
Manuscript_Text and References 2 April 2021

Application of an improved vegetation index from the visible spectrum in the

diagnosis of degraded pastures: Implications for development

Thiago Luiz da Silva Quinaiaa, Renato Farias do Valle Juniora, Victor Peçanha de Miranda Coelhoa,

Rafael  Carvalho  da  Cunhaa,  Carlos  Alberto  Valerab,  Luís  Filipe  Sanches  Fernandesc,  Fernando

António Leal Pachecod,*

aFederal Institute of Triângulo Mineiro, Uberaba Campus, Geoprocessing Laboratory, Uberaba, MG

38064-790,  Brazil.  thiagoquinaia@hotmail.com  ,    renato@iftm.edu.br  ,  victorcoelho@iftm.edu.br,

rccunha@gmail.com 

bRegional  Coordination  of  the  Environmental  Justice  Prosecutor's  Office  of  the  Paranaíba  and

Lower  Rio Grande River  Basins,  Coronel  Antônio  Rios  Street,  951,  Uberaba,  MG 38061-150,

Brazil. carlosvalera@mpmg.mp.br

cCenter for Research and Agro-environmental and Biological Technologies, University of Trás-os-

Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal. lfilipe@utad.pt

dCenter of Chemistry of Vila Real, University of Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801

Vila Real, Portugal. fpacheco@utad.pt

(*) corresponding author

1

1

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

3

mailto:thiagoquinaia@hotmail.com
mailto:fpacheco@utad.pt
mailto:lfilipe@utad.pt
mailto:carlosvalera@mpmg.mp.br
mailto:rccunha@gmail.com
mailto:victorcoelho@iftm.edu.br
mailto:renato@iftm.edu.br


Manuscript_Text and References 2 April 2021

ABSTRACT

Inadequate  pasture  management  causes  land  degradation  and  negative  impacts  on  the  socio-

economic development of agricultural regions. Given the importance for Brazil and the World of

pasture-based livestock production, the recognition of pasture degradation is essential. The use of

remote sensing satellite systems to detect degraded pastures increased in the recent past, because of

their  capability  to  survey large portions  of Earth’s surface.  A struggle nowadays is  to improve

detection accuracy and to implement high-resolution surveys at farmland scale using unmanned

aerial vehicles (UAVs). The satellite sensors capture reflectance from the visible spectrum and near

infrared bands, which allows estimating plant's vigor vegetation indices. The NDVI is a widely

accepted index, but to generate an NDVI map using a UAV a relatively high-cost multispectral

sensor is  required,  while most UAVs are equipped with low-cost RGB cameras.  In the present

study,  a  script  developed  on  the  Google  Earth  Engine  image-processing  platform manipulated

images from the Landsat 8 satellite, and compared the performances of NDVI and an improved

color index that we coined "Total Brightness Quotient" of red (TBQR), green (TBQG) and blue

(TBQB) bands. An efficient detection of pasture degradation using the TBQs would be a good

prognosis for the surveys at  farm scale where environmental authorities are progressively using

UAVs and forcing landowners towards pasture restoration. When compared to NDVI, the TBQG

showed a correlation of 0.965 and an accuracy of 88.63%. Thus, the TBQG proved as efficient as

the NDVI in the diagnosis of degraded pastures.

Keywords: Remote  sensing;  Unmanned  aerial  vehicles;  Google  Earth  Engine;  Total  Brightness

Quotient; NDVI; Pasture degradation
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1. INTRODUCTION

The  nutrients  required  by  animals  are  90%  obtained  from  pastures  (Euclides  et  al.,  2010).

Notwithstanding the importance of pastures for feeding, around 108 million hectares of existing

fenced pastures  in  Brazil  are  degraded or in  degradation  (Embrapa,  2014;  Embrapa Territorial,

2018), which means 60% of pastureland in this country.

Pasture degradation is a slow gradual process. It reduces plant vigor and hence the capacity  of

forage plants to sustain the production and quality demanded by the animals. It also weakens the

resilience to pests, diseases and the invasion by non-palatable species (Zhumanova et al., 2018),

which increases the chances of advanced degradation (Zimmer et al., 2012). A possible cause of

pasture  degradation  is  the  lack  of  conservation  practices  (Rocha  Junior  et  al.,  2016),  namely

adjustment of grazing rates (Dias, 2014; Fernandes et al., 2018; Postel, 1998), and the grazing on

slopes > 20º, which can negatively affect soil stability and increase erosion (Torres et al., 2019).

The causes of pasture degradation are well known, but their spatial and temporal dynamics remain

poorly understood (Neves,  2017).  An approach used to  shed light  over  this  issue relies  on the

coupling  of  remote  sensing  and  geographic  information  systems,  whereby  the  reflectance  of

pastures captured by sensors in cameras are used to estimate vegetation indices that correlate with

the vigor of plants (Lu and Weng, 2007; Novo and Ponzoni, 2001; Torres et al., 2019). The spectral

response  of  pastures  is  difficult  to  grasp  because  it  depends  on many factors,  such as  species

assemblage,  soil  type  or  precipitation,  which  makes  it  extremely  complex  to  classify  pasture

degradation using vegetation indices (Davidson et al.,  2008). Nevertheless,  several authors have

used orbital sensors to analyze and map spatial and temporal variations in pasture fields using these

proxies. The Normalized Difference Vegetation Index (NDVI) was the most widely used indicator

(Imukova et al., 2015; Li S. et al., 2012; Li X. et al., 2012; Torres et al., 2019; Valle Júnior et al.,

2019;  Wiesmair  et  al.,  2016).   Other frequently used indexes  include the Enhanced Vegetation

Index, EVI (Junges et al., 2016; Karnieli et al., 2013); the Soil-Adjusted Vegetation Index, SAVI

(Batista et al., 2020); the Leaf Area Index, LAI (Batista et al., 2020; Chen et al., 2019; Wang et al.,

2019); the Water Use Efficiency, WUE (Fernandes et al., 2018); the Net Primary Productivity, NPP

(Fernandes et al., 2018; Jiang et al., 2019; Sun et al., 2019); among others.

