References
1. Jansen JM, Cornell W,
Tseng YJ, Amaro RE. Teach-Discover-Treat (TDT): collaborative
computational drug discovery for neglected diseases. J Mol Graph
Model. 2012;38:360-362.
doi:10.1016/j.jmgm.2012.07.007
2. Wagner JR, Churas CP, Liu
S, et al. Continuous Evaluation of Ligand Protein Predictions: A Weekly
Community Challenge for Drug Docking. Structure.
2019;27(8):1326-1335.e4.
doi:10.1016/j.str.2019.05.012
3. Gathiaka S, Liu S, Chiu M,
et al. D3R grand challenge 2015: Evaluation of protein-ligand pose and
affinity predictions. J Comput Aided Mol Des. 2016;30(9):651-668.
doi:10.1007/s10822-016-9946-8
4. Gaieb Z, Liu S, Gathiaka
S, et al. D3R Grand Challenge 2: blind prediction of protein-ligand
poses, affinity rankings, and relative binding free energies. J
Comput Aided Mol Des. 2018;32(1):1-20.
doi:10.1007/s10822-017-0088-4
5. Gaieb Z, Parks CD, Chiu M,
et al. D3R Grand Challenge 3: blind prediction of protein-ligand poses
and affinity rankings. J Comput Aided Mol Des. 2019;33(1):1-18.
doi:10.1007/s10822-018-0180-4
6. Parks CD, Gaieb Z, Chiu M,
et al. D3R grand challenge 4: blind prediction of protein-ligand poses,
affinity rankings, and relative binding free energies. J Comput
Aided Mol Des. 2020;34(2):99-119.
doi:10.1007/s10822-020-00289-y
7. Carlson HA, Smith RD,
Damm-Ganamet KL, et al. CSAR 2014: A Benchmark Exercise Using
Unpublished Data from Pharma. J Chem Inf Model.
2016;56(6):1063-1077.
doi:10.1021/acs.jcim.5b00523
8. Smith RD, Damm-Ganamet KL,
Dunbar JB Jr, et al. CSAR Benchmark Exercise 2013: Evaluation of Results
from a Combined Computational Protein Design, Docking, and
Scoring/Ranking Challenge. J Chem Inf Model.
2016;56(6):1022-1031.
doi:10.1021/acs.jcim.5b00387
9. Robin X, Studer G, Janani
D, et al. Assessment of Protein-Ligand Complexes in CASP15.Proteins. (This issue).
10. Kryshtafovych A. New
Prediction Categories In CASP15. Proteins. (this issue).
11. wwPDB consortium. Protein
Data Bank: the single global archive for 3D macromolecular structure
data. Nucleic Acids Res. 2019;47(D1):D520-D528.
doi:10.1093/nar/gky949
12. Robin X, Haas J, Gumienny
R, Smolinski A, Tauriello G, Schwede T. Continuous Automated Model
EvaluatiOn (CAMEO)-Perspectives on the future of fully automated
evaluation of structure prediction methods. Proteins.
2021;89(12):1977-1986.
doi:10.1002/prot.26213
13. Haas J, Gumienny R,
Barbato A, et al. Introducing “best single template” models as
reference baseline for the Continuous Automated Model Evaluation
(CAMEO). Proteins. 2019;87(12):1378-1387.
doi:10.1002/prot.25815
14. Haas J, Barbato A,
Behringer D, et al. Continuous Automated Model EvaluatiOn (CAMEO)
complementing the critical assessment of structure prediction in CASP12.Proteins. 2018;86 Suppl 1(Suppl 1):387-398.
doi:10.1002/prot.25431
15. Haas J, Roth S, Arnold K,
et al. The Protein Model Portal–a comprehensive resource for protein
structure and model information. Database . 2013;2013:bat031.
doi:10.1093/database/bat031
16. Stärk H, Ganea OE,
Pattanaik L, Barzilay R, Jaakkola T. EquiBind: Geometric Deep Learning
for Drug Binding Structure Prediction. Published online February 7,
2022. Accessed May 8, 2023. http://arxiv.org/abs/2202.05146
17. Gao Y, Thorn V, Thorn A.
Errors in structural biology are not the exception. Acta
Crystallographica Section D: Structural Biology. 2023;79(3):206-211.
doi:10.1107/S2059798322011901
18. Warren GL, Do TD, Kelley
BP, Nicholls A, Warren SD. Essential considerations for using
protein-ligand structures in drug discovery. Drug Discov Today.
2012;17(23-24):1270-1281.
doi:10.1016/j.drudis.2012.06.011
19. McGovern SL, Shoichet BK.
Information decay in molecular docking screens against holo, apo, and
modeled conformations of enzymes. J Med Chem.
2003;46(14):2895-2907.
doi:10.1021/jm0300330
20. Rueda M, Bottegoni G,
Abagyan R. Recipes for the selection of experimental protein
conformations for virtual screening. J Chem Inf Model.
2010;50(1):186-193.
doi:10.1021/ci9003943
21. Scardino V, Di Filippo JI,
Cavasotto CN. How good are AlphaFold models for docking-based virtual
screening? iScience. 2023;26(1):105920.
doi:10.1016/j.isci.2022.105920
22. Berman HM, Westbrook J,
Feng Z, et al. The Protein Data Bank. Nucleic Acids Res.
