References
1 Song M, Xu T, Wang Q, et al. A modified theta projection model for the creep behaviour of creep-resistant steel. Int J Press Vessel Pip . 2018;165: 224–228.
2 Hong Y, Zhou C, Zheng Y, Zheng J, Zhang L, Chen X. Hydrogen effect on nanoindentation creep of austenitic stainless steel: A comparative study between primary creep stage and steady-state creep stage. Int J Hydrogen Energy . 2019;44: 22576–22583.
3 Liu X, Song L, Stark A, Lazurenko D, Pyczak F, Zhang T. Creep-induced ωo phase precipitation and cavity formation in a cast 45.5Ti-45Al-9Nb-0.5B alloy. J Alloys Compd . 2021;875: 160106.
4 Wang LY, Song ZM, Luo XM, Zhang GP. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels. Mater Sci Eng A . 2018;724: 69–74.
5 Hu JD, Xuan FZ, Liu CJ, Chen B. Modelling of cavity nucleation under creep-fatigue interaction. Mech Mater . 2021;156.
6 Dyson B. Use of CDM in materials modeling and component creep life prediction. J Press Vessel Technol Trans ASME . 2000;122: 281–296.
7 Kachanov LM. Time of the rupture process under creep conditions.Time Rupture Process under Creep Cond . 1958: 26–31.
8 Rabotnov YN. Creep problems in structural members. 1969.
9 Lemaitre J. A Course on Damage Mechanics . Springer Science & Business Media; 2012.
10 Chaboche J-L. Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des . 1981;64: 233–247.
11 Krajcinovic D. Damage mechanics: accomplishments, trends and needs.Int J Solids Struct . 2000;37: 267–277.
12 Murakami S. Continuum Damage Mechanics : A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Springer Ebooks . 2012;41: 4731–4755.
13 Meng Q, Wang Z. Creep damage models and their applications for crack growth analysis in pipes: A review. Eng Fract Mech . 2019;205: 547–576.
14 Hyde TH, Ali BSM, Sun W. On the determination of material creep constants using miniature creep test specimens. J Eng Mater Technol Trans ASME . 2014;136.
15 Guo X, Gong J. An Improved Continuum Damage Constitutive Model for Creep. 2017: 1–9.
16 Saberi E, Nakhodchi S, Dargahi A, Nikbin K. Predicting stress and creep life in Inconel 718 blade-disk attachments. Eng Fail Anal . 2020;108: 104226.
17 C. Praveen, J. Christopher, V. Ganesan, G. V. Prasad Reddy, Shaju K. Albert. Prediction of Creep Behaviour of 316LN SS Under Uniaxial and Multiaxial Stress State Using Kachanov – Rabotnov Model at 923 K.Trans Indian Inst Met . 2020.
18 Wang X, Wang X, Zhu XZS. Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov – Rabotnov creep damage model. Nucl Sci Tech . 2019;30: 1–9.
19 Haque MS. An Improved Sin-Hyperbolic Constitutive Model for Creep Deformation and Damage. 2015.
20 Haque MS, Stewart CM. A Novel Sin-Hyperbolic Creep Damage Model To Overcome the Mesh dependency of classic local approach Kachanov-Rabotnov model. In: Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition . ; 2015:1–9.
21 Haque MS, Stewart CM. Comparison of a new sinhyperbolic creep damage constitutive model with the classic Kachanov-Rabotnov model using theoretical and numerical analysis. In: TM2015 Annual Meeting Supplemental Proceedings . ; 2015:937–945.
22 Haque MS, Stewart CM. Comparative analysis of the sin-hyperbolic and Kachanov – Rabotnov creep- damage models. Int J Press Vessel Pip . 2019;171: 1–9.
23 Cano JA, Stewart CM. A continuum damage mechanics (CDM) based Wilshire model for creep deformation, damage, and rupture prediction.Mater Sci Eng A . 2021;799.
24 Wilshire B, Battenbough AJ. Creep and creep fracture of polycrystalline copper. Mater Sci Eng A . 2007;443: 156–166.
25 Burt H, Wilshire B. Theoretical and pratical implications of creep curve shape analyses for 7010 and 7075. Metall Mater Trans A . 2006;37 A: 1005–1015.
26 Wilshire B, Burt H, Lavery NP. Prediction of long term stress rupture data for 2124. Mater Sci Forum . 2006;519–521: 1041–1046.
27 Wilshire B, Scharning PJ. Long-term creep life prediction for a high chromium steel. Scr Mater . 2007;56: 701–704.
28 Xu Zhao, Xuming Niu, Yingdong Song, Zhigang Sun. Improvement of creep behavior prediction using threshold stress and tensile properties: Introduction of the TTC relations. Metall Mater Trans A Phys Metall Mater Sci . 2022: In production.
29 Zhao X, Niu X, Song Y, Sun Z. An investigation of the nonlinear creep damage accumulation of different materials: Application of a novel damage model. Fatigue Fract Eng Mater Struct . 2022;45: 530–545.
30 Hyde TH, Sun W, Tang A. Determination of material constants in creep continuum damage constitutive equations. Strain . 1998;34: 83–90.
31 Stewart CM, Gordon AP. Strain and damage-based analytical methods to determine the Kachanov-Rabotnov tertiary creep-damage constants.Int J Damage Mech . 2012;21: 1186–1201.
