
Title: Using Bayesian Modeling to Optimize Antipsychotic Dosage in Clinical Practice

Authors: Mohamed Ismail*1 , Thomas Straubinger*1, Hiroyuki Uchida2, Ariel Graff-
Guerrero3,4,5,6, Shinichiro Nakajima2, Takefumi Suzuki7, Fernando Caravaggio3, 5, Philip 
Gerretsen3,5, David Mamo8, Benoit H. Mulsant4,5,6, Bruce G. Pollock4,5,6, Robert Bies1,9

Affiliations:

1. Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA

2. Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan

3. Multimodal Imaging Group in Geriatrics - Brain Health Imaging Centre, Centre for 
Addiction and Mental Health, Toronto, Canada

4. Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, 
Canada

5. Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, 
Canada

6. Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, Canada

7. Department of Neuropsychiatry. University of Yamanashi Faculty of Medicine, 
Yamanashi, Japan

8. Departments of Psychiatry & Gerontology, University of Malta, Msida, Malta

9. Institute for Computational and Data Sciences, University at Buffalo, Buffalo, NY, USA

Corresponding Author Contact Information:

Robert Bies, State University of New York at Buffalo, School of Pharmacy and Pharmaceutical 
Sciences. robertbi@buffalo.edu

Keywords: Olanzapine, risperidone, population pharmacokinetic model, therapeutic drug 
monitoring.

Word Count: 3,017

Table Count: 4

Figure Count: 4

Abstract:

* Mohamed Ismail and Thomas Straubinger should be considered joint first author



Aim

A robust and user-friendly software tool was developed for the prediction of dopamine 
D2 receptor occupancy (RO) in patients with schizophrenia treated with either olanzapine or 
risperidone. This tool can facilitate clinician exploration of the impact of treatment strategies on 
RO using sparse plasma concentration measurements.

Methods

Previously developed population pharmacokinetic (PPK) models for olanzapine and risperidone 
were combined with a PD model for D2 receptor occupancy (RO) and implemented in the R 
programming language. MAP Bayesian estimation was used to provide predictions of plasma 
concentration and receptor occupancy and based on sparse PK measurements.

Results

The average (standard deviation) response times of the tools were 2.8 (3.1) and 5.3 (4.3) seconds 
for olanzapine and risperidone, respectively. The mean error (95% confidence interval) and root 
mean squared error (RMSE, 95% CI) of predicted versus observed concentrations were 3.73 ng/
mL (-2.42 – 9.87) and 10.816 (6.71 – 14.93) for olanzapine, and 0.46 ng/mL (-4.56 – 5.47) and 
6.68 (3.57 – 9.78) for risperidone and its active metabolite (9-OH risperidone). Mean error and 
RMSE of RO were -1.47% (-4.65 – 1.69) and 5.80 (3.89 – 7.72) for olanzapine and -0.91% (-
7.68 – 5.85) and 8.87 (4.56 – 13.17) for risperidone.

Conclusion

Treatment of schizophrenia with antipsychotics offers unique challenges and requires careful 
monitoring to establish the optimal dosing regimen. Our monitoring software predicts RO in a 
reliable and accurate form.



What is already known about this subject

 Treatment with olanzapine or risperidone for schizophrenia requires close monitoring and
careful titration to reach therapeutic levels

 Dopamine D2 receptor occupancy is linked to clinical outcomes, and provides a targetable
therapeutic window

 Population PK models incorporating maximum a-posteriori Bayesian estimation can 
provide predictions of individualized drug concentration and receptor occupancy

What this study adds

 A robust, rapid, and user-friendly software tool was developed for predicting olanzapine 
and risperidone drug concentrations and D2 receptor occupancy based on sparse 
sampling.

 An easy to use user interface provides predictions that can be used to adjust olanzapine or
risperidone dosages. 



1. Introduction

Schizophrenia is a psychiatric disorder with a lifetime prevalence of roughly 0.5-1% of the 
population worldwide, with similar rates amongst males and females [1]. Onset of the disease 
typically occurs during early adulthood and generally requires maintenance antipsychotic therapy
throughout the lifetime of the patient [2]. While the etiology of the disease is not completely 
understood, the current consensus suggests an abnormally excessive dopaminergic activity in the 
striatum [3] in a subset of patients [4].

