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Abstract

Restoration has now emerged as a global priority, with international initiatives such as the “UN 

Decade on Ecosystem Restoration (2021-2030)”. To fulfil the large-scale global restoration 

ambitions, an essential step is the monitoring of vegetation recovery after restoration interventions. 

The aim of this study was to evaluate the utility of remotely-sensed vegetation indices, Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), to monitor the rate of 

forest regeneration across a tropical forest restoration project area in Kibale National Park, Uganda. 

As a result, we observed non-linear patterns in NDVI and EVI across the first 25 years of recovery. 

Both NDVI and EVI increase for the first 10 years of forest regeneration. This “greening” phase 

could be used as the indicator of successful onset of forest recovery. In particular, the decline of 

elephant grass, which suppresses the natural regeneration of trees in our area, can be detected as an 

increase in NDVI. Primary forests differed from the 25-year-old regenerating forests based on the 

unique combination of low mean and low seasonal variation in EVI. Our results, therefore, suggest 

that the long-term success of forest restoration could be monitored by evaluating how closely the 

combination of mean, and degree of seasonal variation in EVI, resembles that observed in the 

primary forest.

Keywords: Africa – EVI – NDVI – restoration – tropical forest – vegetation index

Introduction

Restoration of forests has now emerged as a global priority, with international initiatives such as the

“UN Decade on Ecosystem Restoration (2021-2030)” (UN, 2021) and “The Bonn Challenge” 

(IUCN, 2020). The rapid loss of tropical forests (Hansen et al., 2013; FAO, 2015) has profound 
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consequences on biodiversity and ecosystem functioning (Chapin et al., 2000; Millennium 

Ecosystem Assessment, 2005). The area of tropical secondary forests has been increasing (Hansen 

et al., 2013) but natural regeneration is not always sufficient to ensure forest recovery (Paul, 

Randle, Chapman, & Chapman, 2004). Natural regeneration can fail especially if large forest areas 

have already been lost, seed-sources are far away, or environmental conditions are too poor for 

regeneration (Arroyo-Rodríguez et al., 2017). For example, fast-colonizing pioneer vegetation, 

together with fire, can arrest forest regeneration (Duclos, Boudreau, & Chapman, 2013; Wheeler et 

al., 2016). In such cases, active restoration measures (e.g., planting seedlings or spreading seeds), or

passive restoration measures that remove human disturbances (e.g., excluding grazing or protection 

from fire) are needed to enable forest recovery (Lamb, Erskine, & Parrotta, 2005; Shono, 

Cadaweng, & Durst, 2007).

To fulfil the large-scale global restoration ambitions, an essential step is the monitoring of 

vegetation recovery after restoration interventions (Ruiz-Jaen & Aide, 2005). Typically, restoration 

success is monitored with field-measured attributes, e.g., vegetation cover, tree density or biomass, 

but frequent field assessments can be challenging with limited monitoring budgets (Ruiz-Jaen & 

Aide, 2005; Viani et al., 2017). The development of remote monitoring technologies could enable 

cost-effective assessment of vegetation recovery (Reif & Theel, 2017). For example, unmanned 

aerial vehicles can be used in monitoring the tropical forest recovery (Zahawi et al., 2015; Reis et 

al., 2019). Another potential source of data are satellite-based vegetation indices, Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which have been 

commonly used to measure vegetation activity at the land surface (Huete, Didan, van Leeuwen, 

Miura, & Glenn, 2011; Didan & Munoz, 2019). 