Many authors have also applied visible spectrum sensors (RGB) to quantify and map indicators of

plant’s biophysical state, such as above ground biomass, plant vigor, productivity and the Leaf Area

Index (Córcoles et al., 2013; Jang et al., 2020; Kim et al., 2019; Liu and Pattey, 2010). Other studies

indicated  the  RGB-based  color  vegetation  index  and  the  excess  of  green  index,  to  diagnose

vegetation cover (Arroyo et al., 2016; Beniaich et al., 2019). The green leaf index, on the other

hand,  proved  efficient  to  count  plants  (Louhaichi  et  al.,  2001;  Silva,  2017),  distinguish  plant
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biomass from soil and residue (Meyer and Neto, 2008), monitor vegetation fraction (Marcial-Pablo

et al., 2019), and estimate the Leaf Area Index as well as key growth indicators of rice (Li et al.,

2019; Qiu et al., 2020). However, to our best knowledge no study attempted to diagnose pasture

degradation using a RGB index. Eventually, the ease of obtaining reflectance data from the near

infrared  band  using  orbital  satellites  such  as  Sentinel  2,  Landsat  8  or  MODIS,  hampered  the

development  of  such  studies.  However,  comparing  the  detection  efficiency  among  the  visible

(RGB) and near infrared (NIR) ranges would help to shed light on the potential  of each range.

Besides, the use of visible range vegetation indexes could boost the use of low-cost monitoring

equipment, such as unmanned aerial vehicles (UAV) at the canopy level and even smart phones at

the leaf level, which comprise RGB but rarely NIR cameras (Costa et. al., 2020).

The general purpose of this study was therefore to detect degraded pastures using the NDVI and the

RGB-based  Color  Index  (CI)  of  Woebbecke  et  al.  (1995),  comparing  the  performances  in  the

sequel. As corollary, we aimed to improve the CI index for detection efficiency. The normalization

through  simple  ratio  processes  applied  to  most  vegetation  indexes  (Katsoulas  et  al.,  2016)

inherently  generates  asymptotic  approaches  to  saturation  shrinking  the  range  of  linear  relation

between  the  index  and  biophysical  characteristics  and  hence  the  index’s  detection  capacity

(Gitelson, 2004). For example,  the ratio between the difference and the sum used in the NDVI

equation [(ρNIR –  ρred) / (ρNIR +  ρred)] is barely capable to describe the plant vigor when the

target areas present high biomass (e.g., vegetation fraction > 60%). In these cases, the ρNIR / ρred

ratio > 1, both the numerator and denominator get close to equivalence and the sensitivity of NDVI

to  ρNIR becomes insignificant. The generalization caused by difference over sum normalization

also affects the CI. 

Thus, by applying changes in the denominator of the vegetation index called the Color Index - CI

(Woebbecke et al., 1995), the influence of the normalization process can be eliminated. For the CI,

the normalization process happens with the ratio between the target band and the sum of all (BGR)

(B =  ρblue / (ρred +  ρgreen +  ρblue); G =  ρgreen / (ρred + ρgreen + ρblue); R =  ρred / (ρred +

ρgreen + ρblue)). This causes a drop in sensitivity when the ρnumerator / sum of all (BGR) ratio

denominator > 1, as noted in Gitelson (2004). Therefore, the only way to increase the sensitivity of

the CI is to change the denominator of the original equation. For this reason, we developed the

“Total brightness quotients” of Blue (TBQB), Green (TBQG) and Red (TBQR) as part of our goal

for this study. 
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2. MATERIAL AND METHODS

2.1. Study area

The study was carried out in the Environmental Preservation Area - EPA of the Uberaba River

Basin (Fig. 1), which was declared in 1999 (Minas Gerais State Law No. 13,183 / 1999) and later

the  municipality  of  Uberaba  also  edited  the  Municipal  Law  9,892  /  2006,  which  Creates  the

Municipal Environmental Protection Area of the Uberaba River – EPA of Uberaba River - and

takes other measures because it is fundamental for the protection of water resources, the riverside

ecosystem,  fauna  and  remnants  of  native  vegetation  (Savanna Biome).  It  occupies  an  area  of

approximately 52810.80 hectares and protects the Uberaba River located between the geographical

coordinates 19.51 - 19.74° south and 47.64 - 47.98° west of Greenwich, which in turn provides 95%

of the drinking water demanded by the municipality, which has about 295,988 inhabitants (IBGE,

2020; PMU and CODAU, 2006).

The climate in the EPA is Aw, described as tropical hot and humid with a cold, dry winter (Beck et.

al., 2018). The climatic domain is said to be semi-humid with low precipitation for 4-5 months of

the  year,  with  the  annual  precipitation  varying  between  1300  and  1700mm.  The  rainy  period

corresponds to the hottest season of the year from October to March, with the dry season from April

to September. Precipitation is more intense in December and January (Abdala, 2012).

