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Abstract 

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. 

Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 

infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An 

important target is the main protease (Mpro), which plays a major role in replication of the virus. In this 

study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites 

on Mpro that can be evaluated as drug targets besides the active site. Then, FDA-approved drugs are 

docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug 

candidates. 14 best molecule hits for the active site of Mpro are determined. 6 of these also exhibit high 

docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-

GBSA method indicate that compounds docked to active and potential allosteric sites form stable 

interactions with high binding free energy (∆Gbind) values. ∆Gbind values reach -52.06 kcal/mol for the 

active site, -51.08 kcal/mol for the potential allosteric site 1, and -42.93 kcal/mol for the potential 

allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues 

stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient 

computational analysis successfully determines ivermectine, diosmin and selinexor currently subjected 

to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated 

against SARS-CoV-2 infections. 

 

 

Keywords: SARS-CoV-2, main protease, drug repurposing, allostery 
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1 Introduction 

Coronaviruses (CoV) belong to the family of Coronaviridae, single-stranded RNA viruses that spread 

widely among humans and other mammals, causing serious upper respiratory tract diseases.1 Over the 

past 17 years, two novel CoVs, namely severe acute respiratory syndrome CoV (SARS- CoV)2 and 

Middle East respiratory syndrome CoV (MERS-CoV)3 have emerged and infected humans, resulting in 

high fatality rates and large economic losses. The new coronavirus, designated as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), is first identified in Wuhan, China, during 

December 20194 and spread widely around the world, and so declared as a pandemic on March 2020 by 

the World Health Organization (WHO).5 

The viral life cycle involves entry, replication of genetic material, protein translation, assembly, and 

release from the host cell. Strategies for drug development target viral proteins and host receptors to 

interfere with different stages of the coronavirus life cycle.6 Spike (S) protein plays a vital role in viral 

entry into the host cell, hence it is an attractive target for blocking SARS-CoV-2 infection.7 Several 

theoretical studies have been performed to identify inhibitors against SARS-CoV-2 spike protein.8–10 

RNA-dependent RNA polymerase (RdRp) is another important target for SARS-CoV-2 due to its crucial 

role in replicating the positive sense viral RNA.6 Promising drug candidates against SARS-CoV-2 RdRp 

have been reported in several in silico drug repurposing studies.11–14 One of the best characterized drug 

targets among CoV is the Mpro (also called 3CLpro) that is functional as a homodimer, where each 

monomer contains the catalytic dyad defined by H41 and C145 residues.15 This enzyme is essential for 

processing the polyproteins that are translated from the viral RNA16 and mediating the maturation of the 

non-structural proteins, which is a main step in the replication of the virus. As a vital enzyme of SARS-

CoV-2, inhibiting the activity of Mpro would block viral replication and transcription.17 In addition to 

kinetic studies indicating that the active form of the Mpro corresponds to a homodimer,18 significant 

conformational differences between the monomer and dimeric states have been reported in recent 

studies.19,20 To analyze structural and dynamic properties of Mpro, all-atom MD simulations of various 

Mpro mutants have been performed by Amamuddy et al. (2020),21 emphasizing that mutations located 

near the active site control the bending motions needed for catalysis, so they may influence enzymatic 

activity. All these studies suggest that drug discovery combining docking and MD simulations should 

be performed using the homodimeric conformation instead of the monomer. Previous molecular docking 

and MD simulations studies targeting SARS-CoV-2 Mpro also reported.22–25 

To tackle this pandemic, overall efforts have been made to develop effective and safe therapies 

(including vaccines) for COVID-19. Drug repositioning or repurposing is a faster and less costly 

solution to propose potential effective drugs useful to control emerged infectious outbreaks immediately, 

as new drug development takes more than 10 years.26,27 Currently, there are no approved therapeutics 

available. At this point, already known and FDA-approved potential candidate drugs can be screened 

and re-evaluated based on antiviral effects for alternative treatments.28 Indeed, several drugs employed 
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for various diseases are being tested in numerous clinical trials, including remdesivir,29 favipiravir,30 

chloroquine,31 dexamethasone,32 nafamostat,33 and ivermectin.34  

In the light of the reports stated above, it is evident that a search for effective drugs, having the potential 

to inhibit SARS-CoV-2, has become a global pursuit. In this study, we investigate the repurposing of 

the existing FDA-approved drugs to target COVID-19 virus Mpro using a systematic computational 

approach combining different methods, namely elastic network theory, molecular docking, and MD 

simulations. We apply residue network and Gaussian network models (GNM) to identify potential 

allosteric sites on Mpro, which may be evaluated to regulate the enzymatic activity of this protease. 

Proteins are all considered to use allostery to accomplish their function, whether or not they undergo a 

large conformational change.35 Allosteric sites provide alternative drug binding regions on the same 

proteins, which improves the likelihood of effective drugs with greater specificity and regulates activity 

of proteins by remotely affecting their active sites.36,37 Molecular docking is one of the most common 

computational approaches to determine potential drugs regarding their binding pose as well as scoring 

their binding affinity.38 We then employ molecular docking of FDA-approved drugs against active site 

of Mpro and its potential allosteric sites. We use AutoDock Vina for molecular docking studies of the 

constructed library comprising over 2,400 molecules. We rank compounds based on their binding scores 

and consider promising hit compounds from docking experiments with good vina scores in 50-ns MD 

simulations using AMBER1639 to validate the stability of docked binding modes. MD simulations are 

performed for ligand-Mpro complexes, where whether both catalytic sites or dimer interfaces (i.e. 

potential allosteric sites) accommodate hit compounds. MD simulation trajectories are then analyzed 

with the Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method40 to evaluate 

binding characteristics of dimeric Mpro to 14 promising hit compounds at the active site and 8 promising 

drug candidates at the potential allosteric sites. 

This study reveals unknown potential allosteric sites of Mpro, suggests FDA-approved drugs to target 

Mpro from its critical sites, and describes a systematic methodology that can be also used for drug 

repurposing for other diseases that urgently wait efficient therapeutics.    

