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Abstract

Land degradation is one of the major global environmental issues that need serious attention. The

land itself is a complex system regulating myriads of processes and perturbation in anyone these

would certainly lead to the stimulation of land degradation. Among these, fly ash (FA) dumping is

one of the common-practices, which has been adopted to overcome land-use disruption and other

health  hazards.  However,  this  practice  has  become  a  driving  factor  for  FA-induced  land

degradation. Therefore, in purview to tackle this issue, the present article is aimed to identify and

suggest  plausible  sustainable  practices  to  restore  and  manage  FA  contaminated  sites.  It

preliminarily deals with the systematic exploration and identification of FA-based and associated

contaminated  lands  via  geospatial  technology  with  a  brief  focus  on  monitoring  its  different

contaminant profiles in the FA and soil systems. Moreover, the article emphasizes identifying the

potential  local  plant  species  in  the  FA-contaminated  regions  to  understand  the  local  people’s

demands.  Following  this,  it  would  suggest  the  major  sustainable  approaches  to  expedite  the

restoration of FA contaminated lands along with the key highlights of their bottlenecks, while the

ground implementation. Nevertheless, the article aimed to unravel the recommended prospects to
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address  those  bottlenecks  to  develop  an  efficient  restoration  enterprise  during  the  Decade  on

Ecosystem Restoration (2021-2030).

Keywords: Land degradation, Ecological restoration, Fly ash management, Sustainable measures,

UN-SDGs.

1. INTRODUCTION

With the advent of industrial revolution, human beings has escalated the exploitation of fossil fuels

including the coal extraction from the mother earth. Subsequently, the coal production has been

raised  from 3.55 billion  tons  in  the 1978 to  7.81 billion  tons  in  2018 (www.iea.org).  Recent

updates  about  coal  production  by  major  countries are  mention  in  Figure  1.  The  demands  of

growing worldwide human population can be viewed from that around 40% of global electricity is

derived via the coal-based combustion process (Smith et al., 2013). As a result, the process leads

to flyash (FA) generation, which is aby-product of the coal combustion andits total production is

about  750  million  tons  year-1 globally  (Blissett  and  Rowson,  2012).  The  composition  of  FA

depends on the  mode and stage  of  coalcombustion,  and coal  quality  (NRC, 2006).  Thus,  FA

contains several types of compounds, which is hazardous to the environment and human health. It

contains oxides of metals (i.e., silica, ferric, calcium, zinc, etc.), micro and macro elements (K, P,

Mg, Cd, Hg, Pb Se, and As, etc.), and organic compounds such as PAHs and PCBs (Blissett and

Rowson,  2012).  Besides,  toxic  heavy  metals  and  organic  pollutants,  FA  also  possesses  the

presence of various radioactive elements, which makes it hazardous at higher levels. Therefore, it

has  been  suggested  to  utilize  the  FA to  reduce  its  amount  before  dumping  and  land  filling.

However,  only  about  26% of  FA  is  utilized  via  the  formation  of  bricks,  road,  etc.,  in  few

developing  and  developed  nations  (Blissett  and  Rowson,  2012).Subsequently,  during  its

mismanaged disposal,  the land gets contaminated thereby raising serious concern at  the local,

regional as well as national scale. Therefore, it is the need of the hour to remove the noxious

2

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51



nature  of  FA  immediately  via  suggestive  and  feasible  approaches  and  developing  the  FA-

contaminated  lands  (FA-CL)  into  revitalized  state.  Moreover,  the  restoration  of  degraded  and

contaminated lands is of prime significance of various international agencies and global initiatives

have  been  formulated  such  as  UN-  Sustainable  Development  Goals  (UN-SDGs)  and  Bonn

Challenge. Considering these initiatives, about 350 million ha (Mha) of degraded lands is under

target  to  bring  under  restoration  by  2030  (www.sdgs.un.org).  Natural  grown  vegetation  and

indigenous  plant  species  (IPS)  can  survive,  restore  the  contaminated  land  and  enable  the

sustainable management of FA-CL.