Vegetation indices measure the “greenness” of the canopy, i.e., a combination of leaf 

chlorophyll content, leaf area, canopy cover and canopy structure (Glenn, Huete, Nagler, & Nelson, 

2008; Didan & Munoz, 2019). These indices are based on the biological phenomenon that 
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chlorophyll a and b in plant leaves absorb red wavelengths, while plant leaves scatter near-infrared 

(NIR) wavelengths (Tucker, 1979). In the tropics, vegetation indices have been previously used for 

land-cover classification and to detect land-cover dynamics (Tucker, Townshend, & Goff 1985; 

Hartter, Ryan, Southworth, & Chapman, 2011; Setiawan, Yoshino, & Prasetyo, 2014; Vijith & 

Dodge-Wan, 2020; Wanyama, Moore, & Dahlin, 2020), map forest disturbances (Murillo-Sandoval,

Van Den Hoek, & Hilker, 2017), predict forest resilience to drought (Verbesselt et al., 2016), 

monitor natural succession (Caughlin et al., 2021), estimate large-scale patterns in biomass (Anaya, 

Chuvieco, & Palacios-Orueta, 2009) or primary production (Sjöström et al., 2011), and detect 

seasonal phenological rhythms and photosynthetic capacity (Xiao, Hagen, Zhang, Keller, & Moore, 

2006; Brando et al., 2010; Valtonen et al., 2013). For example, in the Amazon, the first phase of 

forest regrowth can be detected as an increase in NDVI (Steininger, 1996). Outside tropics, 

vegetation indices have been used to monitor vegetation change across restoration and afforestation 

areas (Verbesselt, Hyndman, Newnham, & Culvenor, 2010; Sun et al., 2015; Zhang et al., 2016; 

Wu, Yu, Zhang, Du, & Zhang, 2019; Wang et al., 2020). However, to our knowledge, studies 

exploring the utility of remotely-sensed vegetation indices for monitoring the tropical forest 

recovery following restoration activities are yet lacking.

In this work, we assessed 20 years of vegetation index data across a tropical forest restoration 

project area in Kibale National Park, Uganda, together with field-based vegetation monitoring 

dataset. Our goal was to evaluate the utility of remotely-sensed vegetation indices to monitor the 

rate of forest regeneration in Afrotropics, where studies evaluating the restoration success have been

generally scarce (Ruiz-Jaen & Aide, 2005). The restoration project was established in 1994 in an 

area where elephant grass (Cenchrus purpureus (Schumach.) Morrone), also known as napiergrass, 

and fires, suppressed the natural regeneration of tree seedlings and thereby prevented forest 

recovery (UWA-FACE, 2015). In this area, active restoration (i.e., planting with native trees and 

prevention of natural growth from fire), and passive restoration (i.e., prevention from fire), has 
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taken place since 1995. Our specific study questions were: 1) Does the vegetation greenness of 

restored forests converge to level observed in the nearby primary forest (the target state of 

restoration), as the restored forests age? 2) How does the vegetation greenness in the restored 

forests, and in the primary forest, vary seasonally? 3) How do the remotely-sensed vegetation index 

values relate to ground-measured stand basal area, shrub cover or elephant grass cover?

We hypothesize that the onset of forest regeneration after restoration interventions can be 

detected as increased vegetation greenness, as a product of an increase in tree density, leaf area and 

canopy cover (Foody & Curran, 1994; Wheeler et al., 2016). However, as the restored forests age, 

vegetation greenness should converge to levels observed in the nearby primary forest (Steininger, 

1996). Alternatively, vegetation greenness could reach its maximum in intermediate-aged 

regenerating forests. This is possible because as the canopy cover reaches 100%, vegetation indices 

measure the greenness of the plant leaves forming the canopy (Glenn et al., 2008). In this case, 

intermediate-aged regenerating forests, with a fast turnover of leaves in the canopy, could appear 

greener than the primary forest canopy, with older tree leaves hosting epiphyll growth, necroses and

damage (Roberts, Nelson, Adams, & Palmer, 1998).