 

2 Methodology 

In the present study, 2,447 FDA-approved drugs are screened with a molecular docking approach against 

the active site and potential allosteric sites of Mpro. We employ Gaussian Network Model (GNM) and 

residue network model to identify potential allosteric sites of Mpro that can serve as drug binding regions, 

besides the active sites. Based on the vina docking score rankings and the active site interaction patterns, 

MD simulations of the most promising hit compounds bound to active site and potential allosteric sites 

of Mpro are performed. In order to understand the behavior of ligand molecules and their interactions 

with the active site and potential allosteric sites of the enzyme, 50 ns MD simulations are carried. The 

binding free energy analysis of Mpro complexed with the most promising hit compounds is performed 
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using the MM/GBSA method.40 All findings are evaluated together to propose FDA-approved drugs to 

target the Mpro. The schematic representation of the approach followed for repurposing FDA-approved 

drugs is provided in Figure 1. 

2.1 Determination of potential allosteric sites 

GNM is an Elastic Network Model (ENM), which describes the protein structure as a network of 

connected nodes. Nodes are usually placed at Cα positions of the amino acids. Neighboring amino acid 

pairs within a cut-off distance of 7 Å are then linked by uniform elastic springs.41 

The total potential energy of the constructed network of N nodes is given as, 

                                                                (1) 

where γ is the spring constant, Rij and Rij
0 are the instantaneous and equilibrium distances between the ith 

and jth nodes, respectively. Γij is the ijth element of the Kirchhoff matrix Γ (N × N) containing the 

connectivity information of the nodes. The singular decomposition of Γ = UΛUT gives the eigenvalues 

and eigenvectors corresponding to coupled motions of the nodes. Here, U is the orthogonal eigenvector 

matrix with elements uk indicating the kth eigenvector. Λ is the diagonal matrix of eigenvalues λk. N − 1 

eigenvalues give the vibrational frequencies of N − 1 modes, while one eigenvalue is zero indicating the 

rigid body motion. Cross-correlation between ith and jth nodes is defined by, 

Cross-correlation between ith and jth nodes is defined by, 

                                  (2) 

and their relative fluctuations are calculated as, 

                               (3) 

Cross-correlations calculated for the low-frequency motions (slow modes) reveal dynamic domains of 

proteins where groups of amino acids fluctuate in the same direction. Low-frequency motions of the 

proteins correspond to their functional globular motions. Therefore, they are highly useful to understand 

the functional mechanisms of the protein.42 On the other hand, ⟨∆Rij
2 ⟩ describes the relative mobility of 

ith and jth nodes. The high-frequency motions in fast modes calculated with ⟨∆Rij
2 ⟩ serve to find critical 

residues related to folding core43,44 or binding, such as protein, DNA, or drug binding sites.44,45 Here, we 

analyze the six slowest modes that give information about collective functional motions of the main 

protease with the highest contribution. Also, we consider the twenty fastest modes to detect the residues 

with high-frequency fluctuations. These residues have a high capacity to alter the energy landscape such 

as after binding a drug molecule, thus highlight plausible drug target regions besides the active site of 

the main protease. 
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The residue network model is similar to GNM; a network of connected nodes is constructed based on 

the protein structure. Nodes are placed at Cα atoms, and two nodes (amino acids) are linked if they have 

atom-atom neighbouring within a cut-off distance of 4.5 Å. This cut-off distance includes van der Waals 

and electrostatic interactions. The local interaction strength of a (i, j) node-pair is calculated as, 

                                                    (4) 

Here, Nij is the total number of heavy atom pairs of ı˙th and ȷ˙th nodes. The biasing effect of the amino 

acid size is eliminated by weighting Nij using their total number of atoms Ni and Nj .
46 In this approach, 

the node pairs with a high interaction strength can be considered closer to each other. Thus, the length 

of edges between two neighboring nodes is calculated by 1/aij. This formulation suppresses the bias 

towards covalently bonded interactions and covers both covalent and long-range interactions.47 

The centrality measure of betweenness reveals the frequently visited nodes or ‘hubs’ located on the 

shortest paths that are calculated for the network. The betweenness (CB) value is determined as;48 

                (5) 

Here, σij is the shortest number of routes between nodes i and j, σij(l) is the shortest number of routes 

between nodes i and j passing through node l. In this line, the nodes with high (CB) values in the residue 

network have a high potential to reside on the allosteric communication paths47,49 that can be evaluated 

as novel drug targets. 

2.2 Molecular docking 

The crystal structure of Mpro in complex with N3 at 2.1 Å resolution is retrieved from the Protein Data 

Bank (PDB ID:6lu7).16 The dimeric Mpro structure is hydrogenated at pH 7.0 using AMBER1639 

following a validation of the protonation states of the charged side chains with PROPKA3.1.50 Then, the 

dimer is subjected to energy minimization using AMBER16. FDA-approved drugs are downloaded from 

ZINC1551 and DrugBank52 databases. Molecules are geometrically optimized using Gaussian 0953 at 

PM3 level of theory.54 The sdf files of the molecules are converted into Gaussian input files (.gjf) using 

OpenBabel-3.0.55 A library composed of 2,447 optimized drugs is created for molecular docking studies. 

Molecular docking of Mpro against the FDA-approved drugs is performed using AutoDock Vina 

software.56 The grid is centered within the active site cavity of subunit A and subunit B with a size of 

20 Å × 20 Å × 20 Å in the x-, y-, z- axes, respectively. On the other hand, the grid sizes are set as 20 Å 

× 20 Å × 25 Å and 26 Å × 20 Å × 20 Å for potential allosteric sites 1 and 2, respectively. To validate 

our docking protocol, rigid docking of N3 ligand from PDB ID:6lu7 into the active site of Mpro is 

performed. From this calculation, H41, C145, H163, E166, Q189 residues on subunit A, and S1 residue 

of subunit B are determined to make critical contributions to the vina docking score (kcal/mol); 

therefore, they are kept flexible during flexible docking. Similarly, for the potential allosteric site 1, 
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K12, C16, and K97 residues on both subunits are kept flexible, whereas E288, D289, E290, F291 

residues on subunit A are kept flexible in docking studies for the potential allosteric site 2. In docking 

runs, we collect the best 10 poses for each ligand in the active site cavity and potential allosteric regions. 

The ligand-protein interactions are analyzed with Discovery Studio Free Visualizer 202057 and the 

results are reported as vina docking scores (kcal/mol).  

