References
1. Zhang J-j, Dong X, Cao Y-y, et al.
Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in
Wuhan, China. Allergy . 2020;75(7):1730-1741.
2. Zhu N, Zhang D, Wang W, et al. A
novel coronavirus from patients with pneumonia in China, 2019. N
Engl J Med . 2020;382:727-733.
3. Hein S, Herrlein ML, Mhedhbi I, et
al. Analysis of BNT162b2‐and CVnCoV‐elicited sera and of convalescent
sera toward SARS‐CoV‐2 viruses. Allergy . 2021;00:1-10.
4. Jackson LA, Anderson EJ, Rouphael
NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report.N Engl J Med . 2020;383:1920-1931.
5. Jackwood MW, de Wit S. Infectious
Bronchitis. In: Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V,
Suarez DL, eds. Diseases of Poultry . 14th ed. John Wiley & Sons,
Inc.; 2020:167-188.
6. Saif LJ, Wang Q, Vlasova AN, Jung
K, Xiao S. Coronaviruses. In: Zimmerman JJ, Karriker LA, Ramirez A,
Schwartz KJ, Stevenson GW, Zhang J, eds. Diseases of swine .
11th ed. John Wiley & Sons, Inc.; 2019:488-523.
7. Fabricant J. The early history of
infectious bronchitis. Avian Dis . 1998;42(4):648-650.
8. Tucciarone CM, Franzo G, Bianco A,
et al. Infectious bronchitis virus gel vaccination: evaluation of
Mass-like (B-48) and 793/B-like (1/96) vaccine kinetics after combined
administration at 1 day of age. Poult Sci . 2018;97(10):3501-3509.
9. Rohaim MA, El Naggar RF,
Abdelsabour MA, Mohamed MH, El-Sabagh IM, Munir M. Evolutionary analysis
of infectious bronchitis virus reveals marked genetic diversity and
recombination events. Genes . 2020;11(6):605.
10. Valastro V, Holmes EC, Britton P,
et al. S1 gene-based phylogeny of infectious bronchitis virus: an
attempt to harmonize virus classification. Infect Genet Evol.2016;39:349-364.
11. Korath AD, Janda J, Untersmayr E,
et al. One Health: EAACI Position Paper on coronaviruses at the
human‐animal interface, with a specific focus on comparative and
zoonotic aspects of SARS‐Cov‐2. Allergy . 2022;77(1):55-71.
12. Tizard IR. Vaccination against
coronaviruses in domestic animals. Vaccine .
2020;38(33):5123-5130.
13. Enjuanes L, Almazán F, Sola I,
Zuñiga S. Biochemical aspects of coronavirus replication and virus-host
interaction. Annu Rev Microbiol . 2006;60:211-230.
14. Shang J, Wan Y, Luo C, et al.
Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci.2020;117(21):11727-11734.
15. Perlman S, Netland J.
Coronaviruses post-SARS: update on replication and pathogenesis.Nat Rev Microbiol . 2009;7(6):439-450.
16. Ge J, Zhang S, Zhang L, Wang X.
Structural basis of severe acute respiratory syndrome coronavirus 2
infection. Curr Opin HIV AIDS . 2021;16(1):74-81.
17. Spiga O, Bernini A, Ciutti A, et
al. Molecular modelling of S1 and S2 subunits of SARS coronavirus spike
glycoprotein. Biochem Biophys Res Commun . 2003;310(1):78-83.
18. Shang J, Zheng Y, Yang Y, et al.
Cryo-EM structure of infectious bronchitis coronavirus spike protein
reveals structural and functional evolution of coronavirus spike
proteins. PLoS Pathog . 2018;14(4):e1007009.
19. Cervia C, Nilsson J, Zurbuchen Y,
et al. Systemic and mucosal antibody responses specific to SARS-CoV-2
during mild versus severe COVID-19. J. Allergy Clin. Immunol .
2021;147(2):545-557. e9.
20. Mao T, Israelow B, Suberi A, et
al. Unadjuvanted intranasal spike vaccine booster elicits robust
protective mucosal immunity against sarbecoviruses. bioRxiv .
Preprint posted online January 26, 2022. doi: 10.1101/2022.01.24.477597
21. Nguyen-Contant P, Embong AK,
Kanagaiah P, et al. S protein-reactive IgG and memory B cell production
after human SARS-CoV-2 infection includes broad reactivity to the S2
subunit. MBio . 2020;11(5):e01991-20.
22. Yu D, Han Z, Xu J, et al. A novel
B-cell epitope of avian infectious bronchitis virus N protein.Viral Immunol . 2010;23(2):189-199.