The EPA's lithostratigraphic  sequence is  comprised  of  the Serra Geral  (volcanic),  Uberaba and

Marília (sedimentary) formations (Fig. 2), which form the Bauru Group of the Cretaceous (Cruz,

2003). Most types of soil in this plateau are characterized by medium texture that varies from sandy

to  clayey  and  has  different  levels  of  fertility  (Nishiyama,  1998).  According  to  the  FAO

classification, these types of soil are called Latosols, Argisols and Gleisols (Siqueira et al., 2017).

55.45% of the EPA area is occupied by natural and planted pastures, predominated by the species

Brachiaria Brizantha cv. Marandú. In the Serra Geral, Marília and Uberaba geological formation we

find 8183.43; 4882.53; 16219.72 ha, respectively (Table 1).

Place Figure 1 here

Place Figure 2 here

Place Table 1 here

2.2. Data acquisition and preparationn

The sources of data used to perform the pasture degradation modeling are listed in Table 2. The soil

fertility and resistance to penetration analyses were based on field data, obtained as described below

(item 2.3). To delimit the pasture areas within the EPA, the land use and occupation map provided
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by Mapbiomas referring to collection 5 of the year 2019 was used. Following that, the delimitation

of  the  geological  formations  was  obtained  through  the  map  provided  by  the  State  System  of

Environment and Water Resources. In order to compare the detection efficiency (item 2.6) between

the vegetation indices of the visible TBQB, TBQG, TBQR and NDVI, 32 images from the Landsat

8 OLI / T1_SR Satellite with a 15-day temporal and 30-meter spatial resolution were used through

the years 2017–2019. The 32 images were processed in the cloud and used to extract the zonal

statistics  (mean,  minimum,  maximum  and  standard  deviation)  of  each  of  the  6  ground  truth

locations  in  spreadsheet  format,  separated  by  geology  and  vegetation  indexes  (item  2.6).

Afterwards, regression, correlation (Minitab® 19) and sensitivity analysis (Excel®) were carried

out in order to compare the efficiency of vegetation indices in detecting degraded pasture (item 2.5).

With the images collected, a total of 12 degraded pasture maps were made using the programming

presented in item 2.4, one map for each vegetation index (TBQB, TBQG, TBQR and NDVI) in

each geology (Serra Geral, Uberaba and Marília). 

Place Table 2 here

2.3. Identification of phytophysiognomies in the pastures

The signs of pasture degradation are not always visible, making it difficult to detect the primary

cause of degradation, as it causes a chain reaction. The frequency of invasive plants, the density of

forage plants and the percentage of soil cover by desirable plants are parameters that can be used for

evaluation. The degradation of pastures in their most advanced stages is characterized by changes in

the dynamics of the plant community, where desirable species (forage plants) give way to others, of

lesser or almost no forage value, and by the decline in forage productivity, with reflects in animal

production (Townsend et al., 2012).

According to Macedo et  al.  (2014) the state of degradation of the pasture can be identified by

physiological factors of the plant and, also, of the soil. In the plant, the regrowth capacity, height of

the  pasture,  presence  of  areas  without  vegetation  and  inhomogeneous  coverage,  infestation  of

invasive plants and pests are observed. While in the soil, the effect of compaction, erosion, and

mineral deficiencies, mainly of Nitrogen and Phosphorus, are verified (FAO, 2009).

In  this  sense,  diligence  was  taken  in  the  field  of  the  study  area  to  identify  the  pasture

phytophysiognomies,  in  order  to  characterize  and georeference  two training  points  in  terms  of

geological  formation,  called:  healthy  pasture  and  degraded  pasture.  As  a  visual  basis  the

characteristics  of  Fig.  3 show the  healthy  pasture  has  green  and  tall  grass  with  homogeneous

coverage and the degraded pasture with areas of exposed soil and the presence of invading species

and termite mounds.
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Place Figure 3 here

These two phytophysiognomies were characterized at  a field level  in terms of soil  fertility  and

physical parameters, at 6 ground truth locations, distributed in the three geological formations Serra

Geral, Uberaba and Marília.

Each of these ground truth sites is represented by a 50-meter buffer (0.7853 ha) centered on the

point  where  phytophysiognomy  is  most  representative.  The  6  selected  ground  truth  sites  are

represented  in  Fig.  2 as  characterization  ground  truth  sites.  They  were  georeferenced  with  a

Garmim GPSMAP® 78 receiver.  In  each  of  these  locations,  4  soil  samples  were  collected  at

random at a depth of 0-0.2m and used to perform chemical and physical analyzes in a specialized

laboratory. Also, at these locations, 7 random resistance to penetration samples were made with the

digital penetrometer PLG 1020 penetroLOG® (Falker Automação, Porto Alegre, RS) at a depth of

0-0.6m. The soils of the geological formations were characterized chemically and physically and

presented by Valle Junior et al. (2019).

2.4. Programming in Google Earth Engine (GEE)

The zonal statistics and coincidence maps were generated in each geological formation, from 32

images from the Landsat 8 OLI / T1_SR from the years 2017, 2018 and 2019. The processing was

performed in a routine prepared in Javascript in the GEE code editor menu, which has a public

catalog with millions of images on a planetary scale (GEE, 2020; Gorelick et al., 2017).

The first script called “Zonal Statistics” is available at:

 https://code.earthengine.google.com/85c7e8d6904f747ad848d11504bae53f

and the second “Map of Coincidence” is available at:

 https://code.earthengine.google.com/e4a6f8aafd4216631d950a538fac3020. 

Therefore, GEE emerges as a facilitator in the search for images, enabling the automatic cropping

of images based on the area of interest,  filter  by analysis  period,  calculation of NDVI, TBQB,

TBQG and TBQR, extraction of zonal statistics, export of data in raster format and spreadsheet. The

operational  details  relative  to  the  GEE  scripts  are  illustrated  in  Fig.  4 and  described  in  the

Supplementary Material.