2.3 Molecular dynamics simulations 

The parameters, coordinate, and topology input files are generated for all compounds, the crystal 

structure of the protein (PDB ID:6lu7), and protein-ligand complexes using  tLeaP module implemented 

in AMBER16. For the ligand parametrization, the general Amber force field (GAFF)58 and the 

antechamber and parmchk2 modules are used with AM1-BCC charges.59 The parameters for the protein 

are described using the AMBER ff14SB force field.60 TIP3P water model61 is used to solvate each system 

with a 12 Å padding resulting in a cubic box dimension of 112 Å × 112 Å × 112 Å.  The Na+ ions are 

added to neutralize the system electrostatically, yielding approximately 128,000 atoms in the simulation 

systems without considering ligand molecules.   

The Particle Mesh Ewald summation technique62 is used with the default 8 Å cutoff. A time step of 2.0 

fs is used for the implementation of SHAKE algorithm63 to fix the bonds involving hydrogens. The 

system is minimized with 50,000 iterations of the steepest-descent method, while the positions of all 

heavy atoms are fixed by imposing harmonic restraints. The equilibration processes of the samples are 

carried out in four consecutive steps to maintain the interactions for the docking pose and to assess the 

relative stability of the pose before continuing further. (i) 100 ps of MD is performed in NPT ensemble 

at a temperature of 10 K with a strong temperature coupling while the harmonic restraints of 10 

kcal/mol/Å2 are maintained for all heavy atoms. (ii) a 100 ps long NPT MD simulation is performed 

while only the protein-heavy atoms are restrained. These two steps are carried out to generate a proper 

geometry for the hydrogen atoms, and to allow H-bond interactions between the water molecules and 

the enzyme complex. (iii) a 2 ns NPT MD simulation is performed to increase system temperature from 

10 K to 300 K while the harmonic restraints are maintained only for all heavy atoms of the protein and 

the ligand(s). (iv) a total of 25 ns MD in NVT ensemble at a temperature of 300 K is performed. During 

this run, restrictions on the main atoms are gradually removed in the first 10 ns by decreasing the 

harmonic restraint value on the heavy atoms by 0.5 kcal/mol/Å2 after each 500 ps. Finally, 50 ns 

production MD simulations are performed in NVT ensemble using the Langevin thermostat.64  

MD simulations are performed for the complexes, where ligands are docked to both active sites of the 

Mpro. In this way, better sampling of the ligand-active site interactions is achieved. For the other ligand-

Mpro complexes, there is only one ligand in one potential allosteric site. For all cases, ligands in their 

binding sites are monitored to ensure that they do not diffuse to the solvent. Therefore, the binding free 

energy calculations for the ligands enable a reliable comparison to evaluate their binding affinities. 
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2.4 Binding free energy calculations 

The values of the free energy of binding (∆Gbind) for a ligand can be calculated according to the 

equation:40 

∆Gbind = ∆H − T∆S ≈ ΔEMM + ΔGsol − TΔS                                               (6) 

ΔEMM = ΔEinternal + ΔEelectrostatic + ΔEvdw                                                     (7) 

ΔGsol = ΔGPB/GB + ΔGSA                    (8) 

where ΔEMM is the molecular mechanics energy of the molecule expressed as the sum of the internal 

energy of the molecule and the electrostatics and van der Waals interactions. ΔGsol denotes the solvation 

energy which is composed of the polar (ΔGPB/GB) and non-polar contributions (ΔGSA). The entropic 

contribution can be neglected because of similar types of ligands bind to the receptor, and enthalpic 

contribution is sufficient to compare different ligands. The protein-ligand interactions and the binding 

free energies are obtained using the MMPBSA.py65 and Sander modules of AMBER16, respectively. 

2.5 Determining the most promising compounds 

The most promising compounds are selected following these steps:  

(i) Compounds with the highest vina docking scores down to 15% less of the best binding score are 

noted;  

(ii) Molecular interactions critical in ligand stabilization and binding affinity, such as H-bonds, sulfur 

bridges, etc. within the substrate-binding pocket of the protein-ligand complexes from (1) are analyzed 

in detail;  

(iii) For the active site calculations, we select compounds interacting with the catalytic dyad residues 

H41 and C145 similar to the binding pose of N3 inhibitor. This indicates a better fit as well as the good 

binding affinity of the compounds to the active site; 

(iv) For the potential allosteric sites, we especially consider compounds having a high binding affinity 

towards both active site and potential allosteric regions. 

(v) Selected compounds in complex with the dimeric enzyme are then subjected to 50-ns long MD 

simulations coupled with MM/GBSA calculations. Protein-ligand complexes with binding free energies 

higher than approximately 25% of the best binding free energy value are considered as promising hit 

compounds to be further evaluated in vitro and in vivo studies.  

3 Results and Discussion 

Since there is an urgent need to alleviate the COVID-19 pandemic, the repurposing of existing FDA-

approved drugs is a highly effective strategy that reduces time cost, investment, and risks compared to 

traditional drug development strategies.66,67 Herein, we aim to identify potential inhibitors against Mpro 

by employing docking and MD simulations combined with MM/GBSA studies to calculate the binding 
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energies. All calculations are performed with the Mpro dimer, which represents its functional state. 2,447 

FDA-approved drugs are screened using molecular docking methodology against the active site of Mpro 

on both subunits and potential allosteric sites (Figure 2). Initially, the molecular docking protocol is 

validated by re-docking the crystallographic N3 ligand (PDB ID:6lu7) to the active sites of Mpro. Both 

the crystallized and docked structures for N3 indicate similar poses (Figure S1) with an RMSD value of 

1.9 Å, which is considered sufficient. 

3.1 Docking to the active sites of Mpro 

We perform flexible docking experiments of over 2,400 FDA-approved drugs with AutoDock Vina 

against the active site on both monomers of the Mpro. The active site residues making critical 

contributions to the binding score (H41, C145, H163, E166, Q189 on subunit A, and S1 on subunit B) 

are kept flexible during docking experiments (Figure 2). Molecular docking studies reveal 14 promising 

SARS-CoV-2 Mpro inhibitor candidates that belong to different chemical classes, namely ergot alkaloids, 

flavonoids, antivirals, anti-parasitics, antibiotics, anti-cancer agents, analgesics, and cardiac glycosides. 