The treatment of schizophrenia poses a challenge to clinicians as poor clinical outcomes can 
arise both from under- and over-treatment. In the former scenario, patients receiving a 
subtherapeutic dose will continue to experience psychotic symptoms due to insufficient striatal 
dopamine D2 receptor occupancy (RO). In the latter scenario, patients receiving a 
supratherapeutic dose may experience severe adverse events from excessive RO [5]. Positron 
emission tomography (PET) studies have identified a link between striatal dopamine D2 RO and 
successful clinical outcomes, with a therapeutic window identified as 65 - 80% D2 RO [6,7]: RO 
below 65% is associated with poor symptomatic response and RO above 80% is associated with  
extrapyramidal side effects as a result of excessive receptor antagonism. However, due to 
challenges associated with availability and high cost, it is not feasible to routinely measure RO 
with PET in clinical settings. Thus, antipsychotics are titrated based on clinical effectiveness and 
tolerability on a trial-and-error basis, leading to suboptimal clinical outcomes [8,9].

Previous studies have described the relationship between plasma concentrations of several 
antipsychotics and dopamine D2 RO by use of the Hill equation, unique maximal binding, and 
dissociation rate constant parameters for each drug [7]. These models allow for reliable 
prediction of RO from assayed plasma concentrations, potentially reducing the need for PET 
scans. 

Olanzapine and risperidone are commonly used antipsychotics indicated for the treatment of 
schizophrenia [10]. Both antipsychotics act as antagonists of dopamine D2 receptors [11]. This 
antagonism of dopamine activity is required for their efficacy, but it is also responsible for 
various side effects. The pharmacokinetics (PK) and pharmacodynamics (PD) of olanzapine and 
risperidone have been well characterized. Population PK (PPK) models exist for both drugs
[12,13]. PPK modeling is a mathematical framework that can identify the central tendencies of 
PK parameters in a population, the variability in those parameters across individuals, and the 
sources of the variability [14]. PPK models can be used to generate individualized estimates of 
PK parameters based on a patient’s demographics and sparsely sampled plasma drug 
concentrations. Maximum-a-posteriori Bayesian estimation maximizes the likelihood of 
predicting an individual’s PK parameters given their observed sparsely-sampled drug 
concentrations and demographics, while taking into account the prior distribution of population 



parameters. With these individualized parameters, one can use the model to predict drug 
concentrations for new dosages. Combined with pharmacodynamic models that relate plasma 
concentrations to D2 RO, these PPK models can be used to predict RO with various dosages and 
to determine the optimal dosage for an individual patient. The presence of a well-defined 
therapeutic window for RO and the ability to reliably predict RO in a patient make these two 
drugs excellent candidates for model guided dosage optimization.

Nakajima et. al. have shown that the population modeling approach, using the nonlinear mixed 
effects modeling program NONMEM, was able to adequately predict RO [15]. However, 
although considered the gold standard for population modeling, NONMEM is difficult to use at 
the point of care by clinicians. NONMEM requires specialized training to execute, is expensive, 
and is inconvenient to use in the clinic due to the lack of a graphical user interface. Thus, the 
objective of the current work was to extend on the approach of Nakajima et. al. by developing 
and validating a convenient, yet robust and accurate, software tool allowing physicians to 
explore different levels of RO using sparse blood concentration measurements of olanzapine or 
risperidone. This tool can facilitate the investigation of optimal dosage strategies. An ancillary, 
but important goal, is for said tool to be accessible and readily usable in a clinical trial setting. To
accomplish this, the tool has been implemented using free, open-source software. 

2. Methods

2.1 Settings and Participants

The details of the study have been previously reported [16,17]. In brief, PET imaging was carried
out at the Centre for Addiction and Mental Health (CAMH), Toronto, between August 2007 and 
July 2013. The participants were recruited among clinically stable outpatients aged 50 or older 
who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) 
criteria for schizophrenia or schizoaffective disorder, and who had received a continuous 
olanzapine dosage of at least 10 mg/day or a risperidone dosage of at least 2 mg/day. The study 
was approved by the CAMH Research Ethics Board and all participants provided written 
informed consent.