Place Figure 4 here

2.5. Map of degraded pasture using the vegetation indexes TBQB, TBQR, TBQG and NDVI

Based on the methodology proposed by Valle Junior et al. (2019), we used pre-established training

samples in the field (ground truth locations) for supervised classification of orbital images. After
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determining  the  interval  between  the  minimum and maximum reflectance  values  of  the  NDVI

vegetation index for each buffer, the image was binarized (item 2.4) and the sum of the image

collection, generating the number of pixel matches by similarity with the training sample intervals.

Thus, values above 4 coincidences were considered similar, with an accuracy level of 84.1%.

In this work, we used images from the Landsat 8 OLI / T1_SR orbital satellite processed in the

cloud on the GEE platform, from the development of two scripts (item 2.4). The first script was

designed  to  filter  images  with  <  30% clouds  from the  years  2017,  2018 and 2019,  apply  the

vegetation  index  to  the  series  of  images,  calculate  zonal  statistics  and  export  information  for

statistical  modeling  in  MINITAB  19®.  The  second  generated  script,  automates  the  method

proposed by Valle Junior et al. (2019), generating a pixel coincidence map for each NDVI, TBQB,

TBQG and TBQR vegetation index (equations 3, 4, 5 and 6) and geological formation (Serra Geral,

Uberaba and Marília).

The visible vegetation indexes (TBQB, TBQG and TBQR) come from a change in the denominator

of the Color Index (CI) (Woebbecke et al., 1995) according to equations 7, 8 and 9. Therefore, they

present the amount of reflectance that was reflected from Blue (TBQB), Green (TBQG) and Red

(TBQR) taking into account the portion that was reflected by the other bands.

NDVI=
NIR−¿

NIR+¿
(3)

TBQB= ¿
(¿+¿ )

(4 )

TBQG= ¿
( ¿+¿ )

(5 )

TBQR= ¿
(¿+¿ )

(6)

B= ¿
( ¿+¿+¿ )

(7)

G= ¿
( ¿+¿+¿ )

(8 )

R= ¿
( ¿+¿+¿ )

(9)

2.6. Seasonality of vegetation indices

Equations were drawn up that represent the seasonal variation of the vegetation indices throughout

the year, enabling the comparison of pasture phytophysiognomies in the geological formations. For

that, we used the vegetation indices as a dependent variable in the model and the days of the year

(DOY) as an independent variable to estimate the seasonality of the vegetation indices in the dry

and rainy  period  to  diagnose  the  phytophysiognomies  of  healthy  and degraded  pastures.  Thus,

equations were modeled in the MINITAB 19 software, using the General Linear Model - GLM
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method, to determine the adjusted determination coefficient (adjusted R2) and standard deviation of

the distance between the real and adjusted values (S).

From  the  average  values  of  the  vegetation  indices,  the  Spearman  correlation  coefficient  was

calculated, which measures the intensity of the relationship between two variables. In addition, time

series graphs were drawn up to show dispersion of the average values of each vegetation index and

its seasonality over the years.

2.6.1. Sensitivity of equations

In the analysis of the reflectance of the vegetation indices in the phytophysiognomies from the

regression equations generated in item 2.6, the sensitivity analysis of the equations was carried out

as a comparison between the indices. Following the methodology proposed by Gitelson (2004) that

measures the possible sensitivity between vegetation indices in identifying biophysical changes in

plant targets, the following expressions were used:

Sb=
d (TBQB)

d(NDVI )
×(

1
ΔTBQB
ΔNDVI )(10)

Sg=
d (TBQG )

d (NDVI )
×(

1
ΔTBQG
ΔNDVI ) (11 )

Sr=
d (TBQR)

d (NDVI )
×(

1
ΔTBQR
ΔNDVI )(12)

Where,  Sb  (TBQB Sensitivity),  Sg  (TBQG  Sensitivity),  Sr  (TBQR Sensitivity),  d  (TBQB),  d

(TBQG), d (TBQR) and d (NDVI) are the first derivatives of each of the equations (item 2.6) and

∆TBQB = TBQBmax - TBQBmin; ∆TBQG = TBQGmax - TBQGmin; ∆TBQR = TBQRmax -

TBQRmin and ∆NDVI = NDVImax - NDVImin, are the intervals of the observed values of each

vegetation index, that is, the difference between the maximum and minimum values of each index.

Therefore, Sensitivity (S) values < 1 indicate that NDVI is more sensitive than the visible index.

When S = 1, the sensitivities between the indices are the same. Values of S > 1 indicate that the

visible index is more sensitive than the NDVI.

2.7. Detection efficiency of degraded pastures

To measure the detection efficiency of the visible  with the NDVI in the detection of degraded

pasture, we evaluated the variable responses of the tests using: a) Cross analysis (item 2.7.1); b)

Ground truth validation (item 2.7.2).
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2.7.1. Cross analysis (Crosstab) 

From the degraded pasture maps (item 2.4), a cross analysis  was performed between the maps

generated with the visible indices and the NDVI, in order to quantify similar and surplus areas. In

this sense, the greater the intersection and the lesser the exception between the maps, the better its

efficiency. We use the CROSSTAB tool from QGIS 3.10.5.

