)′w(s, w)〉dµsds,

and ∫ t

τ

∫
Ĥ
〈B(Pmw,Pmw)−B(w,w), (Ψm)′w(s, w)〉dµsds

go to zero as m goes to infinity. Using integration by parts and the definition of R(w), we
have for all Φ = (ξ, η, ζ) ∈ V̂

〈R(w),Φ〉 = −2χ(∇× ω, ξ)− 2χ(∇× u, η) + 4χ(ω, η),
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= −2χ(ω,∇× ξ)− 2χ(u,∇× η) + 4χ(ω, η).

For any ϕ ∈ H1
0 (Ω), we have ‖∇ × ϕ‖2 6 ‖∇ϕ‖2. Indeed, by some direct calculations we can

get that

∇× (∇× ϕ) = −∆ϕ+∇(divϕ), ∀ϕ ∈ H1
0 (Ω). (4.19)

Taking inner product of (4.19) with ϕ gets

‖∇ × ϕ‖2 6 ‖∇ϕ‖2, ∀ϕ ∈ H1
0 (Ω). (4.20)

Then by (4.20) and (2.2), we there exists some c4 such that

〈R(Pmw)−R(w), (Ψm)′w(s, w)〉
62χ‖w − Pmw‖‖(Ψm)′w(s, w)‖V̂ + 2χ‖w − Pmw‖‖(Ψm)′w(s, w)‖V̂

+ 4χ‖Pmw − w‖‖(Ψm)′w(s, w)‖

6c4λ
− 1

2
m ‖Pmw − w‖V̂ ‖(Ψm)′w(s, w)‖V̂

6c4λ
− 1

2
m ‖w‖V̂ ‖(Ψm)′w(s, w)‖V̂ . (4.21)

By the definition of the operator B(·, ·), (2.1), (2.2), and (2.11), we get

〈B(Pmw,Pmw)−B(w,w), (Ψm)′w(s, w)〉
=〈B(Pmw − w,Pmw), (Ψm)′w(s, w)〉+ 〈B(w,Pmw − w), (Ψm)′w(s, w)〉

6c1‖Pmw − w‖
1
2 ‖(Pmw − w)‖

1
2

V̂
‖Pmw‖

1
2 ‖Pmw‖

1
2

V̂
‖(Ψm)′w(s, w)‖V̂

+ c1‖w‖
1
2 ‖w‖

1
2

V̂
‖Pmw − w‖

1
2 ‖Pmw − w‖

1
2

V̂
‖(Ψm)′w(s, w)‖V̂

62c1‖w‖
1
2 ‖w‖

1
2

V̂
‖Pmw − w‖

1
2 ‖Pmw − w‖

1
2

V̂
‖(Ψm)′w(s, w)‖V̂

62c1λ
− 1

4
1 λ

− 1
4

m ‖w‖V̂ ‖Pmw − w‖V̂ ‖(Ψm)′w(s, w)‖V̂
62c1λ

− 1
4

1 λ
− 1

4
m ‖w‖2V̂ ‖(Ψm)′w(s, w)‖V̂ . (4.22)

For any w ∈ supp(µs) and all s ∈ [τ, t], we get from (4.6) that the right-hand sides of (4.21)
and (4.22) go to zero as m→ +∞. This implies the result. 2
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