Andrews, S. (2010). FastQC: A quality control tool for high throughput
sequence data [online]. Available online
at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ballaré, C. L. (2014). Light regulation of plant defense. Annual
Review of Plant Biology, 65, 335–363. doi:
https://doi.org/10.1146/annurev-arplant-050213-040145
Behrens, C. E., Smith, K. E., Iancu, C. V., Choe, J.Y & Dean, J. V.
(2019). Transport of anthocyanins and other flavonoids by the
arabidopsis ATP-binding cassette transporter AtABCC2. Scientific
Reports, 9:1–15. doi:https://doi.org/10.1038/s41598-018-37504-8Bhatnagar, A., Singh, S., Khurana, J. P., & Burman, N. (2020).
HY5-COP1: the central module of light signaling pathway. Journal
of Plant Biochemistry and Biotechnology, 29(4), 590–610. doi:
https://doi.org/10.1007/s13562-020-00623-3
Bian, Z., Yang, Q. & Liu, W., (2014). Effects of light quality on the
accumulation of phytochemicals in vegetables produced in controlled
environments: a review. Journal of the Science of Food and
Agriculture, 95(5), 869-877.
Bolger, A., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence
data. Bioinformatics, 30(15), 2114-2120. doi:https://doi.org/10.1093/bioinformatics/btu170Briggs, W. R., & Olney, M. A. (2001). Photoreceptors in plant
photomorphogenesis to date. Five phytochromes, two cryptochromes, one
phototropin, and one superchrome. Plant Physiology, 125,
85–88. doi: https://doi.org/10.1104/pp.125.1.85
Bujor, O., Le Bourvellec, C., Volf, I., Popa, V. & Dufour, C. (2016).
Seasonal variations of the phenolic constituents in bilberry
(Vaccinium myrtillus L.) leaves, stems and fruits, and their
antioxidant activity. Food Chemistry, 213,58-68.
Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-Restrepo,
A., Ueda, T., & Otegui, M. S. (2015). Anthocyanin vacuolar inclusions
form by a microautophagy mechanism. Plant Cell, 27(9),
2545–2599. doi: https://doi.org/10.1105/tpc.15.00589Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction
in higher plants. Annual Review of Genetics, 38(1),
87-117. doi:https://doi.org/10.1146/annurev.genet.38.072902.092259Cherian, S., Figueroa, C. R., & Nair, H. (2014). ‘Movers and shakers’
in the regulation of fruit ripening: a cross-dissection of climacteric
versus non-climacteric fruit. Journal of Experimental Botany.
Bot. 65, 4705−4722. doi: https://doi.org/10.1093/jxb/eru280
Chong, J., Wishart, D. S., & Xia, J. (2019). Using metaboanalyst 4.0
for comprehensive and integrative metabolomics data analysis.Current Protocols in Bioinformatics, 68, e86. doi:https://doi.org/10.1002/cpbi.86Chu, W. K., Cheung, S. C., Lau, R. A., & Benzie, I. F. (2011). Bilberry
(Vaccinium myrtillus L.). Herbal
Medicine, 20115386, 55-71.
Chung, S. W., Yu, D. J., Oh, H. D., Ahn, J. H., Huh, J. H., & Lee, H.
J. (2019). Transcriptional regulation of abscisic acid biosynthesis and
signal transduction, and anthocyanin biosynthesis in ‘Bluecrop’ highbush
blueberry fruit during ripening. Plos One, 14(7),
e0220015.
Colle, M., Leisner, C., Wai, C., Ou, S., Bird, K., & Wang, J. et al.
(2019). Haplotype-phased genome and evolution of phytonutrient pathways
of tetraploid blueberry. Gigascience, 8(3), giz012. doi:
https://doi.org/10.1093/gigascience/giz012
Die J.V., Jones R.W., Ogde E.L., Ehlenfeldt M.K., Rowland L.J. (2020).
Characterization and analysis of anthocyanin-related genes in wild-type
blueberry and the pink-fruited mutant cultivar ‘Pink Lemonade’: new
insight into anthocyanin biosynthesis. Agronomy 10, 1296.
