References:
1. Chambers DC, Cherikh WS, Harhay MO, et al. The International Thoracic
Organ Transplant Registry of the International Society for Heart and
Lung Transplantation: Thirty-sixth adult lung and heart-lung
transplantation Report-2019; Focus theme: Donor and recipient size
match. J Heart Lung Transplant. 2019;38(10):1042-1055.
2. Hsich EM. Matching the Market for Heart Transplantation. Circ
Heart Fail. 2016;9(4):e002679.
3. Jay C, Schold JD. Measuring transplant center performance: The goals
are not controversial but the methods and consequences can be.Curr Transplant Rep. 2017;4(1):52-58.
4. Mehra MR, Uriel N, Naka Y, et al. A Fully Magnetically Levitated Left
Ventricular Assist Device - Final Report. N Engl J Med.2019;380(17):1618-1627.
5. Fernandez FG, Shahian DM, Kormos R, et al. The Society of Thoracic
Surgeons National Database 2019 Annual Report. Ann Thorac Surg.2019.
6. Milano CA, Rogers JG, Tatooles AJ, et al. HVAD: The ENDURANCE
Supplemental Trial. JACC Heart Fail. 2018;6(9):792-802.
7. Weiss ES, Allen JG, Kilic A, et al. Development of a quantitative
donor risk index to predict short-term mortality in orthotopic heart
transplantation. J Heart Lung Transplant. 2012;31(3):266-273.
8. Hong KN, Iribarne A, Worku B, et al. Who is the high-risk recipient?
Predicting mortality after heart transplant using pretransplant donor
and recipient risk factors. Ann Thorac Surg. 2011;92(2):520-527;
discussion 527.
9. Weiss ES, Allen JG, Arnaoutakis GJ, et al. Creation of a quantitative
recipient risk index for mortality prediction after cardiac
transplantation (IMPACT). Ann Thorac Surg. 2011;92(3):914-921;
discussion 921-912.
10. Nilsson J, Ohlsson M, Höglund P, Ekmehag B, Koul B, Andersson B. The
International Heart Transplant Survival Algorithm (IHTSA): a new model
to improve organ sharing and survival. PLoS ONE.2015;10(3):e0118644.
11. Obermeyer Z, Emanuel EJ. Predicting the Future — Big Data, Machine
Learning, and Clinical Medicine. N Engl J Med.2016;375(13):1216-1219.
12. Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning:
A new perspective. Neurocomputing. 2018;300:70-79.
13. Gulli A, Pal S. Deep Learning with Keras. Packt Publishing;
2017.
14. Geissler HJ, Hölzl P, Marohl S, et al. Risk stratification in heart
surgery: comparison of six score systems. Eur J Cardiothorac
Surg. 2000;17(4):400-406.
15. O’Brien SM, Feng L, He X, et al. The Society of Thoracic Surgeons
2018 Adult Cardiac Surgery Risk Models: Part 2-Statistical Methods
and Results. Ann Thorac Surg. 2018;105(5):1419-1428.
16. Kilic A, Weiss ES, Allen JG, et al. Simple score to assess the risk
of rejection after orthotopic heart transplantation. Circulation.2012;125(24):3013-3021.
17. Cucchetti A, Vivarelli M, Heaton ND, et al. Artificial neural
network is superior to MELD in predicting mortality of patients with
end-stage liver disease. Gut. 2007;56(2):253-258.
18. Ayers B, Wood K, Gosev I, Prasad S. Predicting Survival after
Extracorporeal Membrane Oxygenation using Machine Learning. Ann
Thorac Surg. 2020.
19. Kilic A. Artificial Intelligence and Machine Learning in
Cardiovascular Health Care. Ann Thorac Surg.2020;109(5):1323-1329.
20. Kilic A, Goyal A, Miller JK, et al. Predictive Utility of a Machine
Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery.Ann Thorac Surg. 2020;109(6):1811-1819.
21. Kilic A, Goyal A, Miller JK, Gleason TG, Dubrawksi A. Performance of
a Machine Learning Algorithm in Predicting Outcomes of Aortic Valve
Replacement. Ann Thorac Surg. 2020.
22. Aleksova N, Alba AC, Molinero VM, et al. Risk prediction models for
survival after heart transplantation: A systematic review. Am J
Transplant. 2020;20(4):1137-1151.
23. Medved D, Ohlsson M, Höglund P, Andersson B, Nugues P, Nilsson J.
Improving prediction of heart transplantation outcome using deep
learning techniques. Sci Rep. 2018;8(1):3613.
24. Yoon J, Zame WR, Banerjee A, Cadeiras M, Alaa AM, van der Schaar M.
Personalized survival predictions via Trees of Predictors: An
application to cardiac transplantation. PLoS ONE.2018;13(3):e0194985.
25. Adibuzzaman M, DeLaurentis P, Hill J, Benneyworth BD. Big data in
healthcare - the promises, challenges and opportunities from a research
perspective: A case study with a model database. AMIA Annu Symp
Proc. 2017;2017:384-392.
26. Miller PE, Pawar S, Vaccaro B, et al. Predictive Abilities of
Machine Learning Techniques May Be Limited by Dataset Characteristics:
Insights From the UNOS Database. J Card Fail. 2019;25(6):479-483.
27. Granitto PM, Verdes PF, Ceccatto HA. Neural network ensembles:
evaluation of aggregation algorithms. Artificial Intelligence.2005;163(2):139-162.