2.2 Study Design

As previously described, blood samples from 2 separate time points were measured for either 
olanzapine or risperidone with its active metabolite (9-hydroxyrisperidone) plasma 
concentrations. Daily dosage of olanzapine or risperidone was then reduced by up to 40%, while 
ensuring that the dosage was above the lowest dose recommended in clinical guidelines, 
specifically 7.5 mg/day for olanzapine and 1.5 mg/day for risperidone. A minimum of two weeks
after dosage reduction, participants underwent a [11C]-raclopride PET scan, at which point an 
additional blood sample was taken. Plasma concentrations of olanzapine, risperidone, and 9-
hydroxyrisperidone were quantified by tandem LC/MS/MS using analytical methods developed 
by the CAMH Clinical Laboratory.



2.3 Olanzapine and Risperidone Population Pharmacokinetic Models

Population pharmacokinetic models have previously been developed for olanzapine and 
risperidone [12,13]: 1527 olanzapine concentrations from 523 patients and 1236 risperidone and 
9-hydroxyrisperidone concentrations from 490 patients were used for the respective analyses. 
The best fitting models, using goodness-of-fit plots and objective function values as selection 
criteria, were a one compartment model with first order absorption for olanzapine and a one-
compartment, parent-metabolite model with first order absorption for risperidone and its active 
metabolite. Risperidone clearance was found to be most adequately described by a tri-modal 
mixture distribution, likely arising from differing phenotypes (extensive, intermediate, and poor 
metabolizers) of the CYP2D6 enzyme, although genotyping was not performed. Smoking status, 
race, and sex were found to be significant covariates of olanzapine drug clearance and age was 
found to be a significant covariate of risperidone clearance.

 All PK parameters were assumed to follow a log-normal distribution. An individual’s parameter 
values can be described as follows:

Pik=TVPk*e❑

ηik

where Pik is the kth parameter in the ith individual, TVPk is the population mean of the kth 
parameter, and ɳik represents the difference between the natural log of the individual’s parameter 
value and the natural log of TVPk, and comes from a normal distribution with mean 0 and 
variance Ωk.

For olanzapine, the most appropriate residual error model was found to be an additive error 
model. For risperidone and its active metabolite, an additive plus proportional error model was 
used.

2.4 Estimating Maximum A Posteriori (MAP) Bayes Parameters

Bayes theorem is fundamentally important in obtaining individualized estimates of PK 
parameters in the context of population modeling. Using the theorem, the likelihood of an 
individual’s PK parameter random effect (ɳ) values given their observed concentrations can be 
derived:

p(η∨D)=
p (D∨η)* p(η)

C

where ɳ represents the vector of all ɳk for an individual, D represents the observed data for a 
participant, and C is a constant. The probability of an individual’s random effect parameters 
given their observed data is proportional to the probability of the observed data given a set of 
random effect parameters multiplied by the probability of the set of random effects. After some 
manipulation and simplification, we obtain the MAP Bayes objective function that we seek to 
minimize by optimizing the participant’s parameters:



MAPobj=∑
j=1

m

( ( yobs , j− y pred , j )
2

σ j
2 +ln (σ j

2 ))+η ⋅Ω ⋅η
where yobs,j is the jth observed concentration, ypred, j is the jth model predicted observation, σ2

j is 
the variance associated with the jth predicted concentration, and m is the number of observed 
concentrations for an individual. 

2.5 Analysis Platform

R programming version 3.3.1 [18] was used for implementing the PPK model, optimizing 
parameters, and user interface design and functionality. R package mrgsolve version 0.8.6 [19] 
was used to solve model differential equations. The package implements a modified version of 
the Livermore Solver for Ordinary Differential Equations known as LSODA [20].

Gradient descent was used to optimize parameters from the optim R package. This function 
utilizes the quasi-newton method, which updates parameters using the inverse Hessian matrix to 
determine the direction of parameter search and the gradient of the objective function with 
respect to the parameters. 

2.6 Search for Parameters

The search for parameters is an iterative process and can be described as follows:

1. Initially set all PK parameters to the population mean values by setting all ETAs to 0.

2. Simulate concentration-time profiles using the PK model.

3. Obtain vector of predicted concentrations at times in which concentrations were measured and
calculate objective function value.