32 Stewart CM, Gordon AP. Analytical method to determine the tertiary creep damage constants of the Kachanov-Rabotnov constitutive model.ASME Int Mech Eng Congr Expo Proc . 2010;9: 177–184.
33 Murakami S, Liu Y, Mizuno M. Computational methods for creep fracture analysis by damage mechanics. Comput Methods Appl Mech Eng . 2000;183: 15–33.
34 liu Y, Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis.Int J Ser A . 1998;41: 57–65.
35 Chang Y, Xu H, Ni Y, Lan X, Li H. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel. Mater Sci Eng A . 2015;636: 70–76.
36 Rouse JP, Sun W, Hyde TH, Morris A. Comparative assessment of several creep damage models for use in life prediction. Int J Press Vessel Pip . 2013;108–109: 81–87.
37 Haque MS, Stewart CM. The disparate data problem: The calibration of creep laws across test type and stress, temperature, and time scales.Theor Appl Fract Mech . 2019;100: 251–268.
38 Deshmukh SP, Mishra RS, Kendig KL. Creep behavior and threshold stress of an extruded Al-6Mg-2Sc-1Zr alloy. Mater Sci Eng A . 2004;381: 381–385.
39 Deshmukh SP, Mishra RS, Robertson IM. Investigation of creep threshold stresses using in situ TEM straining experiment in an Al-5Y2O3-10SiC composite. Mater Sci Eng A . 2010;527: 2390–2397.
40 Huang Y, Langdon TG. The creep behavior of discontinuously reinforced metal-matrix composites. Jom . 2003;55: 15–20.
41 Vojdani A, Farrahi GH, Mehmanparast A, Wang B. Probabilistic assessment of creep-fatigue crack propagation in austenitic stainless steel cracked plates. Eng Fract Mech . 2018;200: 50–63.
42 Zentuti NA, Booker JD, Bradford RAW, Truman CE. Correlations between creep parameters and application to probabilistic damage assessments.Int J Press Vessel Pip . 2018;165: 295–305.
43 Chamanfar A, Sarrat L, Jahazi M, Asadi M, Weck A, Koul AK. Microstructural characteristics of forged and heat treated Inconel-718 disks. Mater Des . 2013;52: 791–800.
44 Zhang Y, Jing H, Xu L, Zhao L, Han Y, Zhao Y. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy. Mater Sci Eng A . 2017;686: 102–112.
45 Li Y, Langdon TG. Unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites.Acta Mater . 1999;47: 3395–3403.
46 Shrestha T, Basirat M, Charit I, Potirniche GP, Rink KK, Sahaym U. Creep deformation mechanisms in modified 9Cr-1Mo steel. J Nucl Mater . 2012;423: 110–119.
47 Shrestha T, Basirat M, Charit I, Potirniche GP, Rink KK. Creep rupture behavior of Grade 91 steel. Mater Sci Eng A . 2013;565: 382–391.
48 Prakash P, Vanaja J, Reddy GVP, Laha K, Rao GVSN. On the effect of thermo-mechanical treatment on creep deformation and rupture behaviour of a reduced activation ferritic-martensitic steel. J Nucl Mater . 2019;520: 65–77.
49 Alsagabi S, Shrestha T, Charit I. High temperature tensile deformation behavior of Grade 92 steel. J Nucl Mater . 2014;453: 151–157.
50 Huo JS, Gou JT, Zhou LZ, Qin XZ, Li GS. High temperature creep deformation mechanisms of a hot corrosion-resistant nickel-based superalloy. J Mater Eng Perform . 2007;16: 55–62.
51 Li LT, Lin YC, Zhou HM, Jiang YQ. Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Comput Mater Sci . 2013;73: 72–78.
52 Evans RW, Wilshire B. Creep of Metals and Alloys . United States: IMM North American Pub. Center,Brookfield, VT; 1985.
53 Harlow DG, Delph TJ. A computational probabilistic model for creep-damaging solids. 1995;54: 161–166.
54 Penny RK, Weber MA. Robust methods of life assessment during creep.Int J Press Vessel Pip . 1992;50: 109–131.
55 Abir Hossain M, Stewart CM. Probabilistic minimum-creep-strain-rate and stress-rupture prediction for the long-term assessment of IGT components. In: Proceedings of the ASME Turbo Expo . Vol 10B-2020. ; 2020:1–11.
56 Hossain A, Stewart CM. A probabilistic creep model incorporating test condition , initial damage , and material property uncertainty.Int J Press Vessel Pip . 2021;193.
57 Hossain MA, Stewart CM. Reliability prediction of 304 stainless steel using sine-hyperbolic creepdamage model with monte carlo simulation method. In: American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP . Vol 6A-2019. ; 2019:0–10.
58 Hossain MA, Cano JA. Probabilistic Creep Modeling of 304 Stainless Steel Using a Modified Wilshire Creep-Damage Model. In:Proceedings of the ASME 2020 Pressure Vessels & Piping Conference . ; 2020:11.
59 Zhao X, Niu X, Song Y, Sun Z. An investigation of the nonlinear creep damage accumulation of different materials: Application of a novel damage model. Fatigue Fract Eng Mater Struct . 2021.
60 Pavlou DG. Creep life prediction under stepwise constant uniaxial stress and temperature conditions. Eng Struct . 2001;23: 656–662.