There  are  ample  shreds  of  evidence,  which  suggest  that  diversified  strategies  in  the

phytoremediation approaches certainly help in the restoration of FA-CL (Gupta and Sinha, 2008;

Juwarkar  and  Jambhulkar,  2008;  Rai  et  al.,  2004;  Cheung  et  al.,  2000).  These  strategies  are

emerging nowadays and attracting the attention of remediation experts. For instance, Gupta and

Sinha (2008) identified Sida cardifolia, Chenopodium album and Phaseolus vulgaris as a potential

plant species for the remediation of FA-CL. Moreover, Juwarkar and Jambhulkar (2008) utilized

apposite  organic  amendments  like  farmyard  manure  for  the  phytoremediation  via  Prosopis

juliflora, whereas Rai et al. (2004) used pressmud, sewage sludge and the sludge from the paper

mills.  Furthermore,  efficiency evaluations  of  Leucaena leucocephala and  Acacia sp.  have been

performed  under  different  organic  amendments  (representing  N-fixing  bacteria).  The  organic

amendments are used to reduce the toxic effects of FA in polluted land (Cheung et al., 2000).Fast

growing species like Willow has also attracted the attention of phytoremediation scientists as it can

be regularly harvested and yield can be obtained up to 15 dry ton ha -1 yr-1 (Riddel-Black, 1993).

Mycorrhizal  technology  has  also  gained  wider  popularization  for  the  reclamation  of  FA-CL

(Pandey et al., 2009). The reclamation of FA-CL area of 3900 m2 was done by the exploitation of

mycorrhizal  technology at  the Badarpur  Thermal  Power Station,  Delhi  in India (Pandey et  al.,

2009).
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In purview to this, the present article is aimed to provide a state-of-the-art related the FA generation

and predicting the land area that could be prone towards FA contamination and suggest sustainable

measures to overcome this global issue. Therefore, the article focuses on (i) Geospatial assessment

of FA prone land areas, (ii)  monitoring the noxious nature of FA by considering its  inorganic,

organic and radioactive contents, (iii) restoration of FA-CL through candidate plant species and

suggestive measures and challenges.  

2. GEOSPATIAL ASSESSMENT OF FA AND ASSOCIATED CONTAMINATED LANDS

Prior to large-scale FA restoration initiative, an intense and strategic regional geospatial assessment

should be conducted to understand the behavior and characteristics of the region. It is influenced by

the fact that it helps in making the priorities according to the areas and levels of contamination. If

large numbers of area of lands are affected by FA-based contamination, then those areas should be

strategically prioritized for overcoming the underlying issues. To this, a concrete understanding of

the source of FA generation is necessary as well  as the area, which is getting affected by that

source. Fundamentally, the FA generation is related directly or indirectly to the coal production or

combustion in the region. In purview to this, factors like coal extraction, production, washing of the

coal, combustion and dumping of its residues regulate the FA-based land contamination. For the

sake of current discussion, this section emphasizes on the coal combustion residues (CCR) or coal

ash  dumps  or  FA  and  associate  contaminated  lands.  Cumulatively,  the  main  coal-producing

countries are responsible for generating around 3.7 billion tons coal ash per annum (IEA, 2016).

Australia itself produce around 11 million tons coal ash per annum (EJA, 2019) and has more than

400  million  tons  of  ash  deposited  in  dumpsites  across  the  country  (ADAA,  2018;  EJA,

2019).Vietnam produces 11.8 million tons of coal ash per annum from its existing 20 coal-fired

power plants (Thenepalli et al., 2018). Moreover, burning around 5.4 tons of coal generates 0.9 tons

of coal ash (Ritter, 2016). Out of the total generated coal ash, FA contributes to around 75% and

rest is the bottom ash (Jarusiripot, 2014).According to analysis, each tons of FA covers around 0.30

hectares of land (He et al., 2012). By this, considering the net FA production in China to around
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171 million tons in 2015 (Ge et al., 2018), it would have occupied around more than 51 Mha of

land. United States individually produced around 38 million tons of FA in 2016, which gradually

reduced to 29 million tons in 2019 (ACAA, 2019). Figure 1 and 2 explicitly depict that the country

with greater coal production and consumption are more prone to contaminate their viable lands via

various means. Majority of it includes the mismanaged disposal and dumping. Similarly, a regional

analysis must be conducted to assess the severity of the issue according, which the management

strategy could be formulated.

