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Abstract

Biochar or pyrogenic carbon, obtained from thermo-chemical conversion of biomass in an

anaerobic or oxygen limited environment has been in use in agriculture since long back to

Neolithic  era.  Its  unique soil  ameliorating  properties,  render  it  suitable  for environmental

remediation  as  well  as  sustainable  crop  production.  It  improves  soil  physicochemical

properties  and plant  nutrient  availability,  facilitates  biodiversity,  and reduces  emission of

greenhouse gases,  thereby subsiding global  warming.  Application  of biochar  reduces  soil

erosion, improves soil hydrological properties, and soil microbial dynamics. It has synergistic
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effects on plant growth, disease-pest resistance, and crop yield per unit area and time. Due to

its soil ameliorative effects, and soil and water conserving ability, it can very well be used in

organic  farming,  pemaculture,  dryland  farming,  conservation  agriculture,  and  land

remediation.  Cheaper  production  cost,  simple  and  easy  pyrolytic  technologies,  easy

availability  of  feedstock  and  bio-wastes  in  many  developing  countries  and its  long-term

effects in soil not only build up soil carbon pool but also help support small and marginal

farmers in resource-rich but economically deprived countries for sustainable agriculture and

environment. In this review, efforts have been made to elucidate various methods of biochar

synthesis, its characteristics and effects on soil properties, and plant growth and development,

its role in sustainable agriculture and remediation of the environment.

 

Keywords Amendment, amelioration, degraded land, remediation, sustainable development

1. Introduction

All those factors that govern plant characteristics and adaptation are broadly grouped under

genetic and environmental factors. Genetic factor is the manifestation of the genetic makeup

of a plant while environmental factors are external and refer to all those factors that influence

expression of thre genes (Bareja, 2011). Abiotic environmental factors viz. light, moisture,

oxygen,  carbon  dioxide,  nutrients,  and  temperature;  biotic  factors  such  as  microbes  and

macrobes regulate the plant growth and development. Healthy soil is expected to supplement

all these factors in adequate quantities and in suitable proportions.

Soil  exerts  the  maximum  influence  on  plant  nutrients,  rhizosphere  temperature,

moisture, aeration and microbial population. It also provides strength to the plant for standing

upright  without  lodging.  A  set  of  interrelated  and  interdependent  bio-physicochemical

properties determine soil heath. Healthy soil is the foundation for a productive, profitable,
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and  environment-friendly  sustainable  agriculture  system  (White,  &  Barberchek,  2017).

However, the very essence of raising a crop in its native area is vitiated under spatial and

temporal  relocation  in  commercial  farming.  Continuous  cropping  over  years,  despite

chemical fertilizer application, depletes many essential plant nutrients, mostly micronutrients,

from the soil. Monoculture and extensive use of chemical fertilizers, addressing only one or

more primary plant nutrients, not only reduce crop yield substantially but also deteriorate the

soil health irreparably (Rawat, Saxena, & Sanwal, 2017). Absence of green manuring and

restricted  use of organic manures  exhaust  the  soil  carbon pool  that  influences  soil  biota.

Besides fertilizers, synthetic pesticides having high persistence also have perilous effects on

modern agriculture-system. Due to long-term application of a set of fertilizers and pesticides,

a shift in structural diversity occurs leading to disease-pest resistance and resurgence (Wu et

al. 2012). In some areas, more specifically adjoining to opencast mining, the concentration of

heavy metals crosses the threshold limits for crop as well as soil biota (Rawat, Saxena, &

Sanwal, 2017), that must be taken care of with utmost diligence. 

The greatest challenge before us in the 21st century is to feed the ever-burgeoning

population  approaching  the  carrying  capacity  of  the  earth.  It  is  high  time  for  the  global

community  to  reorient  the  present  agriculture  production  management  system  towards

sustainable  development  goals  through  an  integrated  and  holistic  approach.  Judicious

application  of  chemical  fertilizers,  enrichment  of  soil  carbon-pool  through  green-organic

amendments, and use of eco-friendly macro- and microorganisms could enhance the system

productivity, profitability and cater to the needs of the teeming millions without degrading

the environment. Slash and burn and/or char system of agriculture and residue incorporation

owe their unique significance since the advent of agriculture on this planet. They not only

supplement  all  essential  plant  nutrients  in a balanced form but also ameliorate  soil  for a

healthy biodiversity. While selecting any ameliorant for reclamation and restoration of the
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land its cost-effectiveness, persistent effect, bulkiness, easy adaptability, and environmental

compatibility must be looked into in a holistic manner (Rawat, Saxena, & Sanwal, 2017). 

