References
1. Gao, X., Olsen, N. J., Pincus, T. & Stastny, P. Hla‐dr alleles with
naturally occurring amino acid substitutions and risk for development of
rheumatoid arthritis. Arthritis Rheum. 33 , 939–946
(1990).
2. Hill, J. A. et al. Cutting Edge: The Conversion of Arginine to
Citrulline Allows for a High-Affinity Peptide Interaction with the
Rheumatoid Arthritis-Associated HLA-DRB1*0401 MHC Class II Molecule.J. Immunol. 171 , 538–541 (2003).
3. Kremer, J. M. et al. Treatment of Rheumatoid Arthritis by
Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4Ig.N. Engl. J. Med. 349 , 1907–1915 (2003).
4. Cush, J. J. & Lipsky, P. E. Phenotypic analysis of synovial tissue
and peripheral blood lymphocytes isolated from patients with rheumatoid
arthritis. Arthritis Rheum. 31 , 1230–1238 (1988).
5. Leipe, J. et al. Role of Th17 cells in human autoimmune
arthritis. Arthritis Rheum. 62 , 2876–2885 (2010).
6. Hirota, K. et al. T cell self-reactivity forms a cytokine
milieu for spontaneous development of IL-17+ Th cells that cause
autoimmune arthritis. J. Exp. Med. 204 , 41–47 (2007).
7. Veldhoen, M. et al. TGF b in the Context of an Inflammatory
Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T
Cells. 179–189 (2006) doi:10.1016/j.immuni.2006.01.001.
8. Ivanov, I. I. et al. The Orphan Nuclear Receptor RORγt Directs
the Differentiation Program of Proinflammatory IL-17+ T Helper Cells.Cell 126 , 1121–1133 (2006).
9. Hirota, K. et al. Preferential recruitment of CCR6-expressing
Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its
animal model. J. Exp. Med. 204 , 2803–2812 (2007).
10. Koenders, M. I. et al. Blocking of interleukin-17 during
reactivation of experimental arthritis prevents joint inflammation and
bone erosion by decreasing RANKL and interleukin-1. Am. J.
Pathol. 167 , 141–149 (2005).
11. Katayama, M. et al. Neutrophils Are Essential As A Source Of
Il-17 In The Effector Phase Of Arthritis. PLoS One 8 ,
1–7 (2013).
12. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the
development and function of CD4+CD25+ regulatory T cells. J.
Immunol. 198 , 986–992 (2017).
13. Morgan, M. E. et al. CD25+ cell depletion hastens the onset
of severe disease in collagen-induced arthritis. Arthritis Rheum.48 , 1452–1460 (2003).
14. Klocke, K. CTLA - 4 expressed by FOXP3 + regulatory T cells prevents
inflammatory tissue attack and not T-cell priming in arthritis. 125–137
(2017) doi:10.1111/imm.12754.
15. Kim, B. S. et al. Generation of RORγt+ Antigen-Specific T
Regulatory 17 Cells from Foxp3+ Precursors in Autoimmunity. Cell
Rep. 21 , 195–207 (2017).
16. Kondo, Y. et al. Involvement of RORγt-overexpressing T cells
in the development of autoimmune arthritis in mice. Arthritis Res.
Ther. 17 , 1–14 (2015).
17. Komatsu, N. et al. Pathogenic conversion of Foxp3 + T cells
into TH17 cells in autoimmune arthritis. Nat. Med. 20 ,
62–68 (2014).
18. Kondo, Y. et al. Overexpression of T-bet gene regulates
murine autoimmune arthritis. Arthritis Rheum. 64 ,
162–172 (2012).
19. Buttgereit, F. et al. Transgenic disruption of glucocorticoid
signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse
serum-induced arthritis in vivo. Arthritis Rheum. 60 ,
1998–2007 (2009).
20. Cretney, E. et al. The transcription factors Blimp-1 and IRF4
jointly control the differentiation and function of effector regulatory
T cells. Nat. Immunol. 12 , 304–312 (2011).
21. Garg, G. et al. Blimp1 Prevents Methylation of Foxp3 and Loss
of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep.26 , 1854-1868.e5 (2019).
22. Collins, A. V. et al. The interaction properties of
costimulatory molecules revisited. Immunity 17 , 201–210
(2002).
23. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a
molecular basis for the cell extronsic function of CTLA-4. Science
(80-. ). 332 , 600–603 (2011).
24. Wells, A. D., Walsh, M. C., Bluestone, J. A. & Turka, L. A.
Signaling through CD28 and CTLA-4 controls two distinct forms of T cell
anergy. J. Clin. Invest. 108 , 895–904 (2001).
25. Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of
autoimmune disease by deletion of CTLA-4 in mice in adulthood.Proc. Natl. Acad. Sci. U. S. A. 113 , (2016).
26. Petrillo, M. G. et al. GITR+ regulatory T cells in the
treatment of autoimmune diseases. Autoimmun. Rev. 14 ,
117–126 (2015).
27. Kohm, A. P., Williams, J. S. & Miller, S. D. Cutting Edge: Ligation
of the Glucocorticoid-Induced TNF Receptor Enhances Autoreactive CD4 + T
Cell Activation and Experimental Autoimmune Encephalomyelitis . J.
Immunol. 172 , 4686–4690 (2004).
28. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W.
Interleukin-10-deficient mice develop chronic enterocolitis. Cell75 , 263–274 (1993).
29. Finnegan, A. et al. Collagen-induced arthritis is exacerbated
in IL-10-deficient mice. Arthritis Res. Ther. 5 , (2003).
30. Huber, S. et al. Th17 Cells Express Interleukin-10 Receptor
and Are Controlled by Foxp3- and Foxp3+ Regulatory CD4+ T Cells in an
Interleukin-10-Dependent Manner. Immunity 34 , 554–565
(2011).
31. Cretney, E., Kallies, A. & Nutt, S. L. Differentiation and function
of Foxp3+ effector regulatory T cells. Trends Immunol.34 , 74–80 (2013).
32. Lochner, M. et al. In vivo equilibrium of proinflammatory
IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med.205 , 1381–1393 (2008).
33. Yang, B. H. et al. Foxp3+ T cells expressing RORγt represent
a stable regulatory T-cell effector lineage with enhanced suppressive
capacity during intestinal inflammation. Mucosal Immunol.9 , 444–457 (2016).
34. Bankoti, R. et al. Differential regulation of Effector and
Regulatory T cell function by Blimp1. Sci. Rep. 7 , 1–14
(2017).
35. Ogawa, C. et al. Blimp-1 Functions as a Molecular Switch to
Prevent Inflammatory Activity in Foxp3+RORγt+ Regulatory T Cells.Cell Rep. 25 , 19-28.e5 (2018).