2.7.2. Validation of degraded pasture maps

In the validation of the degraded pasture maps generated from the vegetation indices, the limits of

resistance classes were used as a reference in the diagnosis of degradation (Valle Junior et al., 2019)

in each of the geological formations, 4428.5 ± 1271.2 kPa, 5418.3 ± 700.5kPa and 5464.9 ± 1037.3

kPa referring to Serra Geral, Marília and Uberaba, respectively. Thus, in field collections, resistance

to penetration was measured at random in the study area. In total, 38 checkpoints were collected

(Fig. 1). The measurements were performed at a depth of 0 to 0.6 m, using a penetrometer model

PLG 1020  penetroLOG manufactured  by  the  company  Falker  Automação.  With  the  resistance

values, the degradation classification was generated,  calculating the percentage of correctness in

each geology.

3. RESULTS

3.1. Equations for time series of vegetation indices and detection sensitivity

The best adjustment for the regression that models the spectral variations of the vegetation indices

throughout the year was the cubic with a significance of p <0.05 in all geological formations. For

degraded pasture,  the adjusted determination coefficient (R²aj.)  for the Serra Geral, Marília and

Uberaba  geological  formations  of  the  indices  were:  NDVI  72.78%,  84.27%,  82.22%;  TBQB

65.01%, 41.26%, 48.01%; TBQG 77.85%, 80.80%, 81.25% and TBQR 72.82%, 77.81%, 83.92%,

respectively.  While  in  the  healthy  pastures  the  indices  were:  NDVI 65.22%,  86.42%,  78.52%;

TBQB 64.07%, 49.12%, 53.13%; TBQG 73.93%, 83.15%, 85.17% and TBQR 67.63%, 81.63%,

79.87%, respectively, (Figs. 5a, 5b, 5c and 5d). The classification of R²aj. for the R²aj. range was

from 0 - 0.09 (weak determination), 0.09 - 0.49 (average), 0.49 - 0.81 (strong), 0.81 - 0.9801 (very

strong) and 0.9801 - 1 (perfect) (Sanchez, 2013). To assess the acceptance of the adjustments, the

adjusted determination coefficient (R²aj.) was used as criteria, as well as the standard deviation of

the distance between the real and adjusted values (S) (Araujo, 2019; Quinino et al., 1991). In this

way, the R²aj. for the models applied to degraded and healthy pasture, in the Serra Geral, Marília

and Uberaba formations using NDVI presented classification varying from strong to very strong,

TBQB medium-strong, TBQG and TBQR from strong to very strong. In the regression there was a
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high R²aj value with a low S value indicating that the day of the year (DOY) predictor is related to

the changes in the vegetation indices (IV) response variable available (Figs. 5a, 5b, 5c and 5d).

The  spectral  behavior  over  the  years  does  not  have  a  normal  distribution,  and  therefore  was

evaluated for similarity  between the indices using the Spearman test  (p <0.05).  The coefficient

classification (rs) was classified for the rs range from 0 - 0.40 (bad correlation), 0.40 - 0.60 (low

correlation), 0.60 - 0.80 (average correlation), 0.80 - 0.90 (good correlation) and 0.90 - 1.0 (high or

excellent  correlation)  (Martins  and Domingues,  2014).  Thus,  the  correlations  in  the  geological

formations Marília, Serra Geral and Uberaba between the TBQB, TBQG and TBQR indices with

the NDVI were -0.524, 0.966, -0.966; -0.794, 0.965, -0.956; -0.723, 0.989, -0.984. Thus, in all the

geological formations analyzed, the best fit was found for the TBQG (direct correlation), followed

by  the  TBQR (indirect  correlation),  both  presenting  high  or  excellent  classification,  while  the

TBQB (indirect correlation) varied from low to medium.

Place Figures 5 here

3.1.1 Comparison between amplitude and deviation of time series of vegetation indices

When assessing the seasonal variation between the years 2017 to 2019, the trend of similar behavior

of the NDVI and TBQG indices was observed, differing from the G (see Supplementary Material

Figs. S1a, S1b, S1c, S1d, S1e, and S1f). Therefore, the amplitude and deviations of the values  

corresponding  to  the  NDVI  and  TBQG  indices  were  close,  which  suggests  that  there  is  less

sensitivity  of  equation  G  in  capturing  the  biophysical  changes  of  pasture  in  the  period  (see

Supplementary Material Tables S1a, S1b and S1c).

3.2. Maps of degraded pastures

The raster files in TIFF format extracted from GEE and finished in the GIS (Figs. 6a, 6a1, 6b, 6b1,

6c and 6c1), refer to the degraded pasture maps generated through each vegetation index NDVI,

TBQ, TBQG and TBQR in the different geologies. The degraded pasture areas mapped using each

index follow as shown in Table 3. We can see that in the EPA degraded pasture occupies an area of

12,066.93, 25,180.11, 18,985.32 and 17,486.28 hectares diagnosed by the indices NDVI, TBQB,

TBQG and TBQR, respectively. Representing a percentage of 41.20%, 85.98%, 64.83%, 59.71%,

respectively, in relation to the total pasture area according to land use and occupation.

Place Figures 6 here

Place Table 3 here
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The sensitivity of the models (Sb, Sg, Sr) was calculated on the targets in the degraded pasture in

the Serra Geral, Marília and Uberaba geological formations to compare the indices.  TBQB (-0.67,

0.77 and -0.75); TBQG (-0.51, 0.65 and -0.68) and TBQR (-0.08, 0.29 and -0.46) were compared to

the NDVI model and resulted in an S <1. Therefore, by this method the NDVI was classified as the

most  sensitive  index.  In  addition,  as  an innovation  in  this  study,  we quantify  the difference  in

sensitivity between the modified indices developed using RGB compared to NDVI in relation to the

diagnosis of degraded pasture.