Among many options  of  carbon sequestration  and soil  fertility  restoration  on this

planet the use of biochar has been the most popular and widely adopted ancient sustainable

approach  (Lahori  et  al. 2017). Biochar  is  a  fine-grained,  carbon-rich,  porous  organic

derivative, a by-product from anaerobic thermo-chemical combustion of any organic matter

including wood, crop residues, animal excreta, and household wastes (Amonette, & Joseph,

2009).  Burning of  biomass,  under  complete  or  almost  complete  absence  of  oxygen,  also

produces oil and gas as co-products depending on the substrate characteristics and processing

conditions (Ramesh, 2019;  Lehmann, Gaunt, & Rondon, 2006). The quality of biochar is

determined by its  brittleness,  porosity,  lightweight,  high surface area,  and metallic  sound

produced on finger  tapping.  The quantity  biochar  produced is  usually  50% of  the  initial

volume of  the  substrates  used for  pyrolysis  (Ramesh,  2019)  that  may occur  naturally  in

forests or be manmade.       

2. Characteristics of biochar

Biochar has unique physicochemical properties which are governed by the type and size of

the biomass as well as pyrolytic temperature and duration (Sohi et al. 2010). Biogeochemical

characteristics of biochar determine its effectiveness and efficacy in agronomic applications

and impact on soil processes. Seven key properties viz. pH, volatile compounds, ash content,

bulk  density,  water-holding  capacity,  porosity,  and  specific  surface  area  are  vital  for

adjudging its quality (Okimori, Ogawa, & Takahashi, 2003; Sohi et al. 2010). 

Research of (Windeatt et al., 2014) on slow pyrolysis of eight different crop residues

at 600  0C resulted in biochar yield ranging from 27.7% (sugarcane bagasse) to 39% (rice)

with an average ultimate carbon content of 51% (TABLE 1). The quantity of the pyrolytic oil
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was highest  in  cotton (53.6%) followed by palm shell  and sugarcane bagasse,  each with

50.3% oil. The oil content of rice husk was the least (33.5%) among the six crop residues

under study. The maximum gas was released in olive pomace (29.2%) and the lowest was in

wheat  straw  (17.6%).  Coconut  shell  (222.5  m2 g-1)  and  palm  shell  (220  m2 g-1)  had

significantly higher surface area while wheat straw (6.3 m2 g-1) and olive pomace (1.2 m2 g-1)

recorded very negligible oil. The pH of wheat straw biochar was the highest (11.6) followed

by olive pomace (10.5),  cotton stalk (10.3),  rice husk (9.9),  cotton fibre (9.6),  sugarcane

bagasse (8.6), coconut shell (8.5) and palm shell (6.1). Rice husk produced the highest ash of

47% followed by wheat straw (23.4%) and coconut fibre (13.4%). Coconut shell (4.1%) and

palm shell (6.7%) biochar had significantly lower ash content. 

Biochar  carbon  sequestration  potential  was  reported  to  be  21.3-32.5%.  With  the

current global availability of crop residues about 373 M t of bichar could be produced that

has potential to sequester 0.55 Pg of carbon dioxide in the soil (Jayne et al., 2014). Crop

residues  are  slender,  leafy,  bulky  and  loose  unlike  compact  wood hence  are  difficult  to

transport and feed in the pyrolysis chamber. Wang et al.  (2013) have reported higher ash

content in straw biochar from rice, wheat and maize than bamboo and elm wood biochar. The

total nitrogen recovery of Gliricidia twig (38.1%), Eucalyptus twig (35.7%), Eucalyptus bark

(28.5%), Pongamia shell (24.9%) and Leucaena twig (20.9%); total phosphorous recovery of

Gliricidia twig  and  Pongamia shell  (68.4%),  Eucalyptus  twig  (67.4%),  Leucaena twig

(51.8%)  and  Eucalyptus  bark  (46.2%);  and  total  potassium of  Eucalyptus bark  (35.7%),

Gliricidia twig (35.1%),  Eucalyptus twig (31.7%),  Pongamia shell (29.1%) and  Leucaena

twig (24.2%)  were in descending order (Venkatesh et al. 2018; Venkatesh et al. 2016). 

Irrespective of the source of residues, the mass-yield of biochar declines with the increase in

temperature (Purakayastha et al. 2012). Pyrolytic temperature is positively correlated with the

surface area of biochar. An increase in pyrolytic temperature from 400 to 900 oC increases
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the surface area of biochar from 120 to 460 m2 g-1 (Day et al. 2005). Thus, the release of

nutrients from biochar could be controlled by doping desired quantities of biochar created at

low temperature (Day et al. 2005), while biochar produced at high temperatures would act as

material  analogous  to  activated  carbon  (Ogawa,  Okimori,  &  Takahashi,  2006).  Biochar

produced at low temperature are hydrophobic in nature and hence store relatively lesser water

in soil. However, after a long time, no significant difference in moisture retention capacity is

observed due to a difference in pyrolytic temperature (Sohi et al., 2010) possibly due to the

disintegration of biochar that equalizes the particle size as well as the surface area in long

run.  An increase  in  the  pyrolytic  temperature  from 400 to  600  oC decreases  the  volatile

component,  sulfur  and  nitrogen  contents,  but  increases  ash  and  fixed  carbon  contents  in

biochar (Purakayastha et al. 2012). Thus biochar prepared at 600 oC is more stable in soil due

to wider C:N ratio. Bera et al. (2018) observed lower bulk density and particle density of

biochar  from wheat  and maize  than rice  and pearl  millet  prepared  at  400  oC. The water

holding capacity of wheat biochar was the highest (747%) while in pearl millet biochar it was

the lowest (386%) at 400 0C. 