3. MONITORING THE CONTAMINANT PROFILES IN FA CONTAMINATED SOIL

a. Critically toxic heavy metal elements

Besides, major elements such as aluminum (Al), calcium (Ca), iron (Fe), etc., FA also comprises

critical heavy metals like antimony (Sb),arsenic (As), cadmium (Cd), chromium (Cr), copper (Cd),

lead  (Pb),  mercury  (Hg),  nickel  (Ni),  zinc  (Zn),  which  could  potentially  affects  environment,

human health  and well-being (Sun et  al.,  2016; Lee et  al.,  2006). Escalated Cr (VI) levels  are

deleterious  to  circulatory  system  that  may  lead  to  carcinogenicity.  Accumulated  Cr  in  plants

directly  affects  the plant growth. Pb content has serious consequences, as it  is harmful to both

animals and humans especially infants (Jambhulkar et al., 2018). Concentration of As in FA usually

lies between 4 and 440 mgkg-1nevertheless, based on the coal quality the levels may attain to 1000

mgkg-1(Huggins et al., 2007). Similarly, boron (B) levels in FA also differs depending on the coal

quality. It varies from 22 to 60 mgkg-1 and can reach maximally to 250 mgkg-1. If its concentration

crosses more than 30 mgkg-1, it is considered significantly toxic (Haynes, 2009).From the figure 3 a

& b), it can be deduced that, the levels of critically toxic heavy elements are much higher in FA as

compared to the soil. Therefore, monitoring the FA contaminated soil and screening the different

levels of toxic heavy metals in it is highly needed to adopt strategic measures. It is driven by the

fact that if the stakeholders would not be able to identify the strength of contamination, selection of

site-specific remediation measures could be implemented effectively.

b. Organic pollutants
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The  concentration  and  types  of  organic  pollutants  in  FA  (OPs-FA)  depends  on  the  physico-

chemical  properties  of  coal  and  different  operational  combustion  conditions (Kosnar  et  al.,

2016). OP-FA might be a macro-or micro–molecule. A macromolecule of OPs-FA is a condensed

aromatic, hydro-aromatic compounds, where as micro-molecule of organic pollutants belongs to

the  group of  hydrocarbons  having the  polycyclic  or  hydroxyl-polycyclic  aromatic,  aliphatic  or

aromatic or heterocyclic structure (Sahu et al., 2004; Liu et al., 2013). Usually, OP-FA contains

poly-aromatic  hydrocarbons  (PAHs)  and  polychlorinated  biphenyls(PCBs),  generates  in  coal

combustion  through  radical  condensation  or  cyclisation,  and  reacts  with  halo  (-Cl)  groups,

respectively (Liu et al., 2013). Both PAHs and PCBs are carcinogenic at a specific concentration,

induce adverse effects on living organisms, and mediate via free radical reactions (Shaheen et al.,

2014). Sahu et al., (2009) demonstrated that the PAHs and Benzo-pyrene found in FA range from

0.043 to .936 mg kg-1 and 0.82 to 18.14 mg kg-1, respectively. PAHs such as Benzo-pyrene, a rich

component of OPs-FA varied with temperatures (Liu et al.,  2013).Similarly,  PCBs exist with a

range from 7.3 to 178.7 kg-1  as OP-FA (Sahu et  al.,  2009).  The significant  variation of PAHs

concentration was observed in PCBs due to the diversity of coal’s-feature reported in literature

(Sahu  et  al.,  2009).  PCBs  such  as  polychlorinated  dibenzofurans  (PCDFs),  polychlorinated

dibenzo-p-dioxins (PCDDS) are more common in FA. Liuet al. (2013) illustrated that the poly-

chlorinated-dibenzo-furans cover a major percentage, of the persistent organic pollutants in the FA.