2. Materials and Methods

2.1 Study area 

This study was conducted in Kibale National Park (Figure 1), located within the Albertine Rift, 

Western Uganda (Struhsaker, 1997; Plumptre et al., 2003; Hartter et al., 2011). Kibale National 

Park (795 km2, 900‒1590 m a.s.l.) represents medium-altitude tropical moist forest but includes also

reforestation areas, areas that have transitioned from forest to agriculture, grasslands and wetlands 

(Laporte, Walker, Stabach, & Landsberg, 2008; Hartter et al., 2011). The mean monthly 

temperature ranges between 20.8 and 22.1°C (Figure S1, Supplementary Material), and the study 
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area has two distinct rainy seasons from March to May and from August to November (Figure S2, 

Supplementary Material), with a long-term mean annual precipitation of 1,475 mm (Struhsaker, 

1997). 

Kibale National Park hosts over 500 plant species, of which 330 are trees (Plumptre et al., 

2003). In the mature forest, trees reach over 30 m height, the forest has a closed overstory canopy, 

with little or no herbaceous vegetation in the understory, or light reaching the understory (Wing & 

Buss, 1970). Seven successional vegetation types have been described in Kibale (Wing & Buss, 

1970), with early stages largely dominated by elephant grass and Hyparrhenia spp. grasses and 

Acanthus pubescens Engl. shrubs. Arrested succession is common in Kibale, where the 

aforementioned grasses and shrubs, together with invasive shrub Lantana camara L. and fire, can 

prevent forest regeneration (Paul et al., 2004; Lawes & Chapman, 2006; Duclos et al., 2013; 

Wheeler et al., 2016).

2.2 Restoration project area 

Kibale National park has an approximately 10,000 ha restoration project area run by the Uganda 

Wildlife Authority (UWA) and Forests Absorbing Carbon dioxide Emission (FACE) the future 

foundation (Omeja et al., 2011; UWA-FACE, 2015; Wheeler et al., 2016) (Figure 1; Figure S3, 

Supplementary Material). In this part of the park, elevation ranges between 1,000 and 1,440 m a.s.l. 

(IRI/LDEO Climate Data Library, 2020). The project was established to an area where moist semi-

deciduous forests were largely cut down by agricultural encroachers in the 1970s and 1980s 

(Chapman & Lambert, 2000; UWA-FACE, 2015). After agriculture was banned in the area and 

settlers relocated, the area was largely colonized by elephant grass, and together with fire, it 

suppressed naturally regenerating tree seedlings and thereby prevented forest recovery (UWA-

FACE, 2015; Wheeler et al., 2016). Active restoration planting, along with protection from fire, has
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taken place annually since 1995 (UWA-FACE, 2015) (the exceptions being years 2001 and 2013-

2015, when no planting took place; see details in Figures S3-S4, Supplementary Material). The 

native trees planted (400 ha-1) included Bridelia micrantha (Hochst.) Baill, Cordia africana Lam, 

Cordia ugandensis S.Moore, Croton macrostachys Hochst. ex A.Rich., Croton megalocarpus 

Hutch, Ficus natalensis Hochst, Mimusops bagshawei S.Moore, Prunus africana (Hook.f.) 

Kalkman, Spathodea campanulata P.Beauv., and Warburgia ugandensis Sprague (Omeja et al., 

2011; UWA-FACE, 2015; Wheeler et al., 2016). Field assessments in 2005 and 2013 have shown 

that the restoration planting has been generally successful, with increasing trends in tree stem 

density and above ground biomass (Wheeler et al., 2016).

The restoration project area also includes large areas representing passive restoration, i.e., 

protection of natural regrowth from fire (Figure 1). These are areas where the forest was cleared in 

the past, but a large number of remnant trees was present when the restoration project started (W. 

van Goor, personal communication, October 12, 2020). To the east, the restoration project area is 

bordered by a belt of primary forest (Figure 1), herein referred to as the reference area, i.e., the 

target state of the restoration.

