References
[1] A. Mottet, C. de Haan, A. Falcucci, G. Tempio, C. Opio, P.
Gerber, Livestock: On our plates or eating at our table? A new analysis
of the feed/food debate, Global Food Security 14 (2017) 1-8.
[2] A.L. Van Eenennaam, Application of genome editing in farm
animals: Cattle, Transgenic Research, Springer, 2019, pp. 93-100.
[3] G.E. Dahl, Physiology of lactation in dairy cattle—challenges
to sustainable production, Animal Agriculture, Elsevier2020, pp.
121-129.
[4] F. Lima, A. De Vries, C. Risco, J. Santos, W. Thatcher, Economic
comparison of natural service and timed artificial insemination breeding
programs in dairy cattle, Journal of dairy science 93 (2010) 4404-4413.
[5] R. Kambadur, M. Sharma, T.P. Smith, J.J. Bass, Mutations in
myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle,
Genome research 7 (1997) 910-915.
[6] D.S. Mosher, P. Quignon, C.D. Bustamante, N.B. Sutter, C.S.
Mellersh, H.G. Parker, E.A. Ostrander, A mutation in the myostatin gene
increases muscle mass and enhances racing performance in heterozygote
dogs, PLoS genetics 3 (2007) e79.
[7] A. Clop, F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibé,
J. Bouix, F. Caiment, J.-M. Elsen, F. Eychenne, A mutation creating a
potential illegitimate microRNA target site in the myostatin gene
affects muscularity in sheep, Nature genetics 38 (2006) 813-818.
[8] L. Qian, M. Tang, J. Yang, Q. Wang, C. Cai, S. Jiang, H. Li, K.
Jiang, P. Gao, D. Ma, Targeted mutations in myostatin by zinc-finger
nucleases result in double-muscled phenotype in Meishan pigs, Scientific
reports 5 (2015) 1-13.
[9] M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W.
Kömen, T. Braun, J.F. Tobin, S.-J. Lee, Myostatin mutation associated
with gross muscle hypertrophy in a child, New England Journal of
Medicine 350 (2004) 2682-2688.
[10] M. Georges, C. Charlier, B. Hayes, Harnessing genomic
information for livestock improvement, Nature Reviews Genetics 20 (2019)
135-156.
[11] X. Liu, Y. Wang, Y. Tian, Y. Yu, M. Gao, G. Hu, F. Su, S. Pan,
Y. Luo, Z. Guo, Generation of mastitis resistance in cows by targeting
human lysozyme gene to β-casein locus using zinc-finger nucleases,
Proceedings of the Royal Society B: Biological Sciences 281 (2014)
20133368.
[12] D.F. Carlson, C.A. Lancto, B. Zang, E.-S. Kim, M. Walton, D.
Oldeschulte, C. Seabury, T.S. Sonstegard, S.C. Fahrenkrug, Production of
hornless dairy cattle from genome-edited cell lines, Nature
biotechnology 34 (2016) 479-481.
[13] S. Yu, J. Luo, Z. Song, F. Ding, Y. Dai, N. Li, Highly
efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger
nucleases in cattle, Cell research 21 (2011) 1638-1640.
[14] J.A. Richt, P. Kasinathan, A.N. Hamir, J. Castilla, T.
Sathiyaseelan, F. Vargas, J. Sathiyaseelan, H. Wu, H. Matsushita, J.
Koster, Production of cattle lacking prion protein, Nature biotechnology
25 (2007) 132-138.
[15] B. Brophy, G. Smolenski, T. Wheeler, D. Wells, P. L’Huillier,
G. Laible, Cloned transgenic cattle produce milk with higher levels of
β-casein and κ-casein, Nature biotechnology 21 (2003) 157-162.
[16] W. Tan, C. Proudfoot, S.G. Lillico, C.B.A. Whitelaw, Gene
targeting, genome editing: from Dolly to editors, Transgenic research 25
(2016) 273-287.
[17] S.-Y. Yum, K.-Y. Youn, W.-J. Choi, G. Jang, Development of
genome engineering technologies in cattle: from random to specific,
Journal of animal science and biotechnology 9 (2018) 1-9.
[18] Z. MCLEAN, B. OBACK, G. LAIBLE, Embryo-mediated genome editing
for accelerated genetic improvement of livestock, Frontiers of
Agricultural Science and Engineering 7 (2020) 148-160.
[19] C. Proudfoot, D.F. Carlson, R. Huddart, C.R. Long, J.H. Pryor,
T.J. King, S.G. Lillico, A.J. Mileham, D.G. McLaren, C.B.A. Whitelaw,
Genome edited sheep and cattle, Transgenic research 24 (2015) 147-153.
[20] J. Park, K. Lim, J.S. Kim, S. Bae, Cas-analyzer: an online tool
for assessing genome editing results using NGS data, Bioinformatics 33
(2017) 286-288. 10.1093/bioinformatics/btw561.
[21] L. Liu, X.-D. Fan, CRISPR–Cas system: a powerful tool for
genome engineering, Plant molecular biology 85 (2014) 209-218.
[22] S.-J. Lee, A.C. McPherron, Regulation of myostatin activity and
muscle growth, Proceedings of the National Academy of Sciences 98 (2001)
9306-9311.
[23] R.S. Tries, T. Chen, M.V. Da Vies, K.N. Tomkinson, A.A.
Pearson, Q.A. Shakey, N.M. Wolfman, GDF-8 propeptide binds to GDF-8 and
antagonizes biological activity by inhibiting GDF-8 receptor binding,
Growth factors 18 (2001) 251-259.
[24] N.M. Wolfman, A.C. McPherron, W.N. Pappano, M.V. Davies, K.
Song, K.N. Tomkinson, J.F. Wright, L. Zhao, S.M. Sebald, D.S. Greenspan,
Activation of latent myostatin by the BMP-1/tolloid family of
metalloproteinases, Proceedings of the National Academy of Sciences 100
(2003) 15842-15846.
[25] J. Luo, Z. Song, S. Yu, D. Cui, B. Wang, F. Ding, S. Li, Y.
Dai, N. Li, Efficient generation of myostatin (MSTN) biallelic mutations
in cattle using zinc finger nucleases, PloS one 9 (2014) e95225.
[26] T. Kocsis, G. Trencsenyi, K. Szabo, J.A. Baan, G. Muller, L.
Mendler, I. Garai, H. Reinauer, F. Deak, L. Dux, Myostatin propeptide
mutation of the hypermuscular Compact mice decreases the formation of
myostatin and improves insulin sensitivity, American Journal of
Physiology-Endocrinology and Metabolism 312 (2017) E150-E160.
[27] M. Cenariu, E. Pall, C. Cernea, I. Groza, Evaluation of bovine
embryo biopsy techniques according to their ability to preserve embryo
viability, Journal of Biomedicine and Biotechnology 2012 (2012).
Table 1. Blood analysis in the offspring