Vina docking scores of these drugs range from -11.6 kcal/mol (dihydroergotamine) to -8.4 kcal/mol 

(elbasvir) for the active site on both subunits (A/B). The detailed results on the docking score (kcal/mol), 

DrugBank identification, and chemical classification of each compound are given in Table 1. 

Dihydroergotamine is predicted as the compound with the highest binding affinity towards the active 

site of dimeric Mpro. It interacts with the residues typically dispersed in domain 2 (residues 102-184) 

(Figure 3a) predominantly in the form of hydrogen bond interactions. Another ergot alkaloid derivative 

in our list is bromocriptine exhibiting H-bond interactions with H41 and C145 residues of the catalytic 

dyad, respectively (Figure 3b). Anti-cancer agents, nilotinib, entrectinib, and selinexor are ranked 

among the top best molecules in our results, displaying H-bond, π-alkyl, π-sulfur, alkyl, and halogen 

interactions with the active site residues, especially with the catalytically active C145 residue (Figure 

3c-e). 

Ivermectin and paritaprevir exhibit relatively higher binding affinity. The hydrogen bond interaction 

with H41 residue (Figure 3f) for ivermectin, and several H-bond, π-π stacking, π-sulfur π-alkyl and alkyl 

interactions (Figure S2) with domain 2 residues especially with C145 residue of the catalytic dyad 

(Figure 3g-h) observed for paritaprevir. Although elbasvir displays a relatively lower binding affinity 

towards the active site with -8.8 kcal/mol compared to other FDA-approved drugs, it shows several H-

bond, π-sulfur, π-alkyl, and alkyl interactions (Figure S2) with domain 2 residues especially with C145 

residue of catalytic dyad (Figure 3g-h). Besides several H-bond interactions with residues typically 

dispersed domain 1 (residue 1-101) and domain 2 (residue 102-184), just like paritaprevir and 

rifapentine, quinupristin displays alkyl interaction with C145 residue of the active site (Figure 3i-k). We 

also identify two flavonoid compounds, rutin, and diosmin, displaying high binding affinity towards 

Mpro. Besides a vast number of interactions with residues of domain 2 (Figure-S2), rutin exhibits H-bond 
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and π-sulfur interactions with C145 residue of the catalytic dyad (Figure 3l), whereas diosmin displays 

H-bond interaction with H41 residue and π-alkyl and π-sulfur interactions with C145 residue of catalytic 

dyad (Figure 3m). Digitoxin and antrafenine interact with the active site by forming several H-bond, 

π−π stacked, π-cation, π-anion, π-alkyl, alkyl and halogen interactions (Figure 3n-o). Considering all 

analyses, ligands mostly interact with T26, H41, H163, H164, E166, R188, Q189, T190 residues by 

forming H-bond and halogen interactions, with F305 residue of subunit B by π − π stacked interaction 

and with M49, C145, M165, and P168 residues by π-alkyl, π-sulfur, and alkyl interactions, in accordance 

with those stabilizing N3 inhibitor inside the substrate-binding pocket16. These residues are also reported 

in previous docking studies targeting SARS-CoV-2 Mpro.22–24 

The number of interactions and interaction types of all compounds mentioned above are given in Figure 

S2. We posit that these 14 hit compounds are good candidates as SARS-CoV-2 Mpro inhibitors targeting 

the active site of Mpro and therefore the complex stability of these compounds are further evaluated in 

50-ns MD simulations and binding free energy calculations. 

3.2 Docking to potential allosteric sites of Mpro 

Figure 4(a) displays the low-frequency (slow modes) and the high-frequency (fast modes) dynamics of 

Mpro calculated by Gaussian network model (GNM). The cross-correlations of residue pairs are 

determined for the six slowest modes that contribute to 16% of the overall dynamics, and they are 

projected on the structure. Same colored regions point to groups of amino acids with positive cross-

correlation moving in the same direction, and different colored regions have anti-correlated motions. 

Positively correlated amino acids form dynamic domains moving as rigid bodies for the functional 

dynamics of the protein. Hinge regions located between the dynamic domains consist of amino acids 

with low mobility and provide them rotational freedom. For instance, in slow mode 1, each monomer is 

a distinct dynamic domain having anti-correlated motions such as to open and close the cleft at the 

subunit interface. This motion is coordinated by a hinge region including the whole subunit interface. 

We also note that the dynamic domains of Mpro at the other slowest modes consist of its building blocks, 

i.e. its structural domains I (amino acids 10 - 99), II (100 - 184), and III (201 - 303), separated by hinge 

regions. 

Figure 4 (a) also shows amino acids with high relative mobility ⟨∆Rij
2 ⟩ in the twenty fastest modes. They 

have a high potential to change the conformational energy landscape of the protein upon ligand binding. 

Therefore, the amino acids both having high relative mobility in the fastest modes and involving in the 

hinge regions of the slowest modes can be evaluated as potential drug binding sites, as was recently 

shown for the bacterial ribosome.68 At the same time, they plausibly highlight allosteric regions that can 

affect the activity of the protein upon perturbation. Accordingly, M6-P9, V13, V18, N28, G29, C38, 

P39, A116, C117, G146, S147, Y161, M162, and H164 are the residues with high relative mobility 

located at the hinge regions. Indeed, P39, G146, S147, Y161, M162, H164 are located next to the active 

sites, as shown in Figure 4 (b). Recent MD simulations also indicated that mutations at residues A7 and 
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A116 increase the proximal interactions, which in turn affect the dynamics and the dimer stability.21 We 

propose the region pinned by A7-P9 as a potential allosteric site, since it is located on a cavity at the 

subunit interface, and is solvent accessible. 