2.3 Vegetation indices

The two most commonly used vegetation indices, NDVI and EVI, were included in this work. The 

values of NDVI range between -1 and +1 so that areas with higher canopy greenness receive the 

highest positive values (Glenn et al., 2008; Didan & Munoz, 2019). The values of NDVI are 

calculated as follow:

NDVI=
NIR−¿

NIR+¿

7

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

13
14



where NIR and Red indicate the reflectance values of NIR and red light, respectively. Across Africa,

NDVI is low in areas with sparse vegetation cover (e.g., Sahara and Sahelian zone) and reaches the 

highest values in dense humid forests (Tucker et al., 1985; Goetz & Prince, 1999). However, NDVI 

tends to saturate when vegetation density is very high (Huete et al., 2002). EVI was developed to 

perform better in high biomass regions, for improved de-coupling of canopy-background signal, as 

well as to reduce atmospheric influences (Huete et al., 2002; Didan & Munoz, 2019). The values of 

EVI are calculated as follow (Didan & Munoz, 2019):

EVI=2.5×
NIR−¿

NIR+6×¿
−7.5×¿+1¿

where Blue indicates the reflectance value of blue light. We included both NDVI and EVI because 

they could complement each other. NDVI has a higher dynamic range in low greenness values, and 

therefore better ability to separate semiarid habitat types from each other, while EVI has a higher 

dynamic range in high greenness values, and is better in separating humid forested habitat types 

from each other (Huete et al., 2002).

We used the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 

Indices (MOD13Q1) Version 6 dataset (Didan & Munoz, 2019; USGS, 2020). This data represents 

16-day NDVI and EVI composites at 250 × 250 m spatial resolution. The composites are generated 

with an algorithm that chooses the best available pixel value from the 16-day period. The NDVI and

EVI datasets were downloaded from IRI/LDEO Climate Data Library (2021a), and the vegetation 

index quality data from IRI/LDEO Climate Data Library (2021b). We determined the validity of 

vegetation index values following the four criteria used in Samanta et al. (2010) and Samanta, 

Ganguly, Vermote, Nemani, and Myneni (2012a). The vegetation index value was considered valid 

and selected for further analyses, if: 1) “VI Quality” was “good quality” or “check other quality 

assessment (QA)”. 2) “VI Usefulness”, which has 16 levels (Didan & Munoz, 2019) ranged 
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between 0 and 11. 3) Clouds were absent, i.e., no “adjacent cloud detected”, no “mixed clouds”, and

no “possible shadow”. 4) “Aerosol quantity” was either “low” or “intermediate”. 

The NDVI and EVI datasets were downloaded across a rectangular area 30.26 ‒ 30.41°E, and 

0.25 ‒ 0.50°N covering a total of 7,866 grids (at 250 × 250 m spatial resolution), including both the 

restoration area and nearby primary forests. For each grid, the NDVI and EVI values were 

downloaded between 30 April 2000 and 25 December 2020. This time span covers a total of 476 

potential time-points (the 16-day composites), and each fully covered year has 23 time-points. 

These search criteria produced a total of 3,724,858 vegetation index values for each NDVI and EVI.

Based on vegetation index quality data, 2,790,260 (75%) of these values were considered valid and 

were selected for further analyses.

2.4 Grid selection and management classes

Out of the 7,866 grids, a total of 2,853 grids were selected for further analyses (Figure 1; Figure S4,

Supplementary Material). The grid was selected if its center was located either inside the planted 

areas or inside areas designated for passive restoration, or if it represents primary forest. Primary 

forest grids include the primary forest belt on the east side of the restoration project area (Figure 1), 

but they excluded grids classified as “degraded forest” in earlier land-classifications (UWA-FACE, 

2015). 

We further classified the 2,853 grids to seven management classes: 1) Primary forest (1,719 

grids), 2) Passive restoration (430 grids), 3) Planted 1995‒1999 (396 grids), 4) Planted 2000‒2004 

(76 grids), 5) Planted 2005‒2009 (106 grids), 6) Planted 2010‒2011 (81 grids), and 7) Planted 

2016‒2020 (45 grids). This classification aimed to divide the planting years into 5-year intervals. 

However, since no planting took place between 2013 and 2015, and the 2012 planted area was so 
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small that it contained no grids (Figure S4, Supplementary Material), one management class 

(Planted 2010‒2011) includes only two planting years.