The pH of biochar is temperature-dependent. Lower pyrolytic temperature results in

lower pH and electrical conductivity (EC), due to the presence of carboxyl group in it while

higher temperature increases the pH due to more ash content. More ash means more of basic

elements such as K, Ca, Mg and Na in it. The IBI has prescribed for at least 10% carbon in

commercial biochar which means that 90% of it is ash. The pH of biochars produced from

different feedstock such as pearl millet, grass clipping, cotton trash, eucalyptus, etc. varied

from 8.2 to 13 (Jha et al. 2010). The pH of a finer fraction (9.08) in wood waste biochar was

higher than coarse fraction (8.71) of the biochar derived from husk and paper fibre (Prasad et

al. 2019). The C:N ratio of poultry litter biochar was the highest (221) in hardwood sawdust

biochar while the lowest (19) was reported in poultry litter biochar. Total carbon content in
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biochar from different feedstock varied from 33 to 82.4% (Bera et al. 2018). The original

composition  of the feedstock as well  as  the maximum pyrolytic  temperature  and heating

duration has strong influence on the retention of nutrients. Nitrogen and sulfur compounds

tend to volatilize at a temperature above 200 and 375 °C, respectively whereas potash and

phosphorous go away between 700 and 800 °C (DeLuca et al. 2006). An increase in pyrolytic

temperature decreased the cation exchange capacity (CEC) of biochar significantly (Bera et

al.  2018;  Zhao et  al.  2013;  Song,  & Guo,  2012) due to  the temperature-induced loss  of

carboxylic and hydroxyl group (–COO– and –OH) responsible for the CEC in biochar (Bera

et al. 2018). The CEC of maize biochar produced at pyrolytic temperature of 400 0C was the

highest (52.4 cmol P+ kg−1) followed by rice, pearl millet and wheat biochar as reported by

Bera et al. (2018). 

Biochar contains an appreciable quantity of Ca, Mg, K and P and thus, it can be used

as  liming  material  or  amendment  in  acid  soils.  However,  presence  of  sodium  may  be

detrimental for plant growth. Finer biochar contains higher levels of total Cu, Zn and Mn

(Prasad et al., 2019). The IBI has notified standardized procedures for evaluating biochar for

soil  application  based on proximate  and  elemental  composition,  pH,  porosity,  EC,  CEC,

hydrogen/carbon and oxygen/carbon ratios, etc.

Sometimes potential toxic elements such as Asc, Cd, Cr, Co, Cu, Pb, Mo, Hg, Ni, Se,

Zn,  B,  Cl  and  Na  are  present  in  the  feedstock  at  variable  concentrations.  Polyaromatic

hydrocarbon (PAHs) and dioxins/furans could be formed during pyrolysis process which acts

as  potential  pollutants.  However,  the  IBI  has  established  guidelines  for  testing  of  such

potential pollutants (Verheijen et al. 2010).  

3. Biochar for the sustainable land and agriculture development

3.1. Restoration of degraded lands
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Acid  soil—Biochar  has  ameliorative  effects  on  acid  soil  depending  on  its  pyrolytic

temperature  and  ash  content.  As  soil  acidity  is  a  serious  constraint  for  crop  production,

mostly in high rainfall areas, biochar could be a cheaper alternative to lime, at least partially

at moderate dose (e.g. 2 to 4%) (Berek, Hue, & Ahmad, 2011). Increase in pH of acid soil by

addition of rice straw biochar at 80 g kg-1 soil has been reported by Tarin et al. (2020) in a

one year greenhouse pot experiment with Fokienia hodginsii. In another pot experiment with

rice  crop,  the maximum increase in pH of acid soil,  as well  as  reduction  in  soluble  and

exchangeable aluminium (Al), was observed under amendment of Eucalyptus wood biochar

compared to bamboo and rice husk biochar (Shetty, & Prakash, 2020). So also, increase in

soil pH, and decrease in exchangeable acidity and Al by addition of rice husk biochar and

sawdust  biochar  produced from fast  pyrolysis  was reported  by Wang,  & Liu,  (2017).  In

between corn stover biochar and switch grass biochar, the former was relatively better  in

increasing the soil pH (Chintala et al. 2014). 

Saline soil—Soil salinity is one of the greatest challenges for agriculture and food security

across the globe not only in coastal belts but also in areas under overexploited groundwater

irrigation. Biochar amendment could be the befitting answer to alleviate salt stress in crops.