Liu et al., 2013 also reported about, persistent-organic-pollutants, which belong to the family of

polychlorinated  compounds such as  dibenzofurans,  dibenzo-p-dioxins,  naphthalenes,  Penta,  and

hexachlorobenzene. Monitoring of PAHs can be based on certified reference material, which uses

for combustion in the industrial sector regarding FA-generation, in China, certified value 2.0±0.8,

7.1±2.6,  1.3±0.3,7.0±2.0, 7.4±1.9 µgg-1 for anthracene,  phenanthrene,  benzopyrene,  pyrene,  and

fluoranthene, respectively reported by Cao et al., (2001). The certified reference value of coal can

beminimizing the PAHs level in FA. On the other hand, OPs like PAHs and PCBs in FA-CL can

bemonitor and manage through native vegetation or plant species. OPs can be entering in animal

6

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154



food via the first tropic level organism (plants) and induces adverse effects on human health (Fryer

and  Collins,  2003;  Li  et  al.,  2005).  Several  studies  suggest  that  photo-degradation  and  rhizo-

mediation of selective-plant species can be suitable for minimizing the adverse impact of OPs of

FA-CL. Taoet al.  (2004) reported the maximum concentration of PAHs in cauliflower (Brassia

oleracea) ascompared with Festuca arundacea, Lolium multiflorum, Daucus carota, etc. This result

indicatesthat  PAHs-translocation  was  more  in  cauliflower  and  the  rest  of  the  species  have  a

potential phyto-degradation mechanism for PAHs. Similarly, Kolb and Harms (2002) demonstrated

that PCBs such as fluoranthene degrades by metabolites of plant root of Triticum aestivum, Lactuca

sativa,and Lycopersicon.  Rhizomediation  strategies  for  PAHs and PCBs can  achieve  by  native

plant  species  like Cynodon  dactylon, Festuca  rubra, Trifolium  prenne, Agrophyron, Metilotus

officinalis, etc.  (McCutcheon and Schnoor, 2003). Therefore, the monitoring and managementof

OPs in FA-CL can be the effective strategies  to restore FA-CL through (i)  the use of certified

material for combustion purposes at a large-scale (ii) screening and selection of phyto-degradation

and rhizo-mediation mechanism-based native plant species to grow in FA-CL.

c. Radioactive elements

The presence of radio-nuclei in FA is less reported in current scenario (Cujic et al., 2015). The

radio-nuclei  such as  228Ac,  40K and  226Ra,  220Ru,  222Ru, thorium, Uranium, etc.,  are found in FA

(Mittra et al., 2005, Mathur et al., 2008). The toxic effect of radio nuclei can be observed over high

doses of FA, while Basu et al. (2009) reported that radio nuclei of K, Ra, and Ac emit radiation

within  the  permissible  limits.  Similarly,  Mathur  et  al.  (2008) illustrate  that  radioactivity  exists

within the limit in FA, and the radioactivity range was 205 to 385 Bq Kg-1 for K and 145 to 610 Bq

Kg-1 for radium, respectively. In general, The Indian coal showed fewer radioactivities and found

below  the  permissible  limit  in  FA  as  compared  to  other  countries  (Kant  et  al.,  2010).  The

radioactivity range from 145 to 188 Bq Kg-1 for 232Th, 92 to 203 Bq Kg-1 for 238U, and 355 to 516

Bq Kg-1 for  40K, 214 to 590 Bq Kg-1 radon, and 317 to 610 Bq Kg-1 for radium in different FA

samples (Kant et al., 2010). Ozden et al., (2018) studies radio nuclei in two coal-thermal power-
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plants (CTPP) in Turkey and reported that the radioactivity of 210Po and 210Pb exists between 56 to

1174 Bq Kg-1 and 186 to 1153 Bq Kg-1, respectively in the FA. Significant attenuation  210Po and

210Pb radioactivity shown at lowering the temperature of CTPP, and lesser density of FA suggests

the application of FA can be safe after a few times with less concentration (Ozden et al., 2018).