2.5 Vegetation measurements

To study how NDVI and EVI are related to the field-measured characteristics of the vegetation, we 

extracted data across 174 vegetation monitoring study sites (Figure S3, Supplementary Material), 

censused in 2013 (Owiny et al., unpublished). At each study site, large trees (> 20 cm diameter at 

breast height; DBH) were censused in a 40 m × 20 m plot. Small trees and poles (10–20 cm DBH) 

were censused in a 20 m × 20 m plot, saplings (5–10 cm DBH) in a 20 m × 10 m plot, and seedlings

(< 5 cm DBH) in a 10 m × 10 m plot; all plots being nested and sharing one corner. For each study 

site, we estimated the stand basal area (m2 ha-1) based on trees with DBH ≥ 5 cm. The basal area has

been frequently used as a surrogate of forest biomass (Brown, Gillespie, & Lugo, 1989). We also 

used the visually estimated shrub and elephant grass covers for each 40 × 20 m plot. The cover 

values were estimated on a scale: 0 (0%), 0.5 (<10%), 1 (10%), 2 (20%), 3 (30%),…, 10 (100%). 

2.6 Statistical analyses

We first used chronoseuqence approach to find out if the vegetation greenness of the restored 

forests converges through time to levels observed in the nearby primary forest. The mean NDVI and

EVI in 2020 was calculated for each grid representing active or passive restoration (1,134 grids). 

The year 2020 was selected to maximize the length of the chronosequence. For each grid, we 

calculated the forest age (years since restoration started). Grids representing passive restoration 

were assigned forest age 25 years. For each forest age, mean vegetation greenness (across grids) 

was plotted along the chronosequence.
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To model the pattern in vegetation greenness along the chronosequence, three competing 

models were fitted, with NDVI or EVI as response and forest age as a predictor variable: 1) linear 

model, 2) three-parameter asymptotic exponential model, which allows the greenness to slowly 

approach an asymptote, fitted with self-starting non-linear function “SSasymp” in R (R Core Team, 

2021), and 3) quadratic model allowing greenness to first increase and then decrease. The fit of the 

three competing models was compared with the second-order Akaike Information Criterion (AICc; 

Burnham & Anderson, 2002) calculated with package “MuMIn” in R (R Core Team, 2021).

For each of the seven management classes, we calculated mean annual and mean monthly 

NDVI and EVI. These were calculated from the full time-series with 476 time-points (the 16-day 

composites) representing mean NDVI and EVI values for each of the seven management classes 

(mean across the grids). These time-series included some missing values (4–14%), due to missing 

time-points in the original MODIS datasets, and due to omission of poor-quality data (based on the 

vegetation index quality data, see above). The missing values in the seven time-series were replaced

with linear interpolation using package “imputeTS” in R (R Core Team, 2021).

To illustrate the 20-year time-trends in the vegetation greenness of each management class, 

the mean annual NDVI and EVI was plotted between 2001-2020 (excluding 2000 which was not 

fully covered). Time trends were modelled with Generalized Additive Models (GAMs), using 

package “mgcv” in R (R Core Team, 2021), and following Zuur, Ieno, Walker, Saveliev, and Smith 

(2009, p. 43), with cross-validation used to estimate the optimal amount of smoothing for the 

smoothing term (the explanatory variable) and with cubic regression splines.

To describe the seasonal patterns in vegetation greenness, the mean monthly NDVI and EVI 

of each management class, was first plotted together with mean monthly precipitation (see sources 

in Figure S2, Supplementary Material). We also illustrated how the degree of seasonal variation in 

NDVI or EVI relates to their mean values (Requena-Mullor, Reyes, Escribano, & Cabello, 2018) 
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across the seven management classes. As a measure of degree of seasonal variation, we used 

coefficient of variation (CV) calculated from the mean monthly values.