4. Use gradient descent optimization function to update ETA parameter values.

5. Return to step 2 and repeat process until convergence (no improvement in objective function)

2.7 Development of User Interface

The user interface for the application was developed using the R programming package, shiny
[21]. This package allows for the creation of an HTML web application that can run R functions 
in the background. Input elements, known as control widgets, are included in the user interface in
which the clinical researcher can interact with. These inputs are then sent into the population 
pharmacokinetic model, parameter optimization is performed in R, and results are sent back to 
the user interface for the clinical researcher to review and to inform dosing. The application is 
open-source and can be downloaded from https://github.com/TomStraubinger/Olanz-Risp-App.

https://github.com/TomStraubinger/Olanz-Risp-App


2.8 Application Workflow – Treatment Naïve

The application is divided into two major sections. The first section can be used to guide dosing 
in treatment naive patients using population mean parameters. The clinician can select to either 
simulate for a specific dosage, target a steady state trough concentration, or target a steady state 
percent D2 RO. After specifying the dosing frequency in hours and pertinent patient 
characteristics described in section 2.3, the program displays the predicted pharmacokinetic and 
RO profiles in separate tabs. An example of the user interface for the olanzapine application is 
shown in Figure 1. If the clinician has selected to target a concentration or RO, the program will 
display a suggested dosage to achieve this level. Under the “Parameters” tab, the user can view 
population clearance and volume parameters, as well as exposure parameters such as AUC, peak,
and trough concentrations.

2.9 Application Workflow – Adaptive Dosing

While the first screen uses population mean PK parameters to make predictions, the second 
screen, shown in Figure 2, allows the clinician to fit the pharmacokinetic model to a patient’s 
observed plasma concentration drug levels and obtain individualized PK parameter estimates.  
Again, in this section, clinicians must enter pertinent patient demographics. However, they must 
also provide some information about plasma concentration measurements. Based on the model’s 
ability to utilize sparse sampling data, the user can provide one or two plasma drug levels, and 
must specify whether the measurements were taken at steady state or after a single dose. Once 
the observed data are entered, the program applies the population model to the individual’s data 
and generates empirical Bayes pharmacokinetic parameter estimates. The optimized parameter 
values can be viewed under the “Parameters” tab. Under the “New Regimen” tab, the clinician 
can now optimize dosing with these new parameters. Again, a specific dose can be simulated, or 
a steady-state trough concentration, or RO can be targeted, and the dosage will be suggested. The
output plot under the “PK Profile” tab shows the predicted concentration vs. time profiles of the 
original regimen and the adjusted regimen, overlaid with the raw observed data. Under the 
“Receptor Occupancy” tab, the clinician can view the predicted RO profiles for the original and 
adjusted regimens.

2.10 Evaluation of Performance and Statistical Analyses

Each participant had 3 blood samples collected at separate time points for either olanzapine or 
risperidone and its metabolite, 9-hydroxyrisperidone. For each participant, the concentrations 
from the first 2 time points were used in optimizing the individual’s parameter values. The third 
blood sample was used for external validation. External validation of a model allows for the 
qualification of the model’s predictive performance using data that were not used to fit the 
model. Additionally, since participants had a dosage reduction of 40% or less after the second 
blood sample time point, external validation allows for assessment of model performance for the 



prediction of receptor occupancy and plasma concentration when extrapolating to new dosage 
regimens.

Statistical analyses were performed using R. The following analyses were performed for 
predicted concentrations and D2 RO for both olanzapine and risperidone. To assess model 
performance in a quantitative manner, the mean prediction error (difference of predicted values 
and observed values) was used to detect the presence of any systemic bias in the model 
predictions. The mean root squared error (RMSE) was used as a measure of the model’s 
precision. A two-tailed Pearson’s correlation (r) analysis at an alpha level of 0.05 was performed 
to test the null hypothesis, H-null: r = 0, and the alternate hypothesis H-a: r ≠ 0. The mixture 
distribution for risperidone clearance was addressed in the analysis by evaluating the likelihood 
of the random effect at each of the three modes with respect to the clearance of risperidone.  The 
optimal likelihood value resulting from this evaluation was then used as the basis for selecting 
the “population-mode” for clearance of risperidone out of the three possible models.