4. Identifying the indigenous potential plant species and understanding local demands

The introduction of IPS is considered as promising approach to restore soil  health  even in FA

contaminated land (FA-CL) (Jambhulkar et al., 2018). Both essential and toxic elements present in

the fly ash, which highly concern for selective plant species for restoration of FA-CL. The IPS has

developed coping mechanism against  diverse environmental  conditions such as toxic hazardous

metals  (THMs).  Naturally,  plant  species  perform  nutrient  and  heavy  metal  uptake  through

specialized root-channel system, selection and transportation of nutrient and heavy metal by plant

root mediates through root bio-filter mechanism. Root bio-filter mechanism facilitates plant growth

and avoid to hazardous metal uptake in plant. Similarly happen, in fly-ash contaminated land with

indigenous plant species (Table 1). The adverse grown effect was observed in leafy vegetables due

to heavy metal stress in FA-CL, and Singh et al. (2008) similarly observed in Beta vulgaris plant.

The perfect candidate IPS for restoration of FA-CL should have phytoremediation potential (Qadir

et al., 2019; Panda et al., 2020a). Gajic et al., (2018) illustrates that phyto-remediation potentials

are  based  on  four  criteria  such  as  phyto-stabilization  (P-S),  phyto-extraction  (P-X),  phyto-

degradation (P-D), and rhizo-degradation (R-D) The P-S mechanism of plants reduces the mobility

of toxic hazardous metals (THMs) or organic pollutants (OPs) in the root from rhizospheric soil

region. P-S mechanism containing plants capable to limit the uptake of THMs and OPs through

avoiding  or  excluding  mechanism  mediate  complex  transport  system  (Table  2).  The  P-X

mechanism is important for the extraction of THM due to its more accumulation in plant areal part,

in the general hyper-accumulator plant have distinguished coping mechanism to survive against

high concentration of THM or OPs. THM or OPs enter the vacuole of plant cells via a specialized

channel through the root system and accumulate at high concentrations.
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The P-S and P-X capability of plant play a key role in restoration and adaptation with FA-CL(Table

1), and IPS adaptation with high THM and OPs based on PS and PX potential, which evaluated

through bio-concentration factor (BCF) and translocation factor (TF) (Dwivedi et al., 2014;Panda et

al., 2020a). BCF examine by comparing elemental ratio of plant to soil, and ratio of leaves to plant

root of elements refer to as TF. Suitable P-S mechanism plant exhibits the value of BCF>1 and

TF<1; BCF<1 and TF>1.P-X potential of plant shows greater than one (>) for BCF and TF both

(Gajic et al., 2018). Plant P-D is based on components of root exudates, plant root secrets about 5 to

21%  of  photosynthetic  matter,  which  contains  sugars,  amino  acid,  phenolics,  secondary

metabolites, and organic acids, etc., commonly known as root exudates (Badri et al., 2013). Root

exudates  induce  the  redox  reaction  insight  the  root  environment,  mediate  activation  and

transformation  of  THM  and  OPs,  and  triggers  conjugation/storage  of  THM  and  OPs  of

contaminated soil land. The root exudates provide the carbon source as a nutrient for microbes and

rise  root-associated  microbial  population  (RAMP).   The  RAMP  and  root  exudates  jointly

participate in the degradation and transformation of THM and OPs called rhizo-degradation.