The time series of vegetation indices over the three years (see Supplementary Material Figs S2a,

S2b, S3a, S3b, S4a and S4b) shows that TBQG generates higher values than NDVI with a smaller

amplitude, but higher than TBQR and TBQB. In the sequence, the TBQR inversely follows the

NDVI  with  equivalent  values  and  less  amplitude  than  the  NDVI  and  TBQG.  Finally,  TBQB

inversely follows NDVI with lower values and an amplitude smaller than all evaluated.

In addition, the average values of S and R2(aj) of the general regression models of degraded pasture

for each vegetation index were NDVI (0.066 - 79.76%), TBQB (0.014 - 51.43%), TBQG (0.055 -

79.97%), TBQR (0.023 - 78.18%), respectively.  Thus, it  was possible to associate the predicted

values of biophysical state of the pasture with observed values in the time series.

The  areas  obtained  by  the  modified  vegetation  indices  (RGB)  were  greater,  as  seen  in  the

Supplementary  Material  (Table  S2).  In  the  identification  of  the  degraded  pasture,  a  pixel

coincidence greater than 4 (four) or more was observed in the band of the visible spectrum in the

interval between the values (Min and Max) of the sample polygons.

The increase in the number of coincidences refers to the number of times in which another pixel,

outside  the  sample  polygon,  was  within  the  minimum  and  maximum  observed  range  of  each

collected image. Therefore, we observed that the lower sensitivity of the RGB indices favored the

increase in pixel coincidences and the consequent increase in the area of mapped degraded pasture.

As a verification  of the actual  state  of the field (ground truth)  according to Valle  Júnior et  al.

(2019),  degraded pasture can be diagnosed from the resistance to  penetration  in  the geological

formations – Serra Geral 4428.5 ± 1271.2 kPa, Marília 5418.3 ± 700.5kPa and Uberaba 5464.9 ±

1037.3 kPa. Therefore, in the validation of the degraded pasture maps in the field, by means of the

percentage of correctness between the ground truth points and the degraded pasture maps there was

agreement  of  65.79% with NDVI,  60.53% with  TBQB, 65.79% with TBQG and 65.79% with

TBQR, which according to Landis; Koch (1977) can be classified as substantial agreement, which is

very good.
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3.3. Cross tabulation results

In the cross analysis between the maps of degraded pasture established by the vegetation indices

NDVI, and RGB (TBQB, TBQG, TBQR) it was possible to verify the percentage of common areas

of pasture degradation to assist in map validation. The pixel coincidence between the NDVI and the

modified RGB indices tested, demonstrated different behavior in the geological formations. In the

Marília, Serra Geral and Uberaba formation there was a minimum pixel match of 90.44; 87.05;

89.43%, respectively, which is excellent. This is presented in the  Supplementary Material (Table

S3). However, the visible spectrum indices overestimated, on average, the degraded pasture area in

all  formations – 13.46% for TBQB, 6.40% for TBQG and 4.97% for TBQR. However,  for the

TBQG and TBQR indices, in the field they were as accurate as NDVI, suggesting that the mapped

areas can be accepted.

4. DISCUSSION

The modified  RGB indices,  named as  the  total  brightness  quotient,  of  the blue,  green and red

spectral  bands,  captured  different  characteristics  for  each  geological  formation  and

phytophysiognomy of the pasture. Thus, the targeted plants absorbed the light differently for each

band of the visible spectrum, according to its edaphoclimatic status and geology.

The relationship  between the  areas  of  geomorphology and pedology are closely  interdependent

(Rubira et al.,  2019). This mutual dependence does not allow us to judge that the geology of a

region fully explains its pedogenesis, or the other way around. According to Nakashima et al., 2017,

even if  there is  a baseline difference  between geological  formations,  pedogenetic  processes are

responsible for altering the marks of older and more extensive events, causing a new physiognomy

to the landscape. In the study area we have the Serra Geral formation represented by basalt with

intercalations of sandstone and diabase dikes (CPRM, 2014). The Marília formation represented by

sandstone, conglomerate and paleosol strongly cemented by CaCo3 and SiO2, while the Uberaba

formation  consists  of  sandstone,  mudstone,  siltstone  and  conglomerate  rock  (Batezelli,  2015).

Therefore, there are several types of soil within each geology, such as dystrophic and dystrophic red

latosols, dystrophic red-yellow latosols, eutrophic red argisol and dystrophic melanic gleysol (UFV,

2010).  The  differences  in  sensitivity  between  the  vegetation  indices  of  the  mapped  areas  of

degraded pasture occur due to  the influence  of different  geologies  with different  levels  of iron

oxides present in the clay fraction, as well as the various types of soil and plant physiology. The

reflection of light by the soil is a property widely used in pedology and is based on color (Netto and

Baptista,  2000),  which  helps  soil  classification  (Santos  et  al.,  2018),  differentiates  erodibility

(Dantas et al., 2014), evaluates the productive potential (Carmo et al., 2016) and even estimates
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chemical  parameters  (Cruz  et  al.,  2018).  Therefore,  each  geology  with  its  own  characteristics

contributes and changes the perception of each vegetation index used. According to Meneses et al.

(2019) the minimal variations in composition or percentage variation of minerals is enough to cause

different spectral responses. The concentrations of iron oxides in the Serra Geral formation (Silva et

al., 2020), due to the hematite content in the clay fraction (Mello et al., 2003), promote better soil

aggregation and water use (Correa et al  .,  2008) and promote less resistance to soil penetration

(Valle Junior et al., 2019). In addition, they alter the visible spectral response of the soil (Canti and

Linford, 2020).