Then, we employ the residue network model and centrality measurement of betweenness to determine 

hub residues with high potential to assist the flow of information in the structure.47 We use the crystal 

structure of Mpro (PDB ID:6lu7), and calculate betweenness values CB. The top 0.05 quantile (CB > 

0.0485) is designated to hub residues as in47 (Figure 4 (c)). All findings are given in Table S4. Residue 

network model predicts the active site residues F140 and H163 as hub residues, while it also reveals 

critical amino acids potentially taking part in allosteric communication of the active sites with distant 

regions. Supporting our results, mutation studies using MD simulations21 proposed A7 and G15 as 

critical residues impairing the functional motions of Mpro. Among the other hub residues listed in Table 

S1, E14, and G15 are solvent-accessible and are located at the potential allosteric region predicted by 

GNM (Figure 4 (b) and (c), right panel). GNM and residue network model calculations both indicate 

the same region as a drug target, called allosteric site 1 including residues P9, E14, and G15. In addition, 

E290 and F291 mark a second potential allosteric region (Figure 4 (c), right panel) located at the 

interface of domains III on both subunits, thus has a high potential to affect the functional activity of 

Mpro.  

After we predict potential drug binding sites on Mpro, we perform flexible docking studies of over 2,400 

FDA-approved drugs against these potential allosteric sites of Mpro with AutoDock Vina. 

Dihydroergotamine (DB00320), nilotinib (DB04868), entrectinib (DB11986), digitoxin (DB01396), 

bromocriptine (DB01200), and diosmin (DB08995) exhibit good binding affinities not only to the active 

site but also to the predicted allosteric sites of Mpro with vina docking scores up to –12.1 to kcal/mol 

(Table 1). These drugs form H-bond interactions with K97 of subunit A, and K12 of both subunits, 

which are kept flexible during docking experiments for potential allosteric site 1.  They also make π-

alkyl, alkyl, and halogen interactions with domain 1 (residue 1-101) of both subunits (Figure S3). On 

potential allosteric site 2, domain III (W207, L282 G283, L286, E288, E290, F291, R310, K311) and 

domain I (R4, K5, K137) residues are highlighted due to their H-bond, π-cation, π-anion, π-alkyl and 

alkyl interactions with the docked ligands (Figure S4). In addition, we determine two other hits for the 

potential allosteric sites. Interestingly, elbasvir has a higher binding affinity for the potential allosteric 

sites 1 (-10.8 kcal/mol) and 2 (-11.1 kcal/mol) compared to both active sites of Mpro (-8.8 and –8.4 

kcal/mol). Selinexor has a slightly lower binding affinity for the potential allosteric sites (-8.2 and –9.5 

kcal/mol) as compared to the active sites (-10.1 kcal/mol). Evidently, the potential allosteric sites on 

Mpro can be indeed novel target sites, which motivates us to further investigate the stability of these 8 hit 

compound - Mpro complexes with 50-ns long MD simulations. 
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3.3 MD simulations of Mpro - ligand complexes 

The main purpose of this study is to determine FDA-approved drugs that exhibit high binding affinity 

to active and/or potential allosteric sites of Mpro. We apply a comprehensive docking protocol and select 

a total of 14 ligands complexed with the Mpro active site to perform MD simulations. Among these, 8 

drugs namely bromocriptine, diosmin, dihydroergotamine, nilotinib, entrectinib, digitoxin, selinexor, 

and elbasvir have also high docking scores for the potential allosteric sites 1 and 2. Therefore, MD 

simulations are also carried for these ligands docked to the potential allosteric sites. MD simulations are 

performed for the functional dimer, where the hit compounds are either bound to both active sites or the 

allosteric sites.   

The stability of the ligand-complex systems is monitored by the root-mean square deviation (RMSD) of 

the backbone Cα atoms and root-mean square fluctuations (RMSF) of the residues, where the initial 

frame is taken as the reference. RMSD and RMSF graphs reveal that systems reached equilibrium at the 

end of 25-ns equilibration run. The stability of each system in 50-ns production run with detailed 

analysis of RMSD and RMSF graphs are presented in Figures S5-S34 in the Supporting Information. 

The RMSD values for the protein are around 2 Å, indicating convergence of the simulations. We then 

focus on the stability of ligands that are docked to both active sites, i.e. the same ligand both in subunit 

A and B. Here, ligands can be mobile at both active sites without leaving the pocket, such as nilotinib 

(Figure S8), entrectinib (Figure S12), and elbasvir (Figure S18). On the other hand, the mobility of 

ligands on each subunit may differ; such as antrafenine (Figure S9), dihydroergotamine (Figure S15) , 

and quinipristine (Figure S10) have greater mobility at one active site and stable in the other. Similar 

observations are made for the potential allosteric sites. Digitoxin (Figure S22) and elbasvir (Figure S25 

and Figure S33) are mobile in their binding pockets. Nilotinib and entrectinib diffuse from their first 

binding pockets (allosteric site 1) at the equilibration period and towards the end of the simulations, 

respectively. They bind neighboring sites (subunit A), where they remain during the simulations. 

Nilotinib and entrectinib interact with A70 and N72 residues by forming H-bond interactions (Table S3) 

and remain stable in these neighboring sites. It should be noted that these two residues are on the second 

shell of the predicted allosteric site. Other than indicated, ligands are stable in their initial docking sites, 

i.e. active sites, potential allosteric sites 1 and 2. 

The binding free energy values are calculated using the MM/GBSA approach and reported separately 

for each ligand-binding site pair. For all investigated ligands, the binding is thermodynamically 

favorable and Table S2-S4 tabulates the energetic components of the binding free energy, namely van 

der Waals energy (∆Evdw), electrostatic energy (∆Eele), General Born solvation (∆EGB), and surface area 

energies (∆Esur). In addition, Table S2 lists the H-bond interactions between the active site residues of 

Mpro and ligands that are established throughout the simulation. Here, residues H41, N142, E166, Q189, 

T190, and Q192 on both subunits are taking a role to stabilize the ligands via H-bond interactions. This 

finding indicates the reliability of the flexible docking protocol followed in this study, where H41, E166, 
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and Q189 are let flexible. The detailed information on the % occupancy of H bonds formed between 

active site residues and ligands are given in Table S5 and Table S6 for subunits A and B, respectively. 

Vina docking scores and ∆Gbind values of hit compounds at both subunits are displayed in Figure 5 (a). 

Vina score ranking is in agreement with MM/GBSA binding energy rankings for most of the ligands. 