Dobin, A., Davis, C., Schlesinger, F., Drenkow, J., Zaleski, C., & Jha,
S., Batut, P., Chaisson, M., & Gingeras, T.R., (2013). STAR: ultrafast
universal RNA-seq aligner. Bioinformatics, 29(1),
15-21.doi: https://doi.org/10.1093/bioinformatics/bts635Eckerter, T., Buse, J., Förschler, M., & Pufal, G. (2019). Additive
positive effects of canopy openness on European bilberry
(Vaccinium myrtillus) fruit quantity and quality. Forest
Ecology and Management, 433, 122-130. doi:https://doi.org/10.1016/j.foreco.2018.10.059Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC:
summarize analysis results for multiple tools and samples in a single
report. Bioinformatics, 32(19), 3047-3048. doi:https://doi.org/10.1093/bioinformatics/btw354Feller, A., MacHemer, K., Braun, E. L., & Grotewold, E. (2011).
Evolutionary and comparative analysis of MYB and bHLH plant
transcription factors. Plant Journal, 66(1), 94–116. doi:
https://doi.org/10.1111/j.1365-313X.2010.04459.x
Ferrara, G., Mazzeo, A., Matarrese, A. M. S., Pacucci, C., Punzi, R.,
Faccia, M., Trani, A., & Gambacorta, G. (2015). Application of abscisic
acid (S-ABA) and sucrose to improve colour, anthocyanin content and
antioxidant activity of cv. Crimson seedless grape berries.Australian Journal of Grape and Wine Research, 21(1),
18–29. doi: https://doi.org/10.1111/ajgw.12112Ferrero, M., Pagliarani, C., Novák, O., Ferrandino, A., Cardinale, F.,
Visentin, I., & Schubert, A. (2018). Exogenous strigolactone interacts
with abscisic acid-mediated accumulation of anthocyanins in grapevine
berries. Journal of Experimental Botany, 69(9),
2391–2402. doi: https://doi.org/10.1093/jxb/ery033Gilbert, D. (2019). Longest protein, longest transcript or most
expression, for accurate gene reconstruction of transcriptomes?bioRxiv, 829184 doi: https://doi.org/10.1101/829184Gotz, S., Garcia-Gomez, J., Terol, J., Williams, T., Nagaraj, S.H., &
Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008).
High-throughput functional annotation and data mining with the Blast2GO
suite. Nucleic Acids Research, 36(10), 3420-3435. doi:https://doi.org/10.1093/nar/gkn176Grabherr, M., Haas, B., Yassour, M., Levin, J., Thompson, D., & Amit,
I. et al. (2011). Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nature Biotechnology, 29(7),
644-652. doi: https://doi.org/10.1038/nbt.1883
Günther, C. S., Dare, A. P., McGhie, T. K., Deng, C., Lafferty, D. J.,
Plunkett, B. J., Grierson, E., Turner, J. L., Jaakola, L., Albert, N.
W., & Espley, R. V. (2020). Spatiotemporal modulation of flavonoid
metabolism in blueberries. Frontiers in plant science, 11,
545. doi: https://doi.org/10.3389/fpls.2020.00545Heysieattalab, S., & Sadeghi, L. (2020). Effects of delphinidin on
pathophysiological signs of nucleus basalis of meynert lesioned rats as
animal model of alzheimer disease. Neurochemical
Research, 45(7), 1636–1646. doi:https://doi.org/10.1007/s11064-020-03027-wHolopainen, J., Kivimäenpää, M., & Julkunen-Tiitto, R. (2018). New
light for phytochemicals. Trends in Biotechnology, 36(1),
7-10. doi: https://doi.org/10.1016/j.tibtech.2017.08.009
Jaakola, L. & Hohtola, A. (2010). Effect of latitude on flavonoid
biosynthesis in plants. Plant, Cell and Environment, 33(8),
1239-1247.
Jaakola, L. (2013). New insights into the regulation of anthocyanin
biosynthesis in fruits. Trends in Plant Science, 18(9), 477–483.
doi: https://doi.org/10.1016/j.tplants.2013.06.003
Jaakola, L., Määttä, K., Pirttilä, A. M., Törrönen, R., Kärenlampi, S.,
& Hohtola, A. (2002). Expression of genes involved in anthocyanin
biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol
levels during bilberry fruit development. Plant
Physiology, 130(2), 729-739.
