REFERENCES
World Organisation for Animal Health (OIE) (2011). Bovine tuberculosis. General Disease Information Sheets, 2011, 1-6. Cousins, S. (2018). End TB Strategy. The challenges of preventing bovine tuberculosis. Bulletin of the World Health Organization, 96(2), 82-83. O’Reilly, L.M., Daborn, C.J. (1995). The epidemiology ofMycobacterium bovis infections in animals and man: a review. Tubercle and Lung Disease, 76 Suppl 1, 1–46. Ayele, W.Y., Neill, S.D., Zinsstag, J., Weiss, M.G., Pavlik, I. (2004). Bovine tuberculosis: An old disease but a new threat to Africa. International Journal of Tuberculosis and Lung Disease,8(8), 924–937. Ferreira Neto, J.S. (2019). Brucellosis and tuberculosis in cattle in South America. Brazilian Journal of Veterinary Research, 55(2), 1–23. Olea-Popelka, F., Muwonge, A., Perera, A., Dean, A.S., Mumford, E., Erlacher-Vindel, E., et al. (2017). Zoonotic tuberculosis in human beings caused by Mycobacterium bovis - a call for action. Lancet Infectious Diseases, 17(1), e21–25. World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), World Organisation for Animal Health (OIE) (2017). Roadmap for zoonotic tuberculosis. Geneva: World Health Organization, 22 p. Ferreira Neto, J.S., Da Silveira, G.B., Rosa, B.M., Gonçalves, V.S.P., Gris-Filho, J.H.H., Amaku, M., et al. (2016). Analysis of 15 years of the national program for the control and eradication of animal brucellosis and tuberculosis, Brazil. Semina: Ciencias Agrarias, 37(5):3385–3402. Guimaraes, A.M.S., Zimpel, C.K (2020). Mycobacterium bovis: from genotyping to genome sequencing. Microorganisms, 8(5), 667. Smith, N.H., Berg, S., Dale, J., Allen, A, Rodriguez, S., Romero, B., et al. (2011). European 1: A globally important clonal complex ofMycobacterium bovis. Infection, Genetics and Evolution, 11(6), 1340–1351. Müller, B., Hilty, M., Berg, S., Garcia-Pelayo, M.C., Dale, J., Boschiroli, M.L., et al. (2009). African 1, an epidemiologically important clonal complex of Mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. Journal of Bacteriology, 191(6), 1951–1960. Berg, S., Garcia-Pelayo, M.C., Müller, B., Hailu, E., Asiimwe, B., Kremer, K., et al. (2011). African 2, a clonal complex ofMycobacterium bovis epidemiologically important in East Africa. Journal of Bacteriology, 193(3), 670–678. Rodriguez-Campos, S., Schürch, A.C., Dale, J., Lohan, A.J., Cunha, M.V., Botelho, A., et al. (2012). European 2 – A clonal complex ofMycobacterium bovis dominant in the Iberian Peninsula. Infect Genet Evol., 12(4):866–872. Zimpel, C.K., Patané, J.S.L., Guedes, A.C.P., de Souza, R.F., Silva-Pereira, T.T., Camargo, N.C.S., et al. (2020). Global distribution and evolution of Mycobacterium bovis lineages. Frontiers in Microbiology, 11, 843. Maciel, A.L.G., Loiko, M.R., Bueno, T.S., Moreira, J.G., Coppola, M., Dalla Costa, E.R., et al. (2018). Tuberculosis in Southern Brazilian wild boars (Sus scrofa): First epidemiological findings. Transboundary and Emerging Diseases, 65(2), 518–526. Zimpel, C.K., Brum, J.S., de Souza Filho, A.F., Biondo, A.W., Perotta, J.H., Dib, C.C., et al. (2017). Mycobacterium bovis in a European bison (Bison bonasus) raises concerns about tuberculosis in Brazilian captive wildlife populations: a case report. BMC Research Notes, 10(1), 91. Rocha, V.C.M., Corrêa, S.H.R., Oliveira, E.M.D., Rodriguez, C.A.R., Fedullo, J.D., Matrone, M., et al. (2011). Tuberculosis determined byMycobacterium bovis in captive waterbucks (Kobus ellipsiprymnus) in São Paulo, Brazil. Brazilian Journal of Microbiology, 42(2):726–728. Murakami, P.S., Monego, F., Ho, J.L., Gibson, A., Vilani, R.G.D. de C., Soresini, G.C.G., et al. (2012). An outbreak of tuberculosis byMycobacterium bovis in coatis (Nasua nasua). Journal of Zoo and Wildlife Medicine, 43(2), 338–341. Ikuta, C.Y., Reisfeld, L., Silvatti, B., Salvagni, F.A., De Paula, C.D., Pessier, A.P., et al. (2018). Tuberculosis caused by Mycobacterium bovis infection in a captive-bred American bullfrog (Lithobates catesbeiana). BMC Veterinary Research. 14(1):1–4. Lima, D.A.R., Rodrigues, R.A., Etges, R.N., Araújo, F.R (2021). Bovine tuberculosis in a safari park in Brazil. Pesquisa Veterinária Brasileira, 41, e06719. van Embden, J.D., Cave, M.D., Crawford, J.T., Dale, J.W., Eisenach, K.D., Gicquel, B., et al. (1993). Strain identification ofMycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. Journal of Clinical Microbiology, 31(2), 406–409. Ikuta, C.Y. Estudo de micobactérias em animais silvestres mantidos em cativeiro [thesis]. São Paulo, Faculdade de Medicina Veterinária e Zootecnia, 2015 [cited 2021-04-09]. doi:10.11606/T.10.2016.tde-16092015-110534. Bolger, A.M., Lohse, M., Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–2120. Simon, A. FastQC: A Quality Control tool for High Throughput Sequence Data. 2010. Li, H., Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589–595. Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics ,27(21):2987–2993. Koboldt, D.C., Zhang, Q., Larson, D.E., Shen, D., McLellan, M.D., Lin, L., et al. (2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research, 22(3), 568–576. Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., et al. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin), 6(2),80–92. Nguyen, L-T., Schmidt, H.A., von Haeseler, A., Minh, B.Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1) , 268–274. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S. (2017). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518–522. Xia, E., Teo, Y-Y., Ong, RT-H. (2016). SpoTyping: fast and accuratein silico Mycobacterium spoligotyping from sequence reads. Genome Medicine, 8(1), 19. Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016. Rieux, A. & Balloux, F. (2016). Inferences from tip-calibrated phylogenies: a review and a practical guide. Molecular Ecology. 25(9), 1911–1924. Lillebaek, T., Norman, A., Rasmussen, E.M., Marvig, R.L., Folkvardsen, D.B., Andersen, Å.B., et al. (2016). Substantial molecular evolution and mutation rates in prolonged latent Mycobacterium tuberculosisinfection in humans. International Journal of Medical Microbiology, 306(7), 580–585. Pepperell, C.S., Casto, A.M., Kitchen, A., Granka, J.M., Cornejo, O.E., Holmes, E.C., et al. (2013). The Role of Selection in Shaping Diversity of Natural Mycobacterium tuberculosis Populations. Sassetti CM, editor. PLoS Pathogens, 9(8), e1003543. Kay, G.L., Sergeant, M.J., Zhou, Z., Chan, JZ-M., Millard, A., Quick, J., et al. (2015). Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nature Communications, 6(1), 6717. Eldholm, V., Monteserin, J., Rieux, A., Lopez, B., Sobkowiak, B., Ritacco, V., et al. (2015). Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nature Communications, 6(1), 7119. Menardo, F., Duchêne, S., Brites, D., Gagneux, S. (2019). The molecular clock of Mycobacterium tuberculosis. PLOS Pathogens, 15(9), e1008067. Rambaut, A., Drummond, A.J., Xie, D. Baele, G., Suchard, M.A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901–904. Rambaut, A., Drummond, A.J. (2010). TreeAnnotator v.1.6.1. [Internet].[cited 2002 Jan 20]. Available from: http://beast.bio.ed.ac.uk Francisco, A.P., Vaz, C., Monteiro, P.T., Melo-Cristino, J., Ramirez, M., Carriço, J.A. (2012). PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics, 13(1), 87. Meehan, C.J., Goig, G.A., Kohl, T.A., Verboven, L., Dippenaar, A., Ezewudo, M., et al. (2019). Whole genome sequencing ofMycobacterium tuberculosis: current standards and open issues. Nature Reviews Microbiology, 9:533–545. Pollock, J.M., Neill, S.D. (2002). Mycobacterium bovis infection and tuberculosis in cattle. Veterinary Journal, 163(2), 115–127. Queiroz, M.R., Groff, A.C.M., Silva, N.D.S., Filho, J.H.H.G., Amaku, M., Dias, R.A., et al. (2016). Epidemiological status of bovine tuberculosis in the state of Rio Grande do Sul, Brazil. Semina:Ciencias Agrarias, 37(5), 3647–3658. Murakami, P.S., Monego, F., Ho, J.L., Gibson, A., Javorouski, M.L., Bonat, M., et al. (2012). Detection of RDRIO strain ofMycobacterium tuberculosis in tapirs (Tapirus terrestris) from a zoo in Brazil. Journal of Zoo and Wildlife Medicine, 43(4), 872–875. Valvassoura, T., & Ferreira Neto, J.S. (2014). Tuberculose em primatas. São Paulo: Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, 193 p. Crispell, J., Benton, C.H., Balaz, D., De Maio, N., Akhmetova, A., Allen, A., et al. (2019). Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. eLife, 8, e45833. Salvador, L.C.M., O’Brien, D.J., Cosgrove, M.K., Stuber, T.P., Schooley, A.M., Crispell, J., et al. (2019). Disease management at the wildlife-livestock interface: Using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA. Molecular Ecology, 28(9), 2192–2205. Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD, Malla B, et al. (2019) Multiple Introductions of Mycobacterium tuberculosisLineage 2–Beijing Into Africa Over Centuries. Frontiers in Ecology and Evolution, 7, 112.
Table 1 . Dating estimates of Mycobacterium bovisclusters from the safari park