Its long-term effects on reducing Na+ uptake in succeeding crops is although not so clearly

understood but the greenhouse pot-culture column leaching experiment in wheat conducted

by  Akhtar,  Andersen,  &  Liu  (2015)  have  pointed  out  reduced  plant  sodium  uptake  by

transient Na+ binding due to its high adsorption capacity and increased release of mineral

nutrients (particularly K+, Ca+2 and Mg+2) into the soil solution that was finally reflected in

growth,  physiology  and  yield  of  wheat.  This  result  was  corroborated  in  a  biochar-soil

incubation  experiment  by  Moradi  et  al.  (2019)  that  showed  reduction  in  soil  sodium

concentration due to sodium absorption by biochar. In another pot experiment on green gram,

biochar  amendment  showed higher  plant  growth,  relative  water  content,  shoot/root  ratio,
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specific root length, vascular cylinder, cortical parenchyma areas, root indole-3-acxetic acid

(IAA)/abscisic acid (ABA) ratio, and IAA/ aminoclopropane-1-carbosylic acid (ACC) ratio

(Nikpour-Rashidabad, Tavasolee,  & Farhangi-Abriz, 2019). Hence, the ability of biochar in

reducing salinity stress may be considered in remediation of saline soils. 

Removal heavy metals and pesticides—Presence of heavy metals and pesticides in the soil

render it unsuitable for profitable crop production so also are detrimental to human health and

soil  biodiversity.  However,  biochar  amendment  could  successfully  drain  out  such  toxic

materials from the soil at varying levels as evident from the results of many researchers. Zhao

et al. (2019) in a mixture of multiple heavy metals observed adsorption capacity dependent

on the substrate feedstock and pyrolysis conditions of the biochar in the order of sewage

sludge> agriculture biomass> wood biomass. Such adsorption mechanisms of biochar include

physical adsorption, ion exchange, electrostatic interaction,  complexation and precipitation

(He et al. 2019) while cation exchange being the most important in removal of multiple heavy

metals (Zhao et al. 2019). Biochar in comparison to the activated carbon was found to have

lower energy demand (6.1 MJ kg-1 and 97 MJ kg-1) and global warming potential (-0.9 kg

CO2 eq. kg-1 and 6.6 kg CO2  eq. kg-1) (Alhashimi, & Aktas, 2017). The adsorption cost of

biochar as estimated was lower than activated carbon to remove chromium and zinc with a

95% confidence but the adsorption cost for lead and copper were comparable. Hence, precise

engineering  of  biochar  could  be  as  effective  as  activated  carbon  and  at  a  lower  cost

(Alhashimi,  &  Aktas,  2017).  Moreover,  Younis  et  al.  (2015)  in  a  study  on  biochar

amendment with nickel in Spinacea oleracia L. reported reduced Ni concentration in root and

shoot with increase in concentration of cotton stick biochar from 3% to 5%. So also, biochar

amendment at 5% level was found to have increased soil  pH, total  nitrogen, soil organic

carbon, and available P and K while availability of Cu, Pb and Cd decreased (Mokaram-

Kashtiban, Hosseini, & Younesi, 2019).
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The  adsorption  kinetics  of  biochar  increases  with  pyrolysis  temperature,  biochar

dosage,  higher  soil  pH in  acid  medium,  smaller  char-size  and  reaction  time.  Its  role  in

removal of pesticides and herbicides such as Imidachloprid (Zhao et al. 2018; Mandal, Singh,

& Purakayastha, 2017), Pymetrozine (Ponnam et al. 2019), Diazion (Xi et al. 2014), Atrazine

(Mandal, Singh, & Purakayastha, 2017), Triazine and Organophosphate (Uchimiya, Wartelle,

& Boddu, 2012) has been well  proven. Biochar  produced from the bark of  Azardirachta

indica could be used as a potential adsorbent for removal of synthetic organic pollutants such

as Bentazone from the watershed systems (Ponnam et al. 2020).    

3.2. Organic farming

Biochar  has  been  used  to  improve  soil  conditions  and  maintain  soil  fertility  for  many

centuries, from the basket willow stands of north Great Britain to the citrus fields of Japan to

the  Terra preta of Amazon basin. Its use in modern agriculture is to improve soil tilth and

promote sustainable agriculture (DeLuca, & Gao, 2019). Incorporation of such carbon-rich

material in soil helps in resource recycling, prevents loss of soil nutrients including nitrogen

and enhances their availability, stabilises soil carbon pool, removes toxins, ameliorates soil

physicochemical properties, maintains soil biodiversity, and increases crop yield sustainably.

Since no chemical or synthetic additive is allowed in organic farming, need-based biochar

application could prove beneficial to successful modern sustainable organic farming systems. 

      

3.3. Dryland farming

Biochar application has shown positive response to deficit moisture stress in arid and semi-

arid regions. In a study conducted by Zoghi et al. (2019), biochar soil amendment at 30 g kg -1

soil  enhanced  photosynthesis  and stomatal  conductance  in  Chestnut-leaved oak (Quercus

castaneifolia) under water-deficit stress. In another experiment, biochar could increase plant

10

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

19
20



height, leaf number and chlorophyll concentration while significant reduction in electrolyte

leakage and lipid peroxidation  were noted in drought stressed barley plants  (Hafez at  al.