Jaakola, L., Poole, M., Jones, M. O., Kämäräinen-Karppinen, T.,
Koskimäki, J. J., Hohtola, A., Häggman, H., Fraser, P.D., Manning, K.,
King, G.J., Thomson, H., & Seymour, G. B. (2010). A SQUAMOSA MADS box
gene involved in the regulation of anthocyanin accumulation in bilberry
fruits. Plant Physiology, 153(4), 1619–1629. doi:https://doi.org/10.1104/pp.110.158279Jeong, S. T., Goto-Yamamoto, N., Kobayashi, S., & Esaka, M. (2004).
Effects of plant hormones and shading on the accumulation of
anthocyanins and the expression of anthocyanin biosynthetic genes in
grape berry skins. Plant Science, 167(2), 247–252. doi:https://doi.org/10.1016/j.plantsci.2004.03.021Jia, H. F., Chai, Y. M., Li, C. L., Lu, D., Luo, J. J., Qin, L., &
Shen, Y. Y. (2011). Abscisic acid plays an important role in the
regulation of strawberry fruit ripening. Plant Physiology,157(1), 188–199. doi:
https://doi.org/10.1104/pp.111.177311
Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., & Noji,
S. (2015). Light and abscisic acid independently regulated FaMYB10 inFragaria × ananassa fruit. Planta, 241(4),
953–965. doi: https://doi.org/10.1007/s00425-014-2228-6
Karppinen, K., Lafferty, D., Albert, N., Mikkola, N., McGhie, T., Allan,
A., Afzal, B., Häggman, H., Espley, R., Jaakola, L. (2021). MYBA and
MYBPA transcription factors co-regulate anthocyanin biosynthesis in
blue-coloured berries. submitted to New Phytologist.
Karppinen, K., Hirvelä, E., Nevala, T., Sipari, N., Suokas, M., &
Jaakola, L. (2013). Changes in the abscisic acid levels and related gene
expression during fruit development and ripening in bilberry
(Vaccinium myrtillus L.). Phytochemistry, 95,
127–134. doi: https://doi.org/10.1016/j.phytochem.2013.06.023
Karppinen, K., Tegelberg, P., Häggman, H., & Jaakola, L. (2018).
Abscisic acid regulates anthocyanin biosynthesis and gene expression
associated with cell wall modification in ripening bilberry
(Vaccinium myrtillus L.) fruits. Frontiers in Plant
Science, 9, 1–17. doi:
https://doi.org/10.3389/fpls.2018.01259
Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H., & Jaakola, L.
(2016a). On the developmental and environmental regulation of secondary
metabolism in Vaccinium spp. berries. Frontiers in Plant
Science, 7, 655. doi: https://doi.org/10.3389/fpls.2016.00655Karppinen, K., Zoratti, L., Sarala, M., Carvalho, E., Hirsimäki, J.,
Mentula, H., Martens, S., Häggman, H., & Jaakola, L. (2016b).
Carotenoid metabolism during bilberry (Vaccinium myrtillus L.)
fruit development under different light conditions is regulated by
biosynthesis and degradation. BMC Plant Biology, 16(1),
95. doi: https://doi.org/10.1186/s12870-016-0785-5Kim, S. J., & Brandizzi, F. (2012). News and views into the SNARE
complexity in Arabidopsis. Frontiers in Plant Science, 3,
1–6. doi: https://doi.org/10.3389/fpls.2012.00028
Kokalj, D., Zlatić, E., Cigić, B., Kobav, M. B., & Vidrih, R. (2019).
Postharvest flavonol and anthocyanin accumulation in three apple
cultivars in response to blue-light-emitting diode light. Scientia
Horticulturae, 257, 108711.
Kondo, S., Sugaya, S., Sugawa, S., Ninomiya, M., Kittikorn, M., Okawa,
K., Ohara, H., Ueno, K., Todoroki, Y., Mizutani, M., & Hirai, N.
(2012). Dehydration tolerance in apple seedlings is affected by an
inhibitor of ABA 8’-hydroxylase CYP707A. Journal of Plant
Physiology, 169(3), 234–241. doi:
https://doi.org/10.1016/j.jplph.2011.09.007
Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S.,
Terahara, N., & Hirai, N. (2014). Abscisic acid metabolism and
anthocyanin synthesis in grape skin are affected by light emitting diode
(LED) irradiation at night. Journal of Plant Physiology,171(10), 823–829. doi:
https://doi.org/10.1016/j.jplph.2014.01.001
Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and
accurate filtering of ribosomal RNAs in metatranscriptomic
data. Bioinformatics, 28(24), 3211-3217. doi:
https://doi.org/10.1093/bioinformatics/bts611
Koyama, K., Ikeda, H., Poudel, P. R., & Goto-Yamamoto, N. (2012). Light
quality affects flavonoid biosynthesis in young berries of Cabernet
Sauvignon grape. Phytochemistry, 78, 54-64.