Dihydroergotamine has the highest vina docking score and also has a high binding free energy in the 

active site. On the other hand, elbasvir exhibits a lower binding affinity towards the active sites, which 

is consistent with vina score values. Even though ivermectin, bromocriptine, nilotinib, digitoxin, and 

diosmin exhibit moderate vina scores, they show high binding affinities to the active site of Mpro. There 

may be differences in the binding affinities of the ligands in different subunits of dimeric Mpro. This is 

plausibly due to the collective dynamics of the enzyme that can modulate the cooperativity of distant 

active sites.69 

For the potential allosteric sites 1 and 2, elbasvir is highlighted both by vina docking scores and 

MM/GBSA calculations (Figure 5b and c). Elbasvir is followed by digitoxin and diosmin with promising 

binding free energy values for the allosteric site 1. On the other hand, entrectinib, dihydroergotamine, 

and bromocriptine show a high binding affinity towards the allosteric site 2. Selinexor has a high affinity 

for the active site; MM/GBSA calculations are also performed for selinexor docked to allosteric regions. 

Its binding free energy for the allosteric site 1 is worth noting (Figure 5 (b)). 

H-bond interactions between the potential allosteric site 1 and 2 residues are detailed in Table S3 and 

Table S4, respectively. The potential allosteric site 1 and 2 are located at the subunit interface. In the 

first site, the ligands are mostly stabilized via H bond interactions involving K12, E14, N72, K97, and 

S121 residues of both subunits and Y154 residue on subunit B. The stabilization of ligands at the 

potential allosteric site 2 is maintained by K5, K137, W207, G283, and S284 residues on both subunits 

and E288 residue on subunit A. The % occupancies of H-bond interactions at these sites are detailed in 

Table S7 and Table S8.  

Consequently, selinexor, bromocriptine, and diosmin exhibit high binding affinity on both active sites 

and show relatively higher docking scores for both potential allosteric sites. Ivermectin also has a high 

affinity for the active site and it is currently used in clinical trials to treat COVID-19 according to WHO 

(WHO/2019-nCoV/therapeutics/2021.1). In addition, elbasvir has a high affinity for both potential 

allosteric sites. Therefore, these compounds are further subjected to energy decomposition calculations 

per residue basis. In this way, we aim to determine which residues are mainly responsible for the 

stabilization of the ligands, hence one can propose a pharmacophore for rational drug design. 

3.3.1 Per-residue free energy decomposition 

Figure 6 displays the per-residue free-energy decomposition for selinexor, bromocriptine, diosmin, and 

ivermectin where their stabilizations are predominantly maintained by 12 to 19 residues. Complex 

formation between active site of dimeric Mpro and selinexor involves mostly hydrophobic, positively 
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charged, and polar residues of domain 1 and domain 2 at both subunits (Figure 6a). Same residues at 

both subunits energetically contribute to the binding of selinexor to similar extents that are reflecting on 

their binding free energies at subunits A and B (Figure 5a). Similarly, for bromocriptine, the interactions 

on both active sites involve the same hydrophobic and polar residues that stabilize the ligand in the 

binding sites (Figure 6b). For the diosmin-Mpro complex, interacting residues with the ligand differ 

(Figure 6c). Hydrophobic residues L50, L167, P168, and A191 contribute to stabilizing diosmin at 

subunit A, whereas polar residues T25, N142, S144, C145, Q189 of domain 1 and domain 2 mostly 

facilitate its subunit B binding. This dramatic difference in the type of binding residues is the reason of 

the difference in binding free energy values for subunit A (-42.39 kcal/mol) and B (-52.06 kcal/mol). 

The binding free energy of ivermectin at the active sites is less than diosmin (~40 kcal/mol), where polar 

(S46, Q189, Q192) and positively charged (H41, R188) residues of subunit A, and hydrophobic residues 

(L27, M49, G143, M165, L167, and P168) of subunit B stabilize the ligand (Figure 6d).  

For these four selected ligands, hydrophobic (L27, M49, G143, M165), polar (T25, T26, S46, N142, 

S144, C145, Q189, T190, Q192), positively charged (H41, H163, H164, R188), and negatively charged 

(E166, D187) residues significantly contribute to ∆Gbind values of ligand-enzyme complexes (Figure 7). 

Notably, catalytic residues H41 and C145, and M49, M165, Q189 consistently involved in binding of 

the ligands, as also reported by previous studies on Mpro.16,17,69–71 These residues are also reported for 

N316 complexed with Mpro crystal structure, and for the proteolysis reaction catalyzed by Mpro 

investigated using QM/MM molecular dynamics simulations.69–72  

The same analysis is carried for elbasvir docked to potential allosteric sites 1 and 2. Elbasvir has a high 

binding affinity for both potential allosteric sites; -51.08 and –42.37 kcal/mol for allosteric sites 1 and 

2, respectively. Potential allosteric sites are located at the subunit interfaces, therefore, residues of both 

subunits simultaneously contribute to ligand stabilization. Elbasvir binds to potential allosteric site 1 via 

the energetic contributions of hydrophobic G11, G15, P96, and positively charged K12, K97 residues 

of both subunits, whereas hydrophobic residues W207, L282, G283, L286 of both subunits stabilize its 

binding at potential allosteric site 2 (Figure 8a). We also investigate the per-residue free-energy 

decomposition of elbasvir on the active site. Its binding free energy at the active sites is less than that at 

the potential allosteric sites (~32 kcal/mol), where hydrophobic and polar residues of subunit A, and 

polar residues (C44, T45, S46, N142, S144, and Q189) of subunit B stabilize the ligand (Figure 8b). 

Moreover, S301, G302, and V303 residues of subunit A are noted to take a role in the stabilization of 

elbasvir at subunit B. 

In general, hydrophobic residues of both subunits contribute to ∆Gbind values, but G11, K12, G15, and 

K97 residues of both subunits are highlighted at the potential allosteric site 1. For the potential allosteric 

site 2, positively charged K5 residue and hydrophobic F3, W207, A285, F291 residues of both subunits 

seem to help ligand binding, where L282, G283, S284, and L286 of both subunits significantly 
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contribute to ∆Gbind values (Figure 7). Here, K12, K97, and F291 are kept flexible during docking studies 

to obtain more accurate docking poses as initial ligand-protein complex structure in MD simulations.  