2020a).  The efficiency of  Phtosystem-II  (quantum yield PS-II),  a  stress marker  in plants

increased with biochar application over control even at lower concentration of 1.5 t ha -1 in

sunflower (Maria et al. 2017). In maize, stomatal conductance, leaf water potential as well as

transpiration  and  photosynthesis  were  maintained  in  biochar  application  at  2  and  3%

reflecting increase in water holding capacity under declining moisture regime in sandy soil

(Ahmed  et  al.  2016).  Biochar  treatment  in  wheat  crop  amplified  soil  physicochemical

attributes that improved physiological traits, antioxidant enzymes and yield attributes under

water  deficit  condition  (Hafez  et  al.  2020b)  whereas  quinoa  crop  biochar  enhanced

bioavailability of nutrients, their translocation from soil to plant and seed (Ramzani et al.

2017).

4. Effects of biochar on the environment 

4.1. Soil physical properties

The impact of biochar as an amendment depends on the key properties such as large surface

area (SA) and presence of micropores (Mukherjee, Zimmerman, & Harris, 2011; Nguyen,

Brown, & Ball, 2004; Braida  et al. 2003) that potentially alter pore size distribution, bulk

density (BD), water holding capacity (WHC), and penetration resistance (PR) of soils. The

surface area of biochar depends on the combustion temperature even if produced from the

same feedstock.  Surface area increases with an increase in peak combustion (Mukherjee,

Zimmerman, & Harris, 2011; Nguyen, Brown, & Ball, 2004; Braida et al. 2003; Wang, Sato,

& Xing, 2006) as tar volatilize at higher temperatures (650–750 °C) thereby increasing the

temperature while a further rise in temperature, the micropore structure collapses and the SA

decreases (Lua, & Guo, 1998). Its stability in the environment and its mobility into deeper

11

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

21
22



soil profiles over time (Hammes et al. 2008) suggests high recalcitrant nature of biochar in

nature in soil over hundreds of years as seen in the Amazon basin. The effect of biochar on

soil  physical  properties  depends  on  feedstock,  pyrolytic  condition,  application  rate  and

environmental condition (Mukherjee, & Lal, 2013). Surface area of soil decides the water

holding capacity as well as aeration, microbial activity and nutrient retention ability (Van

Zwieten et al. 2009; Liang et al. 2006). Although many studies reveal the effect of pyrolytic

temperature on SA of biochar but very limited literature is available to ascertain the effect of

biochar on the SA of amended soil. However, biochar is reported to have increased the SA of

biochar 4.8 times compared to untreated soil (Liang et al. 2006), micropores increased at the

expense of macropores (micropores <2 nm, mesopores 2-50 nm and macropores > 50 nm)

(Jones, Haynes, & Phillips, 2010).

Application of biochar decreases the bulk density (BD) of soil (Liang et al.  2006;

Jones, Haynes, & Phillips, 2010), even at 2% level of soil amendment (Chen et al. 2011). In

some instances, increase in BD was observed with passage of time due to compaction and

column leaching effects (Rogovska et al. 2011) but the rate of increase is lower than manure

amended soil and control (Rogovska et al. 2011). A decrease in BD of biochar amended soil

improves soil aggregation, physical condition, aeration and hydrology (Atkinson, Fitzgerald,

& Hipps, 2010). Data on the effect of biochar on soil aggregate is scarce except some reports

of  elevated  water  stable  aggregates  (WSA)  under  low  temperature  hydrochar  (220  0C)

application in greenhouse experiments. However, greenhouse incubation is reported to have

2-5 times higher rate of WSA formation compared to laboratory incubation (George et al.

2012). A very less information is available on how biochar influences WSA formation either

through mycorrhizal fungi, active carbon, black carbon or plant-roots. Reports of humic acid

amendment,  an  active  ingredient  in  biochar,  positively  improves  soil  characteristics  by

buffering soil pH and chelating micronutrients by increasing concentration of –COOH- and -

12

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

23
24



OH groups (Kudeyarova, 2007; Mackowiak, Grossl, & Bugbee, 2019). This indicates that

biochar  may  form  active  complexes  on  ageing  that  help  in  soil  binding  and  aggregate

formation.       

Increase in penetration resistance (PR) reduced after 96 days of mixing of pecan shell

biochar with Norfolk loamy sand (Dobbie, & Smith, 2001). This indicates that the BD may

not change and aggregation percentage may decrease in short run resulting in no significant

smothering  effect  of  biochar  amendment  on  soil  compaction,  but  with  time,  bichar  may

change soil properties (Mukherjee, 2011; Cheng, & Lehmann, 2009). Soil type is also an

important  factor  to  define  the  effect  of  biochar  on  PR  as  another  experiment  reported

reduction in PR with application of the same biochar on another soil type (Busscher et al.

2010).  Hence,  additional  research  is  required  to  study  the  effect  of  different  biochar

amendments on aggregation and PR in different soil types. 

Soil hydrological properties such as water holding capacity, moisture content, water

infiltration rate, hydraulic conductivity, etc. are influenced by its surface area, porosity, bulk

density, carbon content, and aggregate stability. Several studies have indicated the response

of biochar at even 0.5% (g g-1) sufficient to improve WHC of soil depending on the soil type

(Laird et al. 2010); Jones, Haynes, & Phillips, 2010). Biochar-amended Clarion soil retained

up to 15% more water compared to unamended controls (Laird et al. 2010). Positive effects

of  biochar  on soil  water  holding capacity  and porosity  were also reported by Igaz et  al.