3. Results

3.1 Application Performance

The developed applications were fast performing, taking an average (standard deviation) of 2.8 
(3.1) and 5.3 (4.3) seconds for olanzapine and risperidone, respectively, to optimize participant 
parameters and display output. The slightly slower performance of the risperidone model is due 
to the higher complexity of this model.

The mean error (95% CI) of predicted versus observed olanzapine plasma concentrations was 
3.73 ng/mL (-2.42 – 9.87). The RMSE (95%CI) of olanzapine plasma concentrations was 10.82 
(6.71-14.93). The mean error of predicted versus observed D2 RO (95% CI) following treatment 
with olanzapine was -1.47% (-4.65 – 1.69) and the RMSE (95% CI) was 5.80 (3.89 – 7.72).  

The mean error (95% CI) of predicted versus observed risperidone plus 9-OH risperidone plasma
concentrations was 0.46 ng/mL (-4.56 – 5.47), and the RMSE (95%CI) was 6.68 (3.57 – 9.78). 
The mean error of predicted versus observed D2 RO (95% CI) following treatment with 
risperidone was -0.91% (-7.68 – 5.85) and the RMSE (95% CI) was 8.87 (4.56 – 13.17).

Visual comparisons of the predicted versus observed values for the concentration of both drugs 
are shown in Figure 3. Similarly, comparisons of observed versus predicted D2 RO are shown in 
Figure 4.

Performance of the application was compared to results from Nakajima et. al., in which 
NONMEM was used to predict concentrations and D2 RO at the third time point. Mean and 
standard deviation (SD) of plasma concentrations, dosages, and D2 RO are reported in Table 1. 
Summary statistics for predicted pharmacokinetic parameters are provided in Table 2. The 
comparison is summarized in Table 3 and Table 4.



4. Discussion

Previous work has identified a putative therapeutic range of D2 RO for the treatment of 
schizophrenia with olanzapine or risperidone. The establishment of a therapeutic window, in 
theory, allows for dosage adjustment based on therapeutic drug monitoring (TDM), an approach 
that could be superior to the current trial and error approach. However, TDM presents its own 
challenges. The logistics and costs associated with repeated blood sampling needed for TDM 
makes it impractical in most clinical settings. Furthermore, advanced training is required to use 
software platforms on which population PK/PD models run, presenting additional barriers to 
their clinical use.

We have developed an app to provide clinicians with a rapid, user-friendly way to assess 
prospectively the impact of dosage changes of olanzapine or risperidone or to estimate the 
dosage needed to reach a target concentration or D2 RO. To this end, the app offers two main 
functions. First, the ability to simulate PK profiles in treatment-naïve patients and offer dosing 
recommendations for targeting specific trough concentrations or D2 RO. Second, the adaptive 
dosing function, wherein the app can generate a PK profile based on one or two plasma 
concentration measurements, and can simulate new dosing regimens or, again, suggest a dosage 
that targets a specific trough concentration or D2 RO. Both functions incorporate prior 
information on population pharmacokinetic parameters and covariate effects to offer predictions 
based on limited data.  

App performance was assessed both on speed and accuracy. In terms of speed, the app was able 
to complete model simulations in a matter of seconds. This is an important characteristic, as run 
times for even simple model fitting and simulation in NONMEM can be on the order of minutes. 
In terms of accuracy, the predictions of the app had comparable error rates to those reported by 
Nakajima et al when using NONMEM [15]. This supports the predictive ability of the app. 
However, at this stage, its predictions should not yet be used to make clinical decisions. Until our
results have been confirmed and extended, the app should be used only in research studies to 
quickly and conveniently investigate hypothetical, “what if” scenarios.

The ultimate, ongoing goal of this work is the development of a clinically useful tool for guiding 
the dosing of antipsychotics in patients with schizophrenia. In its current form, the app is limited 
to the scope of its underlying models in terms of what it can and cannot predict. The app can 
only offer predictions for two antipsychotics, olanzapine or risperidone. It is based on the 
relationships among dosages, concentrations, and D2 RO. While in turn, D2 RO has been linked 
to clinical outcomes (i.e., effectiveness and tolerability), the app does not offer direct predictions 
about clinical outcomes.