 Finally, we described how NDVI and EVI are related to the three field-measured structural 

characteristics of the vegetation (stand basal area, shrub cover, elephant grass cover). The 174 

vegetation study sites were located in 146 grids (250 × 250 m) from which data of NDVI and EVI 

was available. For each of these 146 grids, we calculated the mean value for each of the three 

vegetation structure variables, and the mean of NDVI and EVI in 2013, i.e., the year of the 

vegetation census. To describe associations between NDVI or EVI and the three vegetation 

structure variables, GAMs were fitted following the same method as detailed above. All statistical 

analyses were run with R version 4.0.3 (R Core Team, 2021).

3. Results

3.1 Do NDVI and EVI converge through time to level of primary forest?

The patterns of both NDVI and EVI along the chronosequence were best described with the 

quadratic models (Figure 2; Table S1, Supplementary Material). Both NDVI and EVI increased for 

the first 10 years of forest regeneration but after 20 years, both start to decline towards lower levels 

observed in the primary forest. The pattern of vegetation greening after restoration planting is also 

visible in the annual time-series of NDVI and EVI (Figures S5-S6, Supplementary Material).

3.2 Seasonal pattern in NDVI and EVI

Both NDVI and EVI follow clear seasonal patterns; the two annual greenness peaks follow 

precipitation peaks with approximately one-month time-lag (Figure 3). The seasonal variation is 

generally larger, and greenness peaks narrower, in the management class Planted 2016-2020, which 
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represents mostly elephant grass during our study period. The seasonal variation in greenness 

(measured as CV) generally decreases as the mean level of greenness increases (Figure 4). The 

primary forest can be distinguished from regenerating forests by the unique combination of low 

seasonal variation and low mean level in EVI. On the contrary, a combination of CV and mean 

level in NDVI cannot be used to distinguish the primary forest from regenerating forests.

3.3 How vegetation indices relate to ground-measured vegetation structure?

NDVI peaks when stand basal area reaches approx. 10 m2 ha-1, and declines in values higher than 

this (GAM; estimated degrees of freedom (edf) = 4.7, F = 15.6, p < 0.001; Figure 5A). Also, EVI 

peaks when stand basal area reaches approx. 10 m2 ha-1, but declines steeply in values higher than 

this (GAM; edf = 5.0, F = 19.8, p < 0.001; Figure 5B).

Furthermore, both NDVI (edf = 1.0, F = 6.25, p = 0.014; Figure 5C), and EVI increase as 

shrub cover increases (edf = 2.5, F = 24.4, p < 0.001; Figure 5D). On contrary, NDVI decreases 

steeply as the elephant grass cover increases (edf = 2.8, F = 45.0, p < 0.001; Figure 5E) while 

association between EVI and elephant grass cover is non-significant (edf = 2.1, F = 1.6, p = 0.199; 

Figure 5F).

4. Discussion

Our results show that the onset of tropical forest regeneration, after restoration interventions, can be

detected as an increase in vegetation greenness. This “greening” phase, detected both in the 

chronosequence (Figure 2), and in the annual time-series (Figures S5-S6, Supplementary Material), 

takes place when the tree basal area increases up to 10 m2 ha-1 (Figure 5). The common shrub 

species, Acanthus pubescens and Lantana camara, are likely to contribute significantly to the 
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observed greening pattern (Figure 5; Wheeler et al., 2016). Notably, the decline of the elephant 

grass, i.e., the species which suppresses the natural regeneration of trees in our study area (Wheeler 

et al., 2016), is detectable as an increase in NDVI (Figure 5). The duration of this greening phase is 

likely to differ significantly among geographical regions, and depends on environmental conditions,

and severity of disturbance. For example, in the Amazon, NDVI increased to levels similar to the 

primary forest in only a few years of regeneration (Steininger, 1996). 