(2018). However, the effect of biochar on WHC is texture dependent as Tayler 1948 (Jones,

Haynes, & Phillips, 2010) observed increased water retention in sandy soil, but no effect in

loamy soil and decreased moisture content in clayey soil. Hence, a careful choice for biochar

and soil combination may be taken into consideration (Jones, Haynes, & Phillips, 2010).

4.2. Soil chemical properties
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Biochar amendment increases soil chemical properties such as soil organic matter, pH, N, P,

K, Ca, Mg, and CEC (Adekiya et al. 2020). Adekiya et al. (2020) in their pot experiment with

addition  of  cashew tree-wood  biochar  observed  increase  in  pH,  P,  K,  and exchangeable

sodium percent (ESP) in rice-cowpea sequence at 150 and 250 days after application. In field

experiment at Rawalpindi, Pakistan Ullah et al. (2018) reported a significant increase in EC,

organic carbon, P and K but no significant effect on soil  pH, nitrate  and nitrogen due to

application of wheat straw and sugarcane bagasse biochar. Rice husk biochar, obtained at

pyrolytic  temperature  of  500  0C for  three  hours,  elevated  K availability  in  acid  soils  of

Mazandaran province in Iran and hence, it could be considered as source of K in soil fertility

management (Ghorbani, & Amirahmadi, 2018). Its positive effects on soil organic carbon,

hydrolytic acidity, base saturation, and cation exchange capacity were also reported by Igaz

et al. (2018). 

Biochar  application  may  enhance  mineralization  of  soil  organic  carbon  fractions,

releasing plant nutrients (Hamer et al. 2004; Wardle, Nilsson, & Zackrisson, 2008). In vitro

incubation  of  biochar  increased  soil  pH,  total  N,  phyto  available  N,  P  and  K  than

corresponding level of biomass treated soils but the soil organic carbon declined with biochar

application (Khan, Chowdhury, & Hug, 2014). Higher availability of trace nutrients (Mo, Fe,

Mg and Mn) as well as macronutrients (K and P) was observed under sole application of

biochar to soil (Rondon et al. 2007) while its application with cow manure biochar resulted in

an appreciable increase in pH, total C and N; available N, P, and K; and exchangeable Ca,

Mg and K in the soil (Uzoma et al. 2011; Nigussie et al. 2012). Brantley et al. (2016) reported

enhanced nutrient availability by application of poultry-litter biochar in N and P fertilized

plots and Steiner et al. (2008) observed higher N use efficiency with application of 18.1%

biochar in NPK fertilized plots (Steiner et al. 2008). Thus, nutrient transformation not only

depends on the characteristics of biochar but also on other organic and inorganic amendments
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(Dey, & Mandal,  2020).  Xu et al.  (2014) reported higher rice production with combined

application of biochar produced from manure and litter. N mineralization in soil depends on

the type of biochar and their interactions with other amendments (Dey, & Mandal, 2020). 

Bioavailability of P in soil increased with application of biochar to soil (Xu et al. 2014) due

to high concentration of ash (77%) in biochar (Zhai et al. 2014). An increase in P availability

in  soil  at  8  weeks  of  application  was  reported  to  be  due  to  the  combined  effects  of

Mycorrhizae and biochar (Mau, & Utami, 2014). Adsorption of cations such as Fe+3 and Al+3

by biochar delays the process of adsorption and precipitation of P in soil (Wang et al. 2012).

However, P retention was reported to have increased with biochar application in a column of

soil that reduced P leachate in solution (Novak et al. 2012). Similarly, combined application

of  biochar  and  plant  litter  lowered  CEC  with  no  significant  effect  on  P  availability

(Satriawan, & Handayanto, 2015). Meta analysis of 108 pair wise comparisons conducted by

Glaser,  &  Lehr  (2019)  indicated  increased  P  availability  by  a  factor  of  3.4-5.9  (95%

confidence  level)  independent  of  feedstock.  However,  biochar  produced at  < 600  0C and

applied @ > 10 ton ha-1 could only increase the P availability. The P availability in acid and

neutral (pH 6.5-7.5) soils was 5.1 to 2.4 times, respectively while in alkaline (pH >7.5) soils

no significant effect was seen (Glaser, & Lehr, 2019).          

Plant residues and biochar have a significant impact on K and S mineralization in soil.

Liang et  al.  (2014) in  their  experiment  observed enhancement  in  exchangeable  K due to

addition of biochar to soil (Liang et al. 2014). Wang et al. (2018) reported higher K release in

Entisol than Alfisol due to addition of biochar in soil (Wang et al. 2018). Blum et al. (2013)

reported the maximum leaching of S from the soil due to release of mineral S and hydrolysis

of ester-S after addition of biochar. Biochar application lowers the surface albedo and absorbs

solar  radiation  that  enhances  S  mineralization  rates  in  soil  (Stevenson,  &  Cole,  1999).

However,  many  researchers  (Nelissen  et  al.  2014;  Sun  et  al.  2014)  are  still  not  in  full
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agreement with the ameliorative effects and crop yielding ability of biochar which need to be

scrutinized further.

