References
Andrews, S. (2010). FastQC:  A quality control tool for high throughput sequence data [online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Ballaré, C. L. (2014). Light regulation of plant defense. Annual Review of Plant Biology, 65, 335–363. doi: https://doi.org/10.1146/annurev-arplant-050213-040145 Behrens, C. E., Smith, K. E., Iancu, C. V., Choe, J.Y & Dean, J. V. (2019). Transport of anthocyanins and other flavonoids by the arabidopsis ATP-binding cassette transporter AtABCC2. Scientific Reports, 9:1–15. doi:https://doi.org/10.1038/s41598-018-37504-8Bhatnagar, A., Singh, S., Khurana, J. P., & Burman, N. (2020). HY5-COP1: the central module of light signaling pathway. Journal of Plant Biochemistry and Biotechnology, 29(4), 590–610. doi: https://doi.org/10.1007/s13562-020-00623-3 Bian, Z., Yang, Q. & Liu, W., (2014). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture, 95(5), 869-877. Bolger, A., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30(15), 2114-2120. doi:https://doi.org/10.1093/bioinformatics/btu170Briggs, W. R., & Olney, M. A. (2001). Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology, 125, 85–88. doi: https://doi.org/10.1104/pp.125.1.85 Bujor, O., Le Bourvellec, C., Volf, I., Popa, V. & Dufour, C. (2016). Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 213,58-68. Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-Restrepo, A., Ueda, T., & Otegui, M. S. (2015). Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell, 27(9), 2545–2599. doi: https://doi.org/10.1105/tpc.15.00589Chen, M., Chory, J., & Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics38(1), 87-117. doi:https://doi.org/10.1146/annurev.genet.38.072902.092259Cherian, S., Figueroa, C. R., & Nair, H. (2014). ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany. Bot. 65, 4705−4722. doi: https://doi.org/10.1093/jxb/eru280 Chong, J., Wishart, D. S., & Xia, J. (2019). Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis.Current Protocols in Bioinformatics, 68, e86. doi:https://doi.org/10.1002/cpbi.86Chu, W. K., Cheung, S. C., Lau, R. A., & Benzie, I. F. (2011). Bilberry (Vaccinium myrtillus L.). Herbal Medicine20115386, 55-71. Chung, S. W., Yu, D. J., Oh, H. D., Ahn, J. H., Huh, J. H., & Lee, H. J. (2019). Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in ‘Bluecrop’ highbush blueberry fruit during ripening. Plos One14(7), e0220015. Colle, M., Leisner, C., Wai, C., Ou, S., Bird, K., & Wang, J. et al. (2019). Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. Gigascience8(3), giz012. doi: https://doi.org/10.1093/gigascience/giz012 Die J.V., Jones R.W., Ogde E.L., Ehlenfeldt M.K., Rowland L.J. (2020). Characterization and analysis of anthocyanin-related genes in wild-type blueberry and the pink-fruited mutant cultivar ‘Pink Lemonade’: new insight into anthocyanin biosynthesis. Agronomy 10, 1296. Dobin, A., Davis, C., Schlesinger, F., Drenkow, J., Zaleski, C., & Jha, S., Batut, P., Chaisson, M., & Gingeras, T.R., (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics29(1), 15-21.doi: https://doi.org/10.1093/bioinformatics/bts635Eckerter, T., Buse, J., Förschler, M., & Pufal, G. (2019). Additive positive effects of canopy openness on European bilberry (Vaccinium myrtillus) fruit quantity and quality. Forest Ecology and Management433, 122-130. doi:https://doi.org/10.1016/j.foreco.2018.10.059Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics32(19), 3047-3048. doi:https://doi.org/10.1093/bioinformatics/btw354Feller, A., MacHemer, K., Braun, E. L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 66(1), 94–116. doi: https://doi.org/10.1111/j.1365-313X.2010.04459.x Ferrara, G., Mazzeo, A., Matarrese, A. M. S., Pacucci, C., Punzi, R., Faccia, M., Trani, A., & Gambacorta, G. (2015). Application of abscisic acid (S-ABA) and sucrose to improve colour, anthocyanin content and antioxidant activity of cv. Crimson seedless grape berries.Australian Journal of Grape and Wine Research, 21(1), 18–29. doi: https://doi.org/10.1111/ajgw.12112Ferrero, M., Pagliarani, C., Novák, O., Ferrandino, A., Cardinale, F., Visentin, I., & Schubert, A. (2018). Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of Experimental Botany, 69(9), 2391–2402. doi: https://doi.org/10.1093/jxb/ery033Gilbert, D. (2019). Longest protein, longest transcript or most expression, for accurate gene reconstruction of transcriptomes?bioRxiv, 829184 doi: https://doi.org/10.1101/829184Gotz, S., Garcia-Gomez, J., Terol, J., Williams, T., Nagaraj, S.H., & Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research36(10), 3420-3435. doi:https://doi.org/10.1093/nar/gkn176Grabherr, M., Haas, B., Yassour, M., Levin, J., Thompson, D., & Amit, I. et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology29(7), 644-652. doi: https://doi.org/10.1038/nbt.1883 Günther, C. S., Dare, A. P., McGhie, T. K., Deng, C., Lafferty, D. J., Plunkett, B. J., Grierson, E., Turner, J. L., Jaakola, L., Albert, N. W., & Espley, R. V. (2020). Spatiotemporal modulation of flavonoid metabolism in blueberries. Frontiers in plant science11, 545. doi: https://doi.org/10.3389/fpls.2020.00545Heysieattalab, S., & Sadeghi, L. (2020). Effects of delphinidin on pathophysiological signs of nucleus basalis of meynert lesioned rats as animal model of alzheimer disease. Neurochemical Research45(7), 1636–1646. doi:https://doi.org/10.1007/s11064-020-03027-wHolopainen, J., Kivimäenpää, M., & Julkunen-Tiitto, R. (2018). New light for phytochemicals. Trends in Biotechnology36(1), 7-10. doi: https://doi.org/10.1016/j.tibtech.2017.08.009 Jaakola, L. & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell and Environment, 33(8), 1239-1247.
doi: https://doi.org/10.1111/j.1365-3040.2010.02154.x
Jaakola, L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 18(9), 477–483. doi: https://doi.org/10.1016/j.tplants.2013.06.003 Jaakola, L., Määttä, K., Pirttilä, A. M., Törrönen, R., Kärenlampi, S., & Hohtola, A. (2002). Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology130(2), 729-739. Jaakola, L., Poole, M., Jones, M. O., Kämäräinen-Karppinen, T., Koskimäki, J. J., Hohtola, A., Häggman, H., Fraser, P.D., Manning, K., King, G.J., Thomson, H., & Seymour, G. B. (2010). A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiology, 153(4), 1619–1629. doi:https://doi.org/10.1104/pp.110.158279Jeong, S. T., Goto-Yamamoto, N., Kobayashi, S., & Esaka, M. (2004). Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science, 167(2), 247–252. doi:https://doi.org/10.1016/j.plantsci.2004.03.021Jia, H. F., Chai, Y. M., Li, C. L., Lu, D., Luo, J. J., Qin, L., & Shen, Y. Y. (2011). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology,157(1), 188–199. doi: https://doi.org/10.1104/pp.111.177311 Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T., & Noji, S. (2015). Light and abscisic acid independently regulated FaMYB10 inFragaria × ananassa fruit. Planta, 241(4), 953–965. doi: https://doi.org/10.1007/s00425-014-2228-6 Karppinen, K., Lafferty, D., Albert, N., Mikkola, N., McGhie, T., Allan, A., Afzal, B., Häggman, H., Espley, R., Jaakola, L. (2021). MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. submitted to New Phytologist. Karppinen, K., Hirvelä, E., Nevala, T., Sipari, N., Suokas, M., & Jaakola, L. (2013). Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry, 95, 127–134. doi: https://doi.org/10.1016/j.phytochem.2013.06.023 Karppinen, K., Tegelberg, P., Häggman, H., & Jaakola, L. (2018). Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Frontiers in Plant Science, 9, 1–17. doi: https://doi.org/10.3389/fpls.2018.01259 Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H., & Jaakola, L. (2016a). On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science, 7, 655. doi: https://doi.org/10.3389/fpls.2016.00655Karppinen, K., Zoratti, L., Sarala, M., Carvalho, E., Hirsimäki, J., Mentula, H., Martens, S., Häggman, H., & Jaakola, L. (2016b). Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biology, 16(1), 95. doi: https://doi.org/10.1186/s12870-016-0785-5Kim, S. J., & Brandizzi, F. (2012). News and views into the SNARE complexity in Arabidopsis. Frontiers in Plant Science, 3, 1–6. doi: https://doi.org/10.3389/fpls.2012.00028 Kokalj, D., Zlatić, E., Cigić, B., Kobav, M. B., & Vidrih, R. (2019). Postharvest flavonol and anthocyanin accumulation in three apple cultivars in response to blue-light-emitting diode light. Scientia Horticulturae257, 108711. Kondo, S., Sugaya, S., Sugawa, S., Ninomiya, M., Kittikorn, M., Okawa, K., Ohara, H., Ueno, K., Todoroki, Y., Mizutani, M., & Hirai, N. (2012). Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8’-hydroxylase CYP707A. Journal of Plant Physiology, 169(3), 234–241. doi: https://doi.org/10.1016/j.jplph.2011.09.007 Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., Terahara, N., & Hirai, N. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology,171(10), 823–829. doi: https://doi.org/10.1016/j.jplph.2014.01.001 Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics28(24), 3211-3217. doi: https://doi.org/10.1093/bioinformatics/bts611 Koyama, K., Ikeda, H., Poudel, P. R., & Goto-Yamamoto, N. (2012). Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry78, 54-64. Lau, O. S., & Deng, X. W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in Plant Science, 17(10), 584–593. doi: https://doi.org/10.1016/j.tplants.2012.05.004Li, G., Zhao, J., Qin, B., Yin, Y., An, W., Mu, Z., & Cao, Y. (2019). ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. BMC Plant Biology,19(1), 1–13. doi:https://doi.org/10.1186/s12870-019-1931-7Li, Q.-H., & Yang, H.-Q. (2007). Cryptochrome signaling in plants.Photochemistry and Photobiology, 83(1), 94–101. doi:https://doi.org/10.1562/2006-02-28-ir-826Love, M., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15(12). doi:https://doi.org/10.1186/s13059-014-0550-8Lu, X. D., Zhou, C. M., Xu, P. B., Luo, Q., Lian, H. L., & Yang, H. Q. (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in arabidopsis.Molecular Plant, 8(3), 467–478. doi: https://doi.org/10.1016/j.molp.2014.11.025 Ma, Z. H., Li, W. F., Mao, J., Li, W., Zuo, C. W., Zhao, X., Dawuda, M. M., Shi, X. Y., & Chen, B. H. (2019). Synthesis of light-inducible and light-independent anthocyanins regulated by specific genes in grape “Marselan” (V. Vinifera L.). PeerJ, 2019(3), 1–24. doi: https://doi.org/10.7717/peerj.6521Massa, G. D., Kim, H. H., Wheeler, R. M., & Mitchell, C. A. (2008). Plant productivity in response to LED lighting. HortScience43(7), 1951-1956. Miao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., & Jiang, G. (2016). Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.Food Chemistry, 207, 93–100. doi:https://doi.org/10.1016/j.foodchem.2016.02.077Möglich, A., Yang, X., Ayers, R. A., & Moffat, K. (2010). Structure and function of plant photoreceptors. Annual Review of Plant Biology61, 21–47. doi:https://doi.org/10.1146/annurev-arplant-042809-112259Müller, D., Schantz, M., & Richling, E. (2012). High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.) and corresponding juices. Journal of Food Science77(4), C340-C345. Nagaoka, M., Maeda, T., Chatani, M., Handa, K., Yamakawa, T., Kiyohara, S., Negishi-Koga, T., Kato, Y., Takami, M., Niida, S., Lang, S. C., Kruger, M. C., & Suzuki, K. (2019). A delphinidin-enriched maqui berry extract improves bone metabolism and protects against bone loss in osteopenic mouse models. Antioxidants8(9), 386. doi:https://doi.org/10.3390/antiox8090386Nguyen, N., Suokas, M., Karppinen, K., Vuosku, J., Jaakola, L., & Häggman, H. (2018). Recognition of candidate transcription factors related to bilberry fruit ripening by de novo transcriptome and qRT-PCR analyses. Scientific Reports, 8(1), 1–12. doi:https://doi.org/10.1038/s41598-018-28158-7Nile, S., & Park, S. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition30(2), 134-144. doi: https://doi.org/10.1016/j.nut.2013.04.007Ouzounis, T., Rosenqvist, E., & Ottosen, C. O. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 50(8), 1128–1135. doi: https://doi.org/10.21273/hortsci.50.8.1128 Park, S.Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., …, & Cutler, S. R. (2009). Abscisic acid inhibits Type 2C protein phosphatases via the PYR/PYL family of START proteins.  Science (New York, N.Y.)324(5930), 1068–1071. doi:https://doi.org/10.1126/science.1173041Patro, R., Duggal, G., Love, M., Irizarry, R., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods14(4), 417-419. doi:https://doi.org/10.1038/nmeth.4197Pečenková, T., Marković, V., Sabol, P., Kulich, I., & Zárský, V. (2017). Exocyst and autophagy-related membrane trafficking in plants.Journal of Experimental Botany, 69(1), 47–57. doi:https://doi.org/10.1093/jxb/erx363Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., & Vianello, A. (2013). Plant flavonoids-biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14(7), 14950–14973. doi: https://doi.org/10.3390/ijms140714950 Plunkett, B.J., Espley, R.V., Dare, A.P., Warren, B.A.W., Grierson, E.R.P., Cordiner, S., Turner, J.L., Allan, A.C., Albert, N.W., Davies, K.M., Schwinn, K.E. (2018). MYBA from blueberry (Vacciniumsection Cyanococcus) is a subgroup 6 type R2R3MYB transcription factor that activates anthocyanin production. Frontiers in Plant Science 9: 1300. Primetta, A. K., Karppinen, K., Riihinen, K. R., & Jaakola, L. (2015). Metabolic and molecular analyses of white mutant Vaccinium berries show down-regulation of MYBPA1-type R2R3 MYB regulatory factor. Planta242(3), 631–643. doi:https://doi.org/10.1007/s00425-015-2363-8Ravaglia, D., Espley, R.V., Henry-Kirk R.A., Andreotti, C., Ziosi, V., Hellens, R.P., Costa, G., & Allan, A.C. (2013). Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology 13, 68. Rodyoung, A., Masuda, Y., Tomiyama, H., Saito, T., Okawa, K., Ohara, H., & Kondo, S. (2016). Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regulation, 79(1), 39–46. doi: https://doi.org/10.1007/s10725-015-0107-1Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England)31(19), 3210–3212. doi: https://doi.org/10.1093/bioinformatics/btv351 Takos, A.M., Jaffé, F.W., Jacob, S.R., Bogs, J., Robinson, S.P., & Walker, A.R. (2006). Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142, 1216−1232. Tao, R., Bai, S., Ni, J., Yang, Q., Zhao, Y., & Teng, Y. (2018). The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta248(1), 37-48. Thornthwaite, J. T., Thibado, S. P., & Thornthwaite, K. A. (2020). Bilberry anthocyanins as agents to address oxidative stress.Pathology. INC, 179-187. doi: https://doi.org/10.1016/b978-0-12-815972-9.00017-2 Tohge T, de Souza LP, Fernie AR. (2017). Current understanding of the pathways of flavonoid biosynthesis in model and crop plants.Journal of Experimental Botany 68: 4013−4028. Walker, A. R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R., & Robinson, S. P. (2007). White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant Journal,49(5), 772–785. doi: https://doi.org/10.1111/j.1365-313X.2006.02997.x Wang, J. W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL transcription factors define an endogenous flowering pathway inArabidopsis thaliana. Cell, 138(4), 738–749. doi:https://doi.org/10.1016/j.cell.2009.06.014Wheeler, S., Loveys, B., Ford, C., & Davies, C. (2009). The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis viniferaL. berry ripening by abscisic acid. Australian Journal of Grape and Wine Research, 15(3), 195–204. doi: https://doi.org/10.1111/j.1755-0238.2008.00045.x Wu, C., Deng, C., Hilario, E., Albert, N., Lafferty, D., Grierson, E., …, Chagné, D. (2021). A chromosome-scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition”. submitted to Molecular Ecology Resources. Wu, J., Mao, X., Cai, T., Luo, J., & Wei, L. (2006). KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Research34(Web Server), W720-W724. doi: https://doi.org/10.1093/nar/gkl167Wu, M., Si, M., Li, X., Song, L., Liu, J., Zhai, R., Cong, L., Yue, R., Yang, C., Ma, F., Xu, L., & Wang, Z. (2019). PbCOP1.1 contributes to the negative regulation of anthocyanin biosynthesis in pear.Plants, 8(2), 1–12. doi: https://doi.org/10.3390/plants8020039 Wu, X., Gong, Q., Ni, X., Zhou, Y., & Gao, Z. (2017). UFGT: The key enzyme associated with the petals variegation in japanese apricot.Frontiers in Plant Science, 8, 108.doi: https://doi.org/10.3389/fpls.2017.00108 Xu, W., Dubos, C., & Lepiniec, L. (2015). Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science20(3), 176-185. Yadav, V., Mallappa, C., Gangappa, S. N., Bhatia, S., & Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. The Plant Cell17(7), 1953–1966. doi: https://doi.org/10.1105/tpc.105.032060 Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., Luo, Y., Sun, B., Wang, X., & Tang, H. (2018). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria × ananassa). Molecules, 23(4), 1–17. doi: https://doi.org/10.3390/molecules23040820 Zhang, J., Zhang, Y., Song, S., Su, W., Hao, Y., & Liu, H. (2020). Supplementary red light results in the earlier ripening of tomato fruit depending on ethylene production. Environmental and Experimental Botany, 175, 104044. doi:https://doi.org/10.1016/j.envexpbot.2020.104044Zhao, J. (2015). Flavonoid transport mechanisms: How to go, and with whom. Trends in Plant Science, 20(9), 576–585. doi:https://doi.org/10.1016/j.tplants.2015.06.007Zoratti, L., Karppinen, K., Luengo Escobar, A., Haggman, H., & Jaakola, L. (2014a). Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science5, 534. doi: https://doi.org/10.3389/fpls.2014.00534 Zoratti, L., Sarala, M., Carvalho, E., Karppinen, K., Martens, S., Giongo, L., Häggman, H., and Jaakola, L. (2014b) Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC Plant Biol. 14:377. doi: https://doi.org/ 10.1186/s12870-014-0377-1Zoratti, L., Klemettilä, H., & Jaakola, L. (2016). Bilberry (Vaccinium myrtillus L.) Ecotypes. Nutritional Composition of Fruit Cultivars, 83-99. doi: https://doi.org/10.1016/b978-0-12-408117-8.0000 Zorenc Z., Veberic, R., Slatnar, A., Koron, D., Miosic, S., Chen, M.H., Haselmair-Gosch, C., Halbwirth, H., Mikulic-Petkovsek, M. (2017). A wild ’albino’ bilberry (Vaccinium myrtillus L.) from Slovenia shows three bottlenecks in the anthocyanin pathway and significant differences in the expression of several regulatory genes compared to the common blue berry type. PLoS One 12: e0190246.