Lau, O. S., & Deng, X. W. (2012). The photomorphogenic repressors COP1
and DET1: 20 years later. Trends in Plant Science, 17(10),
584–593. doi: https://doi.org/10.1016/j.tplants.2012.05.004Li, G., Zhao, J., Qin, B., Yin, Y., An, W., Mu, Z., & Cao, Y. (2019).
ABA mediates development-dependent anthocyanin biosynthesis and fruit
coloration in Lycium plants. BMC Plant Biology,19(1), 1–13. doi:https://doi.org/10.1186/s12870-019-1931-7Li, Q.-H., & Yang, H.-Q. (2007). Cryptochrome signaling in plants.Photochemistry and Photobiology, 83(1), 94–101. doi:https://doi.org/10.1562/2006-02-28-ir-826Love, M., Huber, W., & Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biology, 15(12). doi:https://doi.org/10.1186/s13059-014-0550-8Lu, X. D., Zhou, C. M., Xu, P. B., Luo, Q., Lian, H. L., & Yang, H. Q.
(2015). Red-light-dependent interaction of phyB with SPA1 promotes
COP1-SPA1 dissociation and photomorphogenic development in arabidopsis.Molecular Plant, 8(3), 467–478. doi:
https://doi.org/10.1016/j.molp.2014.11.025
Ma, Z. H., Li, W. F., Mao, J., Li, W., Zuo, C. W., Zhao, X., Dawuda, M.
M., Shi, X. Y., & Chen, B. H. (2019). Synthesis of light-inducible and
light-independent anthocyanins regulated by specific genes in grape
“Marselan” (V. Vinifera L.). PeerJ, 2019(3),
1–24. doi: https://doi.org/10.7717/peerj.6521Massa, G. D., Kim, H. H., Wheeler, R. M., & Mitchell, C. A. (2008).
Plant productivity in response to LED
lighting. HortScience, 43(7), 1951-1956.
Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y.,
& Jiang, G. (2016). Colored light-quality selective plastic films
affect anthocyanin content, enzyme activities, and the expression of
flavonoid genes in strawberry (Fragaria × ananassa) fruit.Food Chemistry, 207, 93–100. doi:https://doi.org/10.1016/j.foodchem.2016.02.077Möglich, A., Yang, X., Ayers, R. A., & Moffat, K. (2010). Structure and
function of plant photoreceptors. Annual Review of Plant
Biology, 61, 21–47. doi:https://doi.org/10.1146/annurev-arplant-042809-112259Müller, D., Schantz, M., & Richling, E. (2012). High performance liquid
chromatography analysis of anthocyanins in bilberries (Vaccinium
myrtillus L.), blueberries (Vaccinium corymbosum L.) and
corresponding juices. Journal of Food Science, 77(4),
C340-C345.
Nagaoka, M., Maeda, T., Chatani, M., Handa, K., Yamakawa, T., Kiyohara,
S., Negishi-Koga, T., Kato, Y., Takami, M., Niida, S., Lang, S. C.,
Kruger, M. C., & Suzuki, K. (2019). A delphinidin-enriched maqui berry
extract improves bone metabolism and protects against bone loss in
osteopenic mouse models. Antioxidants, 8(9), 386. doi:https://doi.org/10.3390/antiox8090386Nguyen, N., Suokas, M., Karppinen, K., Vuosku, J., Jaakola, L., &
Häggman, H. (2018). Recognition of candidate transcription factors
related to bilberry fruit ripening by de novo transcriptome and
qRT-PCR analyses. Scientific Reports, 8(1), 1–12. doi:https://doi.org/10.1038/s41598-018-28158-7Nile, S., & Park, S. (2014). Edible berries: Bioactive components and
their effect on human health. Nutrition, 30(2), 134-144.
doi: https://doi.org/10.1016/j.nut.2013.04.007Ouzounis, T., Rosenqvist, E., & Ottosen, C. O. (2015). Spectral effects
of artificial light on plant physiology and secondary metabolism: A
review. HortScience, 50(8), 1128–1135. doi:
https://doi.org/10.21273/hortsci.50.8.1128
Park, S.Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y.,
…, & Cutler, S. R. (2009). Abscisic acid inhibits Type 2C
protein phosphatases via the PYR/PYL family of START proteins.