Vegetation greenness reached its maximum in intermediate-aged regenerating forests (Figure 

2), indicating that neither NDVI nor EVI can be used as simple measures of long-term forest 

recovery. In our study area, the intermediate-aged regenerating forests are characterized by dense 

thickets of shrubs, mainly composed of Acanthus pubescens and other large-leaved shrubs and 

herbs, such as Triumfetta sp., Aframomum sp., Lantana camara and Marantochloa leucantha 

(K.Schum.) Milne-Redh. (pers. obs.). When the canopy cover reaches 100%, vegetation indices 

measure the greenness of the plant species forming the canopy, and plant species can differ 

markedly in their canopy greenness (Glenn et al., 2008). The canopy of the intermediate-aged 

forests can appear greener than the canopy of primary forest if the canopy is dominated by plant 

species which have particularly high chlorophyll content or canopy architecture producing high 

greenness (Glenn et al., 2008), or if there is a faster turnover in canopy leaves. Early successional 

fast-growing trees, shrubs and forbs tend to have lower leaf longevity than slower-growing late-

successional trees (King, 1994; Kikuzawa & Ackerly, 1999; Ishida et al., 2008). As the tree leaves 

age, they accumulate epiphyll growth, necroses and damages, which are detectable as changes in 

NIR (Roberts et al., 1998). Moreover, EVI is more sensitive to changes in NIR than NDVI (Huete, 

et al., 2011). This could explain why after 20 years of recovery, EVI (and less so NDVI) started to 

decline towards levels observed in the primary forest. Presumably, in this “browning” phase, late-

successional tree canopies increasingly cover shrubs of the understory. Further studies are needed to
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find out if, and when, the greenness of the restored forests finally converge to the primary forest 

level.

Our results largely comply with previous observations across the tropics. Higher levels of 

NDVI in regenerating forests, compared to primary forests, was previously reported in Kibale NP 

by Hartter et al. (2011). In the Amazon, regenerating tropical forests, between 5 to 20 years old, 

showed NDVI comparable, or slightly higher, than the primary forest (Steininger, 1996). In Borneo,

the rapid regrowth of secondary vegetation after logging (classified as woody savannas and 

grasslands) showed slightly higher EVI than the evergreen broad-leaved forests, i.e., vegetation 

prior to logging, but overall, these vegetation types were not distinguishable based on EVI (Vijith &

Dodge-Wan, 2020). The levels of NDVI and EVI in our data comply with previous observations 

from a seasonal tropical humid broad-leaved forest in Tapajos, Brazil (Huete et al., 2002) and 

tropical broad-leaved forest in Borneo (Vijith & Dodge-Wan, 2020); both of these works were 

based on MODIS datasets as used in this work. However, the level of NDVI in our data was higher 

than what was previously reported in Kibale NP by Hartter et al. (2011) but slightly lower than 

reported in the Amazon (Steininger, 1996); both works based on Landsat images. As noted by 

Huete et al. (2002), vegetation index values produced by different sensors can deviate especially 

across high greenness values. 

The biomass of tropical forests cannot be simply predicted based on satellite-derived NDVI or

EVI, because the associations are strongly non-linear (Figure 5). Also, several previous works have 

failed to establish correlations between tropical forest biomass and NDVI (Foody et al., 2001; 

Foody, Boyd, & Cutler, 2003; Freitas, Mello, & Cruz, 2005) or EVI (Anaya et al., 2009). We 

assume that the peak of greenness at stand basal area 10 m2 ha-1 is explained by the dense shrub 

cover in this regeneration phase. Our results imply that “browning” trends (de Jong, Verbesselt, 

Zeileis, & Schaepman, 2013; Higginbottom & Symeonakis, 2020), are not necessarily only a sign of

human disturbance (Murillo-Sandoval et al., 2017), or drought (Anyamba & Tucker, 2005), but in 
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some cases could also be a sign of increasing forest biomass and ecosystem recovery. Furthermore, 

all ”greening” trends may not be indicative of an increase in biomass. For example, in Senegal, the 

transition from woody vegetation to the dominance of shrubs was detected as increased NDVI 

(Herrmann & Tappan, 2013).