2000;28(1):235-242.
doi:10.1093/nar/28.1.235
23. Read RJ, Adams PD,
Arendall WB 3rd, et al. A new generation of crystallographic validation
tools for the protein data bank. Structure.
2011;19(10):1395-1412.
doi:10.1016/j.str.2011.08.006
24. Gore S, Velankar S,
Kleywegt GJ. Implementing an X-ray validation pipeline for the Protein
Data Bank. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt
4):478-483.
doi:10.1107/S0907444911050359
25. Gore S, Sanz García E,
Hendrickx PMS, et al. Validation of Structures in the Protein Data Bank.Structure. 2017;25(12):1916-1927.
doi:10.1016/j.str.2017.10.009
26. Yang J, Roy A, Zhang Y.
BioLiP: a semi-manually curated database for biologically relevant
ligand-protein interactions. Nucleic Acids Res. 2013;41(Database
issue):D1096-D1103.
doi:10.1093/nar/gks966
27. Smart OS, Horský V, Gore
S, et al. Validation of ligands in macromolecular structures determined
by X-ray crystallography. Acta Crystallogr D Struct Biol.
2018;74(Pt 3):228-236.
doi:10.1107/S2059798318002541
28. Liu Z, Su M, Han L, et al.
Forging the Basis for Developing Protein-Ligand Interaction Scoring
Functions. Acc Chem Res. 2017;50(2):302-309.
doi:10.1021/acs.accounts.6b00491
29. Orengo C, Velankar S,
Wodak S, et al. A community proposal to integrate structural
bioinformatics activities in ELIXIR (3D-Bioinfo Community).F1000Res. 2020;9.
doi:10.12688/f1000research.20559.1
30. Trott O, Olson AJ.
AutoDock Vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading.Journal of Computational Chemistry. 2010;31(2):455-461.
doi:10.1002/jcc.21334
31. Eberhardt J,
Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking
Methods, Expanded Force Field, and Python Bindings. J Chem Inf
Model. 2021;61(8):3891-3898.
doi:10.1021/acs.jcim.1c00203
32. Koes DR, Baumgartner MP,
Camacho CJ. Lessons learned in empirical scoring with smina from the
CSAR 2011 benchmarking exercise. J Chem Inf Model.
2013;53(8):1893-1904.
doi:10.1021/ci300604z
33. McNutt AT, Francoeur P,
Aggarwal R, et al. GNINA 1.0: molecular docking with deep learning.J Cheminform. 2021;13(1):43.
doi:10.1186/s13321-021-00522-2
34. Corso G, Stärk H, Jing B,
Barzilay R, Jaakkola T. DiffDock: Diffusion Steps, Twists, and Turns for
Molecular Docking. Published online October 4, 2022. Accessed April 14,
2023. http://arxiv.org/abs/2210.01776
35. Lu W, Wu Q, Zhang J, Rao
J, Li C, Zheng S. TANKBind: Trigonometry-Aware Neural NetworKs for
drug-protein binding structure prediction. bioRxiv. Published
online June 6, 2022.
doi:10.1101/2022.06.06.495043
36. Di Tommaso P, Chatzou M,
Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables
reproducible computational workflows. Nat Biotechnol.
2017;35(4):316-319.
doi:10.1038/nbt.3820
37. Anaconda Software
Distribution. Anaconda Documentation. Accessed May 11, 2023.
https://docs.anaconda.com/
38. Kurtzer GM, Sochat V,
Bauer MW. Singularity: Scientific containers for mobility of compute.PLoS One. 2017;12(5):e0177459.
doi:10.1371/journal.pone.0177459
39. Jumper J, Evans R, Pritzel
A, et al. Highly accurate protein structure prediction with AlphaFold.Nature. 2021;596(7873):583-589.
doi:10.1038/s41586-021-03819-2
40. Krivák R, Hoksza D.
P2Rank: machine learning based tool for rapid and accurate prediction of
ligand binding sites from protein structure. J Cheminform.
2018;10(1):1-12.
doi:10.1186/s13321-018-0285-8
41. Westbrook JD, Shao C, Feng
Z, Zhuravleva M, Velankar S, Young J. The chemical component dictionary:
complete descriptions of constituent molecules in experimentally
determined 3D macromolecules in the Protein Data Bank.Bioinformatics. 2015;31(8):1274-1278.
doi:10.1093/bioinformatics/btu789
42. Rose Y, Duarte JM, Lowe R,
et al. RCSB Protein Data Bank: Architectural Advances Towards Integrated
Searching and Efficient Access to Macromolecular Structure Data from the
PDB Archive. J Mol Biol. 2021;433(11):166704.
doi:10.1016/j.jmb.2020.11.003
43. Steinegger M, Söding J.
Clustering huge protein sequence sets in linear time. Nat Commun.
2018;9(1):2542.
doi:10.1038/s41467-018-04964-5
44. Riniker S, Landrum GA.
Better Informed Distance Geometry: Using What We Know To Improve
Conformation Generation. J Chem Inf Model. 2015;55(12):2562-2574.
doi:10.1021/acs.jcim.5b00654
45. Meeko: Preparation of
small molecules for AutoDock (Forli Lab, 2022). Published 2022. Accessed
May 8, 2023. https://github.com/forlilab/Meeko
46. Biasini M, Schmidt T,
Bienert S, et al. OpenStructure: an integrated software framework for
computational structural biology. Acta Crystallogr D Biol
Crystallogr. 2013;69(Pt 5):701-709.
doi:10.1107/S0907444913007051