23. Yu Y, Wang M, Zhang X, et al.
Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in
COVID-19 patients. Signal Transduct Target Ther. 2021;6(1):1-10.
24. Yamin R, Jones AT, Hoffmann H-H,
et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2
efficacy. Nature . 2021;599(7885):465-470.
25. Lee WS, Wheatley AK, Kent SJ,
DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and
therapies. Nat Microbiol . 2020;5(10):1185-1191.
26. Shrock E, Fujimura E, Kula T, et
al. Viral epitope profiling of COVID-19 patients reveals
cross-reactivity and correlates of severity. Science .
2020;370(6520).
27. Brigger D, Horn MP, Pennington
LF, et al. Accuracy of serological testing for SARS‐CoV‐2 antibodies:
First results of a large mixed‐method evaluation study. Allergy .
2021;76(3):853-865.
28. Tso FY, Lidenge SJ, Pena PB, et
al. High prevalence of pre-existing serological cross-reactivity against
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in
sub-Saharan Africa. Int J Infect Dis . 2021;102:577-583.
29. Clustal Omega Multiple Sequence
Alignment. Accessed 21.01.2021,
https://www.ebi.ac.uk/Tools/msa/clustalo/
30. Okba NM, Müller MA, Li W, et al.
Severe acute respiratory syndrome coronavirus 2− specific antibody
responses in coronavirus disease patients. Emerg Infect Dis .
2020;26(7):1478.
31. Bates TA, Weinstein JB, Leier HC,
Messer WB, Tafesse FG. Cross-reactivity of SARS-CoV structural protein
antibodies against SARS-CoV-2. Cell Rep . 2021;34(7):108737.
32. Mina MJ, Metcalf CJE, De Swart
RL, Osterhaus A, Grenfell BT. Long-term measles-induced immunomodulation
increases overall childhood infectious disease mortality.Science . 2015;348(6235):694-699.
33. Laksono BM, de Vries RD, Verburgh
RJ, et al. Studies into the mechanism of measles-associated immune
suppression during a measles outbreak in the Netherlands. Nat
Comm . 2018;9(1):1-10.
34. Mina MJ, Kula T, Leng Y, et al.
Measles virus infection diminishes preexisting antibodies that offer
protection from other pathogens. Science . 2019;366(6465):599-606.
35. Shen X-R, Geng R, Li Q, et al.
ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal
Transduct Target Ther . 2022;7(1):1-11.
36. Rees-Spear C, McCoy LE. Vaccine
responses in ageing and chronic viral infection. Oxf Open
Immunol . 2021;2(1):iqab007.
37. Bruni M, Cecatiello V,
Diaz-Basabe A, et al. Persistence of anti-SARS-CoV-2 antibodies in
non-hospitalized COVID-19 convalescent health care workers. J Clin
Med . 2020;9(10):3188.
38. Chen X, Pan Z, Yue S, et al.
Disease severity dictates SARS-CoV-2-specific neutralizing antibody
responses in COVID-19. Signal Transduct Target Ther .
2020;5(1):1-6.
39. Kowitdamrong E, Puthanakit T,
Jantarabenjakul W, et al. Antibody responses to SARS-CoV-2 in patients
with differing severities of coronavirus disease 2019. PLoS One .
2020;15(10):e0240502.
40. Dugas M, Grote-Westrick T,
Vollenberg R, et al. Less severe course of COVID-19 is associated with
elevated levels of antibodies against seasonal human coronaviruses OC43
and HKU1 (HCoV OC43, HCoV HKU1). Int J Infect Dis .
2021;105:304-306.
41. Yongchen Z, Shen H, Wang X, et
al. Different longitudinal patterns of nucleic acid and serology testing
results based on disease severity of COVID-19 patients. Emerg
Microbes & Infect . 2020;9(1):833-836.
42. Yates JL, Ehrbar DJ, Hunt DT, et
al. Serological analysis reveals an imbalanced IgG subclass composition
associated with COVID-19 disease severity. Cell Rep Med .
2021:100329.
43. Loyal L, Braun J, Henze L, et al.
Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon
infection and vaccination. Science . 2021;374(6564).
44. Kosikova M, Li L, Radvak P, Ye Z,
Wan X-F, Xie H. Imprinting of repeated influenza A/H3 exposures on
antibody quantity and antibody quality: implications for seasonal
vaccine strain selection and vaccine performance. Clin Infect
Dis . 2018;67(10):1523-1532.
Table 1. Results of the virus neutralization test.