The energy source for photosynthesis and plant growth is light (Bayat et al., 2018). And through

several photoreceptor pigments in the plant regulates its growth and development. Light promotes

and triggers  various  morphogenic  and physiological  processes  (Chen et  al.,  2004).  The visible

colors  are  the  result  of  the  interaction  of  light  with  the  retina,  where  absorption  and selective

reflection are the reason that most objects are colored (Netto and Baptista, 2000). However, the

chlorophyll molecules present in plant cells are more efficient at absorbing the red and blue bands

of the spectrum compared to green (Taiz and Zeiger, 2017).

The time series of the vegetation indices show that pasture in the dry period has a general tendency

to decrease reflectance in TBQG and NDVI and increased reflectance in TBQR, regardless of the

geological formation and the condition of the pasture (healthy or degraded). The reflectance of the

TBQB followed the pattern of the TBQR, but with lower peaks. In the rainy season, the reflectance

pattern of the pasture was the opposite, with an increase in reflectance in TBQG and NDVI and a

decrease in reflectance in TBQR and TBQB. Thus, green (TBQG) achieved a better correlation with

NDVI, presenting similar amplitude and deviation.

The strong absorption of light by photosynthetic pigments dominates the optical properties of green

leaves  in the visible  spectrum (400-700 nm). Thus,  the decrease in the photosynthetic  pigment

content  of  the  leaf  causes  an  increase  in  reflectance  and transmittance  in  the  visible  spectrum

(Jacquemoud and Ustin, 2008).

Water stress and nutrient deficiency (e.g. nitrogen) are highly related to the decrease in chlorophyll

content, and consequently less radiation is used by the plant. These stresses are common in dry

periods  in  tropical  environments,  especially  in  degraded  pastures.  In  addition  to  physiological

disturbances as a consequence of stress, less biomass and changes in the architecture of the plants in

the pasture during the dry season are also expected. Several authors (Merzlyak et al., 2003; Jain et

al.,  2007;  Sclemmer  et  al.,  2005;  Vigneau et  al.,  2011)  observed a  strong correlation  between

chlorophyll content and reflectance of crops in the 640-660 ranges nm or Red-Edge (both in red), so

that the decrease in chlorophyll content results in an increase in the reflectance of red (Katsoulas et
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al., 2016). The data found in the literature corroborate the results of pasture reflectance in the dry

period  of  the  present  study  (decrease  in  TBQG and  NDVI  and  increase  in  TBQR);  which  is

probably related to the decrease in chlorophyll content. Additionally, the decrease in TBQG and

NDVI of the pasture in the dry season may also have been influenced by other factors, such as leaf

thickness, age and leaf angle, leaf area index and biomass (Peñuelas and Filella, 1998; Katsoulas et

al., 2016).

The  use  of  vegetation  indices  from  the  visible  spectrum,  TBQR  and  TBQG,  are  efficient  in

monitoring  pasture development.  In  addition,  the utilization  of each pigment  (photosynthesizer,

photoreceptor and photoprotector), is correlated with several physiological factors, inherent to each

plant species, and edaphoclimatic factors (Ren et al., 2020). That generate several relations between

absorbance and reflectance to change its visible color (Sipos et al., 2020). The TBQG and TBQR

indices proposed in this work, were able to reach R2ajus and S close to NDVI for the monitoring

and diagnosis of degraded and healthy pastures in the study area (see  Supplementary  Material,

Tables S4a, S4b, S4c, and S4d), and with field validation with a similar level of accuracy (Figs. 6a,

6b and 6c), which is good. Other studies have already realized that visible vegetation indices - VIS

have sensitivity to monitor the biophysical parameters of targeted plants (Jang et al., 2020; Liu and

Pattey, 2010; Córcoles et al., 2013; Kim et al., 2019; Beniaich et al., 2019; Arroyo et al., 2016;

Silva,  2017;  Louhaichi  et  al.,  2001).  However,  none of these were used in the monitoring and

diagnosis of degraded pasture. In general, understanding pasture seasonality can contribute to its

classification  regarding  phytophysiognomies.  According  to  Muller  et  al.,  2015,  the  spectral-

temporal classification provides a reliable separation between agricultural land, pastures and natural

savanna vegetation.  We realized that the TBQR index was able to identify phytophysiognomies

(healthy  and  degraded)  efficiently  in  all  geological  formations  as  seen  in  the  Supplementary

Material (Figs. S5a, S5b and S5c).

The use of vegetation indices of the visible spectrum proposed in this work, combined with the use

of  Remote  Sensing,  are  efficient  in  detecting  degraded  pasture.  In  this  way,  the  proposed

methodology simplifies  the mapping of  degraded pasture without  using the near  infrared  band.

Therefore, based on this innovation, it will be possible to implement pasture mapping using low-

cost cameras embedded or present in UAVs and smartphones. However, in the case of detecting

leaf water stress, when the water volume in the soil is low, the plant goes into protection mode and

this prevents the diagnosis through visible vegetation indices (Katsoulas et al., 2016). 

Therefore, pasture diagnostics is a planning tool that helps in environmental compliance. Thus, so

that we do not suffer attacks linked to the issue of agribusiness in Brazil, regarding land occupation,
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regularly by the European Union and developed countries such as the United States, we need to

adapt the policies for the use and occupation of land and water.

The importance of identifying areas of degraded pasture, which under Brazilian law are treated as

environmental damage, enables the development of public policies to bring these areas back into the

productive system. Usually, they are open areas and have undergone anthropic action (Federal Law

12.651 / 2012 - Brazilian Forest Code).