In summary, this study demonstrates that an app can provide rapid predictions and simulations 
using sparse data, with accuracy levels on par with far more complex population modeling 
software. This proof of concept supports the feasibility of implementing clinically individualized 



predictive dosing. Further testing and validation is needed to develop an app that could be used 
by clinicians. In particular, before an app can provide specific clinical recommendations, 
additional research is needed about the relationships between D2 RO and specific clinical 
outcomes.  This work represents an important step towards the development of personalized, 
adaptive dosing of antipsychotics, a paradigm which could impact the pharmacotherapy of 
schizophrenia.
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Tables

Parameter Units Mean SD

Olanzapine Dose mg 14.56 8.23

Concentration ng/mL 36.01 29.52

D2 Receptor Occupancy % 65.65 24.03

Risperidone Dose mg 3.26 2.02

Concentration ng/mL 4.31 5.60

9-OH Risperidone Concentration ng/mL 32.33 21.06

Risperidone + 
9-OH Risperidone

Concentration ng/mL 34.23 22.88

D2 Receptor Occupancy % 65.39 12.16

Table 1. Summary statistics for observed dose, concentration, and D2 receptor occupancy.



Parameter Units Value

Olanzapine CL L/h 16.2

ka h-1 0.5

V L 2230

Smoking on CL 8.74

Sex on CL 5.14

Race on CL 4.28

ωCL % CV 46.04

ωV % CV 72.66

Emax % Occupancy 100

EC50 ng/mL 10.4

Risperidone CLPM L/h 13.7

CLIM L/h 77.7

CLEM L/h 158

V, VM L 444

ka h-1 1.7

CLM L/h 8.83

Age on CLM -0.378

KFPM 0.96

KFIM 1.0

KFEM 0.595

ωCL, PM % CV 59.16

ωCL, IM % CV 51.96

ωCL, EM % CV 62.45

ωV % CV 54.77

ωCLM % CV 73.45

Emax % Occupancy 88

EC50 ng/mL 8.2

Table 2. Summary of population PK parameter values. CL, clearance of olanzapine or 
risperidone; ka, first-order absorption rate constant; V, volume of distribution of olanzapine or 
risperidone; VM, volume of distribution of 9-OH risperidone; CLM, clearance of 9-OH 
risperidone; KF, fraction of risperidone clearance to 9-OH risperidone; ω, inter-individual 
variability coefficient for the corresponding parameter; Emax, maximum drug effect; EC50, drug 
concentration producing 50% of maximum effect; PM, poor metabolizer; IM, intermediate 
metabolizer; EM, extensive metabolizer.



Shiny Dashboard 

Application

NONMEM

Olanzapine Mean error (ng/mL) 3.73 3.23

Root mean squared 

error

10.80 13.96

Risperidone Mean error (ng/mL) 0.46 3.23

Root mean squared 

error

6.68 9.30

Table 3. A comparison of the predictive performance between the R-based Shiny application 
optimization and NONMEM for olanzapine or risperidone plasma concentrations. 



Shiny Dashboard 

Application

NONMEM

Olanzapine Mean error (RO %) -1.47 -1.76

Root mean squared 

error

5.80 7.21

Risperidone Mean error (RO %) 0.91 0.64

Root mean squared 

error

8.87 10.40

Table 4. A comparison of the predictive performance between the R-based Shiny application 
optimization and NONMEM for D2 receptor occupancy (%) following administration of 
olanzapine or risperidone



Figures

Figure 1. User interface of the olanzapine application initial dosing. This dashboard can be used 
to simulate dosing regimens or target specific exposures in treatment naïve patients with specific 
patient characteristics found to influence the PK of olanzapine (sex, race, and smoking status).



Figure 2. User interface of the olanzapine application adaptive dosing. Inputs are available for 
measured plasma concentrations taken at steady state of after a single dose. Displayed in the plot 
area are the original regimen (blue), observed plasma concentration/s (red), and predicted profile 
for regimen with adjusted doagse (green).



Figure 3. Relationship between the observed and predicted plasma concentrations of olanzapine 
(left) and risperidone + 9-OH risperidone (right) in patients receiving either olanzapine (n=20) or
risperidone (n = 12).



Figure 4. Relationship between the observed and predicted D2 receptor occupancy in patients 
receiving either olanzapine (n=20) or risperidone (n = 12).