Among the hit 14 compounds that we identify in this study, high binding free energies and a large 

number of molecular interactions of dihydroergotamine,73 rutin,74,75 paritaprevir,76 ivermectin,77 

antrafenine78 with the substrate-binding pocket of Mpro are also reported in other in silico studies, thus 

supporting our approach. In vitro studies have recently reported the antiviral activity of digitoxin and 

nilotinib against SARS-CoV-2.79,80 In addition to these studies, we here identify diosmin, selinexor, 

bromocriptine, ivermectin, and elbasvir with an inhibitory potential against Mpro. Diosmin 

(NCT04452799) mixture with hesperidin and selinexor (NCT04349098) have already been under 

clinical trials against SARS-CoV-2.81 Selinexor, a novel class of anti-cancer agent, is evaluated in 

clinical trials for hospitalized patients with SARS-CoV-2 infection, resulting in both anti-viral and anti-

inflammatory activities in patients. Being a member of the flavonoid family, diosmin is used in the 

treatment of venous disease and displays anti-inflammatory action.82 Considering the importance of 

natural products as antiviral agents recently,83,84 diosmin could be a promising drug to treat COVID-19. 

The inhibitory effects of bromocriptine, an ergot-derived dopamine receptor agonist, on zika virus and 

dengue virus replication have been reported,85–87 so it has also a high potential for the treatment of 

SARS-CoV-2 infected patients. Ivermectin is an anti-parasitic drug the usage of which extended from 

veterinary medicine to humans.88 In addition to in silico studies89 involving the interactions between 

ivermectin and SARS-CoV-2 3CLpro, an in vitro study is performed by Caly et al. (2020) indicating 

ivermectin’s capability to reduce viral RNA.77 Ivermectin (NCT04668469) has recently been evaluated 

for the clinical trials.34 Elbasvir is another antiviral drug in our list that displays a higher binding affinity 

towards potential allosteric sites than the active site of Mpro, agreeing with previous in silico studies for 

Mpro. 90,91 Regarding the immediate need for therapeutics against SARS-CoV-2, bromocriptine and 

elbasvir should be evaluated for advanced experimental research to cure COVID-19. 

4 Conclusion 

In this study, we conduct a systematic approach to suggest potent inhibitory compounds to inhibit the 

activity of Mpro by combining different computational methods. First, we predict two potential allosteric 

sites by GNM and residue network model as alternative drug binding sites on the Mpro native structure. 

These residues have a high capacity to alter the conformational energy landscape of the enzyme upon 

ligand binding, thus affecting its functional motions. Then, flexible docking runs are performed for 

active sites on both subunits and two potential allosteric sites of the dimeric enzyme using FDA-

approved compound library containing over 2,400 FDA-approved drugs. Taking N3, the original 

inhibitor in the crystal structure, as a reference, we determine the compounds interacting with catalytic 

dyad residues (H41, C145), establishing a large number of H-bond and having high vina docking scores 

for the target sites.  
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Accordingly, 14 hits are determined for the active site, while 6 of these have also high docking scores 

for the allosteric sites. These promising drugs are further investigated with 50-ns-long MD simulations 

coupled with the MM/GBSA calculations to calculate free binding energy values and their binding 

characteristics. Results for molecular interactions and binding free energy values for the majority of 

ligands indicate that vina docking score ranking is in harmony with MM/GBSA free binding energy 

rankings. In fact, the analysis of docking poses reveals that flexible residues are mainly involved in the 

stabilization of ligands on the binding regions, leading to plausible complex structures for the MD 

simulations. The energy decomposition per residue analyses highlight the catalytic residues H41, C145, 

and substrate binding site residues M49, M165, and Q189, which are involved in ligand-Mpro complex 

formation. The hits found from the calculations establish various interactions, such as H-bond, π-alkyl, 

π-sulfur, and alkyl interactions with the binding pockets, which traces a clear template for 

pharmacophore design (Figure 7).  

Bromocriptine, diosmin, selinexor, ivermectin, elbasvir, nilotinib, entrectinib, rutin, dihydroergotamine, 

and digitoxin are determined to have a high affinity for Mpro. These FDA-approved drugs are suggested 

as anti-COVID-19 therapeutics to be further evaluated in vitro and in vivo testing for viral activity. 

Indeed, our calculations successfully determine diosmin, ivermectin, and selinexor that have already 

been subjected to clinical trials. Therefore, our systematic approach followed in this study serves as a 

guideline to propose effective compounds that can be rapidly tested in clinical trials for the treatment of 

various diseases, including COVID-19.  
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Table 1. Vina docking scores (kcal/mol) of the hit compounds among FDA-approved drugs against Mpro.  

 

Vina Docking Score (kcal/mol) 

Classification DrugbankID Drug Name Chemical Formula 
Active Site 

Subunit A/B 

Allosteric 

Site 1 

Allosteric 

Site 2 

Ergot-alkaloids 
DB00320 

DB01200 

Dihydroergotamine 

Bromocriptine 

C33H37N5O5 

C32H40BrN5O5 

-11.6 / -11.3 

-9.9 / -9.9 

-10.6 

-9.7 

-12.1 

-11.2 

Anti-cancer agent 

DB04868 

DB11986 

Nilotinib 

Entrectinib 

C28H22F3N7O 

C31H34F2N6O2 

-10.8 / -10.8 

-10.2 / -10.3 

-9.5 

-9.6 

-11.1 

-10.9 

 DB11942 Selinexor C17H11F6N7O -10.1 / -10.1 -8.2 -9.5 

Anti-parasitic DB00602 Ivermectin C95H146O28 -10.2 / -9.7 -10.0 -7.5 

Antiviral 
DB09297 

DB11574 

Paritaprevir 

Elbasvir 

C40H43N7O7S 

C49H55N9O7 

-10.2 / -10.2 

-8.8 / -8.4 

-10.1 

-10.8 

-10.0 

-11.1 

Antibiotic 
DB01369 

DB01201 

Quinupristin 

Rifapentine 

C53H67N9O10S 

C47H64N4O12 

-10.0 / -10.0 

-9.8 / -9.9 

-9.8 

-10.4 

2.0 

-0.4 

Flavanoids 
DB01698 

DB08995 

Rutin 

Diosmin 

C27H30O16 

C28H32O15 

-10.6 / -10.5 

-9.8 / -9.4 

-8.1 

-9.4 

-9.5 

-10.6 

Cardiac glycoside DB01396 Digitoxin C41H64O13 -10.0 / -9.8 -10.3 -11.1 

Analgesic DB01419 Antrafenine C30H26F6N4O2 -9.9 / -9.7 -7.3 -10.9 
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Figure 1. The computational workflow followed for the repurposing of FDA-approved drugs. 