5. CONCLUSION

The use of visible vegetation indices TBQG and TBQR, proved to be efficient when compared to

NDVI in the diagnosis of degraded pasture from orbital satellite images, showing that the degraded

pasture area in the EPA ranged between 41.20% and 64.83% of the total pasture area. In this way,

we can see the great potential  that exists in the use of the visible range to reveal  the temporal

dynamics of the biophysical characteristics of the degraded pasture. With this, the use of visible

indexes  favors  the  simplification  of  the  mapping  of  degradation,  favoring  the  use  of  low-cost

cameras, embedded or present in UAV, orbital satellites and smartphones. 
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TABLE LEGENDS

Table 1 – Land use by geology and respective areas in hectares. Source: Mapbiomas (2018).

ID Land Use and Occupation
Geological

Formation
Pasture Area (ha) Geological Area (ha)

1 Pasture Marília 4838.607 12954.619

2 Pasture Uberaba 16680.859 27179.882

3 Pasture Serra Geral 8355.814 12552.133

Tabel 2 – Compilation of geographic data used in cross-tabulation

Data type
Purpose  of  the

data
Source URL

 

Coverage  and  land  use  map

(30x30m pixel) generated from

Landsat  images  in  GEE  -

MAPBIOMAS collection 5.0

Delimit  the

pasture  area  to

be analyzed

Generated  by

accessing  the

GEE platform

https://code.earthengine.google.com/

be6e9e5570bee31fc5574758c627f709?

accept_repo=users%2Fmapbiomas%2Fuser-

toolkit 

Geological Map of the State of

Minas Gerais

Separation  of

geologies within

the EPA

State  System  of

Environment and

Water Resources

http://idesisema.meioambiente.mg.gov.br/ 

Sheet  with Zonal  Statistics  of

ground truth sites

Regression,

correlation  and

sensitivity

analysis

(items  2.2  and

2.4) 

https://code.earthengine.google.com/

85c7e8d6904f747ad848d11504bae53f 

Maps  of  degraded  pasture  in

the EPA from the year 2019

Calculation  of

degraded  area

and  Crosstab

analysis

(Valle  Junior  et

al., 2019)

https://code.earthengine.google.com/

e4a6f8aafd4216631d950a538fac3020 

Source: From the author, 2021.
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Table  3  –  Area  of  mapped  degraded  pasture  separated  by  the  Uberaba  River  EPA geological

formation for each vegetation index.

Index
Vegetation

Geological
formation

Geology area
(ha)

Pasture area
(ha)

Mapped degraded area
(ha)

NDVI

Serra Geral 12552.1335 8183.4381 5803.0200

Marília 12954.6193 4882.5330 2651.6700

Uberaba 27179.8825 16219.7247 3612.2400

TBQB

Serra Geral 12552.1335 8183.4381 6792.0300

Marília 12954.6193 4882.5330 4195.5300

Uberaba 27179.8825 16219.7247 14192.5500

TBQG

Serra Geral 12552.1335 8183.4381 6606.8100

Marília 12954.6193 4882.5330 3644.1900

Uberaba 27179.8825 16219.7247 8734.3200

TBQR

Serra Geral 12552.1335 8183.4381 6212.4300

Marília 12954.6193 4882.5330 3273.9300

Uberaba 27179.8825 16219.7247 7999.9200
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FIGURE CAPTIONS

Figure 1 – Location map of the study area.

Figure 2 – Location map of the study area with the geological distribution and sampling points of

georeferenced characterization in the field. Source: Modified from the Geological Map of the

State of Minas Gerais, 2014.

Figure 3 - Characteristics of phytophysiognomies (1 and 3, healthy pasture) and (2 and 4, degraded

pasture) in the dry and rainy periods, respectively

Figure 4 – Flowchart of the scripts 

Figure 5a – Time series graphs of observed NDVI values and cubic regression with confidence

interval to predict NDVI of the pasture, separated by geology. (a1, b1) - Serra Geral; (a2, b2) -

Marília; (a3, b3) - Uberaba, being degraded on the left and healthy on the right.

Figure 5b – Time series graphs of observed TBQB values and cubic regression with confidence

interval to predict TBQB of the pasture, separated by geology. (c1, d1) - Serra Geral; (c2, d2) -

Marília; (c3, d3) - Uberaba, being degraded on the left and healthy on the right.

Figure 5c – Time series graphs of observed TBQG values and cubic regression with confidence

interval to predict TBQG of the pasture, separated by geology. (e1, f1) - Serra Geral; (e2, f2) -

Marília; (e3, f3) - Uberaba, being degraded on the left and healthy on the right.

Figure 5d – Time series graphs of observed TBQR values and cubic regression with confidence

interval to predict TBQR of the pasture, separated by geology. (g1, h1) - Serra Geral; (g2, h2) -

Marília; (g3, h3) - Uberaba, being degraded on the left and healthy on the right.

Figure 6a – Map of degraded pasture map in the Serra Geral formation.

Figure 6a1 – Map of coincidence in the Serra Geral formation.

Figure 6b – Map of degraded pasture map in the Marília formation.

Figure 6b1 – Map of coincidence in the Marília formation.

Figure 6c – Map of degraded pasture map in the Uberaba formation.

Figure 6c1 – Map of coincidence in the Uberaba formation.
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Figure 1

Figure 2
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Figure 3
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Figure 4
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Figure 5a

Figure 5b
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Figure 5c
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Figure 5d

Figure 6a

Figure 6a1
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Figure 6b

Figure 6b1
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Figure 6c

Figure 6c1
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