In Indonesia, biochar application in maize influenced soil pH, N, P, K, Ca, Mg, and

CEC positively  compared  to  cattle  dung biochar  (Sukartono et  al.  2011).  In  Nigeria,  an

experiment with cocoyam (Xanthosoma sagittifolium L.) showed positive results of biochar

application on soil organic matter, pH, N, P, K, Ca, Mg, and CEC (Adekiya et al. 2020).

However,  studies  conducted  in  sandy  Podzol  soil  revealed  that  biochar  alone  could  not

provide enough nutrients for healthy plant growth (Syuhada, & Shamshuddin, 2016). 

4.3. Soil biota

Biochar, depending on its characteristics and residence time, soil type, prevailing climate, and

land management  practices,  influences  soil  microbial  activity,  abundance  and community

composition.  As  application  of  biochar  is  being  practiced  over  hundreds  of  years,  the

microbes  might  have  adapted  to  changing soil  environments  with  varying structures  and

functions over long period. Since soil microbes play vital role in soil ecosystem functions and

services  such  as  biogeochemical  cycles,  maintenance  of  soil  fertility  and  health,  disease

suppression, etc. it is imperative to study the long-term effects of biochar on soil biota along

with soil fertility (Palansooriya et al. 2019). Hoverer, Hardy et al. (2019) in their study of

charcoal  kiln  sites  in  forest  and  cropland  reported  overwriting  of  long-term  effects  of

charcoal on soil microbiota. Such alternation was possibly due to modification in ecological

niche (pH and nutrient availability) rather than source of C available to biota. Liao et al.

(2016) in their experiment with addition of cotton straw biochar at 4.5 t ha−1 reported 32%,

58%  and  13%  increase  in  microbial  biomass  C,  microbial  N,  and  basal  respiration,

respectively  compared with no application of biochar.  The activity  of three key enzymes

related  to  carbon  cycle  viz.  cellobihydrolase  (CBH),  b-glucosidase,  and  N-acetyl-
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bglucosaminidase increased with biochar application at 2.25 and 4.5 t ha−1. Application of

biochar  at  4.5 t ha−1  shifted  the microbial  population  to  bacteria  (both Gram-positive  and

Gram-negative) and actinomycetes (Liao et al. 2016). Dangi et al. (2020) in an experiment

for two consecutive years reported improvement in soil  health and productivity of pepper

crop  with  combined  application  of  inorganic  fertilizers  and organic  N or  organic  N and

biochar.  Mengyang  et  al.  (2019)  reported  significant  effects  of  biochar  and  inorganic

fertilizers on bacterial population in acid soils and hence advocated for biochar and fertilizer

application schemes in China. The release of CO2 in acid soils was 1.5 to 3.5 times more than

neutral and alkaline soils due to accelerated degradation of native organic carbon and biochar.

Such rapid degradation of organic carbon could be attributed to higher proportion (25-36%)

of  Gram  positive  bacteria  in  acid  soil  and  hence  have  direct  impact  on  the  carbon

sequestration (Sheng, Zhan, & Zhu, 2016). 

   

4.4. Soil erodibility

Soil  erodibility  is  influenced  by  soil  texture,  organic  matter,  compaction,  moisture,  and

vegetation  cover.  Biochar  is  used  for  geo-environmental  applications  such  as  covering

landfills due to its vegetation potential (Kumar et al. 2019). Addition of biochar decreased

erosion  in  dry  state  while  erodibility  increased  with  an  increase  in  moisture  content.

However,  the rate  of  erosion decreased  with an increase  in  biochar  concentration  due to

surface functional group and particle gradation of biochar (Kumar et al. 2019). Jien, & Wang

(2013) reported reduction in soil loss by 50% and 64% with addition of biochar at 2.5% and

5% rate, respectively compared to control (0%) in acidic Ultisol. Biochar acts as sponge that

significantly  reduces  runoff  and  increases  infiltration  (Krounbi  et  al.  2019).  Sustainable

hydrologic management practice with reduction of soil erosion by 10-69% and increase in

rainwater storage by 20-59% could be achieved through application of biochar (Cai et al.
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2020). However, Zhang et al. (2019) in a rainfall simulated experiment reported reduction in

total  runoff by 2.4-10.8% while  total  soil  loss and interrill  erodibility  increased by 20.8-

50.8% and 20.4-29.2%, respectively with addition of biochar at 2-8% (Zhang et al. 2019). 

4.5. Environmental remediation 

Anthropogenic  activities  such  as  mining,  smelting,  sewage-sludge  release,  pesticide  and

fertilizer use, oil spilling, etc. have resulted in the accumulation of pollutants and degradation

of the environment. Natural environmental processes very often fail to keep pace with the

rate  of  such waste  generation  posing  serious  ecological  threats  and human health  issues.

Some heavy metal(loid)s that persist over many years and get accumulated in the ecosystem

can only be immobilized by bioremediation (Sun, Zhang, & Su, 2018). Bioremediation is

deliberate breakdown of substrates at a faster rate by using naturally occurring or genetically

engineered  organisms  to  clean  the  environment.  Examples  of  bioremediation  could  be

phytoremediation,  bioventing,  bioleaching,  land  farming,  bioreactor,  composting,

rhizofiltration, bioaugmentation and biostimulation. 