Science (New York, N.Y.), 324(5930), 1068–1071. doi:https://doi.org/10.1126/science.1173041Patro, R., Duggal, G., Love, M., Irizarry, R., & Kingsford, C. (2017).
Salmon provides fast and bias-aware quantification of transcript
expression. Nature Methods, 14(4), 417-419. doi:https://doi.org/10.1038/nmeth.4197Pečenková, T., Marković, V., Sabol, P., Kulich, I., & Zárský, V.
(2017). Exocyst and autophagy-related membrane trafficking in plants.Journal of Experimental Botany, 69(1), 47–57. doi:https://doi.org/10.1093/jxb/erx363Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A.,
Patui, S., & Vianello, A. (2013). Plant flavonoids-biosynthesis,
transport and involvement in stress responses. International
Journal of Molecular Sciences, 14(7), 14950–14973. doi:
https://doi.org/10.3390/ijms140714950
Plunkett, B.J., Espley, R.V., Dare, A.P., Warren, B.A.W., Grierson,
E.R.P., Cordiner, S., Turner, J.L., Allan, A.C., Albert, N.W., Davies,
K.M., Schwinn, K.E. (2018). MYBA from blueberry (Vacciniumsection Cyanococcus) is a subgroup 6 type R2R3MYB transcription
factor that activates anthocyanin production. Frontiers in Plant
Science 9: 1300.
Primetta, A. K., Karppinen, K., Riihinen, K. R., & Jaakola, L. (2015).
Metabolic and molecular analyses of white mutant Vaccinium berries show
down-regulation of MYBPA1-type R2R3 MYB regulatory
factor. Planta, 242(3), 631–643. doi:https://doi.org/10.1007/s00425-015-2363-8Ravaglia, D., Espley, R.V., Henry-Kirk R.A., Andreotti, C., Ziosi, V.,
Hellens, R.P., Costa, G., & Allan, A.C. (2013). Transcriptional
regulation of flavonoid biosynthesis in nectarine (Prunus
persica) by a set of R2R3 MYB transcription factors. BMC Plant
Biology 13, 68.
Rodyoung, A., Masuda, Y., Tomiyama, H., Saito, T., Okawa, K., Ohara, H.,
& Kondo, S. (2016). Effects of light emitting diode irradiation at
night on abscisic acid metabolism and anthocyanin synthesis in grapes in
different growing seasons. Plant Growth Regulation, 79(1),
39–46. doi: https://doi.org/10.1007/s10725-015-0107-1Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., &
Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics (Oxford,
England), 31(19), 3210–3212. doi:
https://doi.org/10.1093/bioinformatics/btv351
Takos, A.M., Jaffé, F.W., Jacob, S.R., Bogs, J., Robinson, S.P., &
Walker, A.R. (2006). Light-induced expression of a MYB gene
regulates anthocyanin biosynthesis in red apples. Plant
Physiology 142, 1216−1232.
Tao, R., Bai, S., Ni, J., Yang, Q., Zhao, Y., & Teng, Y. (2018). The
blue light signal transduction pathway is involved in anthocyanin
accumulation in ‘Red Zaosu’ pear. Planta, 248(1), 37-48.
Thornthwaite, J. T., Thibado, S. P., & Thornthwaite, K. A. (2020).
Bilberry anthocyanins as agents to address oxidative stress.Pathology. INC, 179-187. doi:
https://doi.org/10.1016/b978-0-12-815972-9.00017-2
Tohge T, de Souza LP, Fernie AR. (2017). Current understanding of the
pathways of flavonoid biosynthesis in model and crop plants.Journal of Experimental Botany 68: 4013−4028.