The long-term success of forest restoration could be monitored by evaluating how closely the 

combination of mean, and degree of seasonal variation in EVI, resembles that observed in the 

primary forest, i.e., the target state of restoration. NDVI is not suitable for this purpose, presumably 

because it saturates as the vegetation density becomes very high (Huete et al., 2002; Didan & 

Munoz, 2019). Previously, the combination of mean and seasonal variation of vegetation greenness 

has been used to classify vegetation types on landscape or continental level (Paruelo, Jobbagy, & 

Sala, 2001; Alcaraz-Segura, Paruelo, Epstein, & Cabello, 2013; Requena-Mullor et al., 2018). As 

shown by our study (Figure 3), and previous studies (e.g., Brando et al., 2010), NDVI and EVI are 

highly useful for understanding the seasonal patterns in tropical rain forests. The bi-annual seasonal 

pattern in vegetation greenness can be mechanistically explained by the leaf flush during and after 

the rainy season (Brando et al., 2010; Samanta et al., 2012b). During dry-season, vegetation 

greenness decreases as leaves age, accumulate epiphyll growth, leaf necrosis and damage (Roberts 

et al., 1998; Samanta et al., 2012b). The generally smaller seasonal variation in greenness towards 

older forests is likely explained by the ability of trees to buffer drought with their deep roots 

(Anderson et al., 2015). 

To conclude, remotely-sensed vegetation indices can provide valuable information to monitor 

forest recovery after restoration interventions. NDVI and EVI datasets can be used as cost-effective 

tools in monitoring of vegetation recovery across large-scale restoration or afforestation areas. 

Grids where the “greening” phase is not detected could be inspected in the field, enabling corrective

actions to take place. For monitoring the transition from grassland to tropical forest, NDVI and EVI 

complement each other. NDVI is more sensitive detecting the withdrawal of the grasses, while EVI 
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is more sensitive for detecting the different successional stages between intermediate-aged 

regenerating and primary forest. Previous works in the restoration area of Kibale NP, Uganda, have 

reported the successful establishment of the planted trees, natural regeneration of several tree 

species (Omeja et al., 2011), and recovery-patterns in tree communities (Wheeler et al., 2016), fruit-

feeding butterfly communities (Nyafwono, Valtonen, Nyeko, & Roininen, 2014) and bird 

communities (Latja, Valtonen, Malinga, & Roininen, 2016). In the future, remote sensing could be 

also utilized to predict recovery of diversity patterns (Khare, Latifi, & Rossi, 2019; Laliberte, 

Schweiger, & Legendre, 2020) or to monitor invasive species (Royimani, Mutanga, Odindi, Dube, 

& Matongera, 2019), such as the invasive shrub Lantana camara, across large-scale restoration 

areas.
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Figure legends

Figure 1. Map of the study area in Kibale National Park, Uganda. Symbols show the 2,853 grids 

selected for analyses (a more detailed map showing areas with planting years in Figure S3, 

Supplementary Material). Map generated with QGIS version 3.14.
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Figure 2. Mean (±SE) (A.) NDVI and (B.) EVI in 2020, for each forest age, i.e., years since 

restoration started (the quadratic models are shown on top). Grids representing passive restoration 

were given forest age 25 years. The mean of the primary forest is shown as a dotted horizontal line.

Figure 3. Mean monthly (A.) NDVI and (B.) EVI in the seven management classes. The vertical 

bars show mean monthly precipitation (sources in Figure S2, Supplementary Material).

Figure 4. Combination of seasonal variation (coefficient of variation; CV) and the mean level in 

greenness for (A.) NDVI and (B.) EVI in the seven management classes.

Figure 5. Mean NDVI and EVI in 2013, and ground-measured (A-B.) stand basal area of trees DBH

≥ 5 cm, (C-D.) shrub cover, and (E-F.) elephant grass cover across the 146 grids. If statistically 

significant, estimated smoothing curves (cubic regression splines) and point-wise 95% confidence 

bands from Generalized Additive Models are shown on top.
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