The ability of biochar in reducing emission of GHGs such as methane, nitrous oxide

and carbon dioxide; leaching of nutrients, and surface runoff as well, apart from its role in

increasing soil carbon pool, water holding capacity, microbial population, and bioremediation

of  pollutants,  help  support  in  sustainable  environmental  remediation  and  agricultural

development  (Singh,  Tiwari,  &  Singh,  2020).  Due  to  its  long-term  persistent  nature,  it

interacts  with  all  those  naturally  bio  resistant  materials.  Addition  of  biochar  increases

microbial  abundance  and  activity  in  soil  and  groundwater.  It  increases  soil  aeration  by

increasing pore space and reducing bulk density (Gundale, & DeLuca, 2006) and absorbs salt

readily (Thomas et al. 2013). Low-temperature biochar has greater reactivity in soils than

higher temperature biochar (Steinbeiss et al. 2009). 
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The primary role of biochar in bioremediation is to stimulate microbial growth and

ameliorate  physicochemical  parameters  of  the  environment  (Vimal  et  al.  2017)  for  the

removal  of  contaminants  in-situ and  ex-situ (Gautam  et  al.  2017).  The  combined

contamination of metals, metalloids and organic pollutants which is otherwise very difficult

to remediate by a single process could effectively be taken care of by biochar alone (Chen, &

Yuan, 2011; Sneath et al. 2013). Moreover, consortia biochar with iron has been developed to

reduce  leaching down of copper  and arsenic from soil  in  the mining sites  where neither

biochar (1% w/w) nor iron alone could successfully do so (Sneath et al. 2013).    

Biochar  is  an  important  solid  sorbent  that  immobilizes  inorganic  and  organic

pollutants  by  proficient  mechanism of  precipitation,  ionic  metal  attraction,  ion  exchange

(Qian, & Chen, 2013; Ahmad et al. 2014), and polar and non-polar organic attraction (Ahmad

et al. 2014) even more efficiently than activated charcoal in some cases. Lead absorption by

biochar was found to be six times more efficient than activated charcoal (Cao et al. 2009).

Doping of Si in biochar could efficiently reduce Al phytotoxicity by making Si-Al complex

in soil (Qian, Chen, & Chen, 2016). Removal of heavy metals such as As, Cu, Cd, Ni, Pb,

and Zn by addition of biochar due to increase in pH and nonelectrostatic adsorption has been

reported by Beesley, Mereno-Jim’enez, & Gomez-Eyles, (2010); Park et al. (2011), Uchimiya

et al. (2012); Jianga et al. (2012); Khan, Hussain, & Hejazi (2004). 

Biochar alone, or magnetized biochar oxidized with iron oxide during ageing process,

could act as efficient sorption material for removal of organic and inorganic pollutants from

agricultural as well as environmental fields (Chen, & Yuan, 2011). Reports of bioremediation

of  herbicides  and pesticides  such as  simazine  (Jones,  Edwards-Jones,  & Murphy,  2011);

chloropyriphos, diuron and carbofuran (Yu, Ying, & Kookana, 2006); Atrazine (Cao et al.,

2009); and Terbuthylazine (Wang et al. 2010) implies that vast scope is there for applicability

19

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

37
38



of biochar in fixing environmental pollutions arising from injudicious chemical farming, and

much research is needed for further investigating the mechanism behind bioremediation.

5. Future prospects and constraints in biochar systems

The role of biochar in environmental remediation and agricultural production systems is now

an  undoubted  fact.  However,  its  in-depth  study  on  ISO-based  life  cycle  assessments  in

various systems has not yet been well attended. The potential of biochar and biochar systems

is manifold. It can be potentially linked to many sectors for green-growth, development and

climate resilience.  Decision tools are made available  to select  appropriate  biochar system

technologies  that  are  required  to  respond  to  local  environmental,  agronomic,  social

constraints and opportunities (Scholz et al. 2014).

           

 6. Conclusion 

Biochar amendment is an age-old practice of improving soil quality as well as increasing crop

productivity in a sustainable manner. It has tremendous ameliorating ability that can very

well  smother  problematic  soils  and  increase  agricultural  production  through  facilitated

bioavailability of essential plant nutrients and improved soil physicochemical properties. It

plays significant role in improving environmental quality thereby favoring biodiversity of an

area  and  reducing  global  warming.  Its  unique  physicochemical  characteristics  render  it

suitable for organic farming, dryland farming, conservation agriculture and land reclamation.

The lower cost of production of biochar from locally available wastes and feedstock and its

long-term effects on soil not only build up soil carbon pool but also help support small and

marginal farmers in resource-rich but economically deprived countries for sustainable crop

agriculture and environment. However, sustained efforts are essentially required for further

20

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

39
40



on-farm research  and experimentation  to  validate  the  widely  tested  results  that  yet  have

mostly been conducted in laboratories and greenhouses.  
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