Walker, A. R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R., &
Robinson, S. P. (2007). White grapes arose through the mutation of two
similar and adjacent regulatory genes. Plant Journal,49(5), 772–785. doi:
https://doi.org/10.1111/j.1365-313X.2006.02997.x
Wang, J. W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL
transcription factors define an endogenous flowering pathway inArabidopsis thaliana. Cell, 138(4), 738–749. doi:https://doi.org/10.1016/j.cell.2009.06.014Wheeler, S., Loveys, B., Ford, C., & Davies, C. (2009). The
relationship between the expression of abscisic acid biosynthesis genes,
accumulation of abscisic acid and the promotion of Vitis viniferaL. berry ripening by abscisic acid. Australian Journal of Grape
and Wine Research, 15(3), 195–204. doi:
https://doi.org/10.1111/j.1755-0238.2008.00045.x
Wu, C., Deng, C., Hilario, E., Albert, N., Lafferty, D., Grierson, E.,
…, Chagné, D. (2021). A chromosome-scale assembly of the bilberry
genome identifies a complex locus controlling berry anthocyanin
composition”. submitted to Molecular Ecology Resources.
Wu, J., Mao, X., Cai, T., Luo, J., & Wei, L. (2006). KOBAS server: a
web-based platform for automated annotation and pathway
identification. Nucleic Acids Research, 34(Web Server),
W720-W724. doi: https://doi.org/10.1093/nar/gkl167Wu, M., Si, M., Li, X., Song, L., Liu, J., Zhai, R., Cong, L., Yue, R.,
Yang, C., Ma, F., Xu, L., & Wang, Z. (2019). PbCOP1.1 contributes to
the negative regulation of anthocyanin biosynthesis in pear.Plants, 8(2), 1–12. doi:
https://doi.org/10.3390/plants8020039
Wu, X., Gong, Q., Ni, X., Zhou, Y., & Gao, Z. (2017). UFGT: The key
enzyme associated with the petals variegation in japanese apricot.Frontiers in Plant Science, 8, 108.doi:
https://doi.org/10.3389/fpls.2017.00108
Xu, W., Dubos, C., & Lepiniec, L. (2015). Transcriptional control of
flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in
Plant Science, 20(3), 176-185.
Yadav, V., Mallappa, C., Gangappa, S. N., Bhatia, S., & Chattopadhyay,
S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis,
MYC2, acts as a repressor of blue light-mediated photomorphogenic
growth. The Plant Cell, 17(7), 1953–1966. doi:
https://doi.org/10.1105/tpc.105.032060
Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., Luo, Y., Sun,
B., Wang, X., & Tang, H. (2018). Effect of red and blue light on
anthocyanin accumulation and differential gene expression in strawberry
(Fragaria × ananassa). Molecules, 23(4), 1–17.
doi: https://doi.org/10.3390/molecules23040820
Zhang, J., Zhang, Y., Song, S., Su, W., Hao, Y., & Liu, H. (2020).
Supplementary red light results in the earlier ripening of tomato fruit
depending on ethylene production. Environmental and Experimental
Botany, 175, 104044. doi:https://doi.org/10.1016/j.envexpbot.2020.104044Zhao, J. (2015). Flavonoid transport mechanisms: How to go, and with
whom. Trends in Plant Science, 20(9), 576–585. doi:https://doi.org/10.1016/j.tplants.2015.06.007Zoratti, L., Karppinen, K., Luengo Escobar, A., Haggman, H., & Jaakola,
L. (2014a). Light-controlled flavonoid biosynthesis in
fruits. Frontiers in Plant Science, 5, 534. doi:
https://doi.org/10.3389/fpls.2014.00534
Zoratti, L., Sarala, M., Carvalho, E., Karppinen, K., Martens, S.,
Giongo, L., Häggman, H., and Jaakola, L. (2014b) Monochromatic light
increases anthocyanin content during fruit development in bilberry. BMC
Plant Biol. 14:377. doi: https://doi.org/
10.1186/s12870-014-0377-1Zoratti, L., Klemettilä, H., & Jaakola, L. (2016). Bilberry
(Vaccinium myrtillus L.) Ecotypes. Nutritional Composition
of Fruit Cultivars, 83-99. doi:
https://doi.org/10.1016/b978-0-12-408117-8.0000
Zorenc Z., Veberic, R., Slatnar, A., Koron, D., Miosic, S., Chen, M.H.,
Haselmair-Gosch, C., Halbwirth, H., Mikulic-Petkovsek, M. (2017). A wild
’albino’ bilberry (Vaccinium myrtillus L.) from Slovenia shows
three bottlenecks in the anthocyanin pathway and significant differences
in the expression of several regulatory genes compared to the common
blue berry type. PLoS One 12: e0190246.