Figure 2. Surface representation of dimeric Mpro, where two subunits are in salmon and skyblue. One 

active site and two potential allosteric sites are explicitely shown. The key residues in the flexible 

docking experiments are in spheres. 

Figure 3. Docking poses of potential Mpro inhibitors into the substrate binding site. The docking results 

for (a) dihydroergotamine, (b) bromocriptine, (c) nilotinib, (d) entrectinib, (e) selinexor, (f) ivermectin, 

(g) paritaprevir, (h) elbasvir, (i) quinupristin, (k) rifapentine, (l) rutin, (m) diosmin, (n) digitoxin, (o) 

antrafenine are shown as salmon (subunit A) and skyblue (subunit B) surface. Ligands are depicted in 

green and flexible residues are represented in spheres. Their 2D interaction maps are also shown. 

Figure 4. (a) Dynamic domains from the six slowest modes of Mpro calculated by GNM. Distinct 

dynamic domains are coloured in blue and wheat. Amino acids with high relative mobility in the twenty 

fastest modes are shown in red surface representation. Potential drug binding sites predicted by (b) GNM 

and (c) the residue network model. In (b), amino acids with high relative mobility in twenty fastest 

modes of GNM are shown in brown. In (c), the hub residues predicted with residue netwprk model are 

in pink. The ligand N3 (in green) at one active site is also shown with the predicted amino acids in the 

left panel, and potential allosteric sites are shown in the right panel. 

Figure 5. ∆Gbind and docking score values of potential hit compounds bound to (a) active site, (b) 

potential allosteric site 1, and (c) potential allosteric site 2 of Mpro. Red bars correspond to MM/GBSA 

calculations of subunit A, pink bars correspond to the same calculations of subunit B, and salmon bars 

correspond to the same calculations of potential allosteric sites (interface) (primary y-axis). Dark gray 

line corresponds to docking score of subunit A, whereas light gray line corresponds to docking score of 

subunit B, and gray line correspond to docking score of potential allosteric sites (secondary y-axis). 

Figure 6. ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values of (A) selinexor, (B) bromocriptine, (C) diosmin, and (D) ivermectin in 

complex with the active site of subunit A and subunit B of Mpro. The contributing residues involved in 

ligand binding are colored according to their ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒

 values, where the highest to lowest free energies 

are shaded from blue to red, respectively. 

Figure 7. Characteristics of the residues interacting with the hit compounds at the target sites of Mpro. 

The approximate locations of the hydrophobic (in magenta) and polar/charged (in yellow) residue 

groups are shown on the binding cavities (in wheat).  

Figure 8. ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values of (A) elbasvir in complex with the potential allosteric sites, and (B) elbasvir 

in complex with the active site of Mpro. The contributing residues involved in ligand binding are colored 

according to their ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values, where the highest to lowest free energies are shaded from blue to 

red, respectively. 
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Figure 1. The computational workflow followed for the repurposing of FDA-approved drugs. 
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Figure 2. Surface representation of dimeric Mpro, where two subunits are in salmon and skyblue. One 

active site and two potential allosteric sites are explicitely shown. The key residues in the flexible 

docking experiments are in spheres. 
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Figure 3. Docking poses of potential Mpro inhibitors into the substrate binding site. The docking results 

for (a) dihydroergotamine, (b) bromocriptine, (c) nilotinib, (d) entrectinib, (e) selinexor, (f) ivermectin, 

(g) paritaprevir, (h) elbasvir, (i) quinupristin, (k) rifapentine, (l) rutin, (m) diosmin, (n) digitoxin, (o) 

antrafenine are shown as salmon (subunit A) and skyblue (subunit B) surface. Ligands are depicted in 

green and flexible residues are represented in spheres. Their 2D interaction maps are also shown. 
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Figure 4. (a) Dynamic domains from the six slowest modes of Mpro calculated by GNM. Distinct 

dynamic domains are coloured in blue and wheat. Amino acids with high relative mobility in the twenty 

fastest modes are shown in red surface representation. Potential drug binding sites predicted by (b) GNM 

and (c) the residue network model. In (b), amino acids with high relative mobility in twenty fastest 

modes of GNM are shown in brown. In (c), the hub residues predicted with residue netwprk model are 

in pink. The ligand N3 (in green) at one active site is also shown with the predicted amino acids in the 

left panel, and potential allosteric sites are shown in the right panel. 
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Figure 5. ∆Gbind and docking score values of potential hit compounds bound to (a) active site, (b) 

potential allosteric site 1, and (c) potential allosteric site 2 of Mpro. Red bars correspond to MM/GBSA 

calculations of subunit A, pink bars correspond to the same calculations of subunit B, and salmon bars 

correspond to the same calculations of potential allosteric sites (interface) (primary y-axis). Dark gray 

line corresponds to docking score of subunit A, whereas light gray line corresponds to docking score of 

subunit B, and gray line correspond to docking score of potential allosteric sites (secondary y-axis). 
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Figure 6. ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values of (A) selinexor, (B) bromocriptine, (C) diosmin, and (D) ivermectin in 

complex with the active site of subunit A and subunit B of Mpro. The contributing residues involved in 

ligand binding are colored according to their ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒

 values, where the highest to lowest free energies 

are shaded from blue to red, respectively.  
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Figure 7. Characteristics of the residues interacting with the hit compounds at the target sites of Mpro. 

The approximate locations of the hydrophobic (in magenta) and polar/charged (in yellow) residue 

groups are shown on the binding cavities (in wheat).  
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Figure 8. ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values of (A) elbasvir in complex with the potential allosteric sites, and (B) elbasvir 

in complex with the active site of Mpro. The contributing residues involved in ligand binding are colored 

according to their ∆𝐺𝑏𝑖𝑛𝑑
𝑟𝑒𝑠𝑖𝑑𝑢𝑒values, where the highest to lowest free energies are shaded from blue to 

red, respectively. 

 