IPS grows in particular area and has characteristic to adapt local condition, do not require human

intervention for growth, which help restoring and landscaping studies (Doner, 2002). Literatures

suggested  for  successful  restoration  achieved  by  self-sustain  mixed  vegetation  with  grass  and

legumes followed by herbs, shrubs and tree (Gajic et al., 2016). Legumes are the key species in

nitrogen deficient FA-CL for restoration.  Soil health restoration in FA-CL should be suitable for

economic concern. The application of FA-CL for the growth of plants that belong to agriculture,

forestry, economic yield tree,  and ornamental purposes covers major thrust area to attain SDG.

Miati and Prasad, (2016) illustrated that growth of Dendrocalamus strictus, Eucalyptus, Leucaena

leucoephate in FA-CL can achieve economic benefits. Similarly, economic benefits obtained by the

plant such as Tectona grandis, Dalbergia sissoo, Populus euphractica grown in FA-CL (Juwakar

and Jambhulkar, 2008; Miati and Prasad, 2016). 
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The presence and grown vegetation of IPS indicate natural succession. IPS has an inherent coping

mechanism against adjacent environments and established suitable micro-environmental conditions

between the root and rhizospheric soil. Plant root and rhizospheric soil interaction have complex

mechanisms mediate through microbes and root exudates. Root-associated microbes enhance plant

growth  and  adaptation  in  an  adverse  environment,  through  phyto-stimulation  and  bio-control

activity. Root-associated beneficial microbes are plant growth-promoting microbes (PGPM) such

as  plant  growth-promoting  rhizobacteria,  and  plant  growth-promoting  fungi.  PGPM  releases

phytohormones  such  as  indole-3-acetic  acids,  gibberellins,  etc.,  and  produces  organic  acids,

siderophore, ACC-deaminase and other antibiotics. (Upadhyay et al., 2009, 2019. In spite of that,

PGPM can survive under heavy metal stress (Bhojiya et al., 2021). The microbial population and

soil enzymes activities hampered at high concentration of FA (Singh and Pandey, 2012), while the

growth of optimum bacterial population and soil dehydrogenase activity maintained at the level of

10t/ha FA application in soil (Jala and Goyal, 2006; Kohli and Goyal, 2010). The bacterial species

such as Azospirillum, Azotobacter, Bacillus, etc.,  are  reported  by  several  workers  in  old  FA-CL

(Jambhulkar et al., 2018).

5. SUGGESTIVE SUSTAINABLE APPROACHES TO FACILITATE RESTORATION OF

FA CONTAMINATED LANDS

Natural vegetation growth observed in FA-CL usually takes about at least a decade (Pandey et al.,

2012).Long-duration helps to rise the free elemental interaction of FA and land with the help of

climatic factors (temperature, rainfall,  wind, etc.) and leads to microbial development. Once the

microbial  growth is  established,  the soil-biochemical  function  would be triggered,  and nutrient

would become available to the plant (Ram et al., 2008; Rajkumar et al., 2010). This condition can

be suitable  for the growth of  first  vegetation  in  FA-CL. Generally,  fresh FA does not  support

microbial  growth however, microbial  population is observed after a time in FA-CL (Singh and

Pandey, 2012). Initial vegetation covers are the key step of restoration of FA-CL, and grasses are

reported as initial vegetation under nutrient-poor soil (Maiti and Prasad 2016). The growth of the
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grasses  is  observing  the  versatile  nature  of  the  environment  even  in  FA-CL(Gajic  et  al.,

2016).Grasses have an adventitious root system with the fast-growing ability and cover a large

surface area of contaminated land, which could be harnessed for the application in soil restoration

(Gupta et al., 2013). This initial vegetation raises the soil fertility for the next vegetation. However,

with the absence of nitrogen content in FA, the growth of the higher plant is a major bottleneck.

Naturally occurring legume-plants can be a better option to address the aforesaid issue in FA-CL.

Therefore, the application of grass cover in FA-CL can be considered as one of the promising first

step followed by application of legumes and economic yielding plants (Brindle, 2003; Jambhulkar

and Juwarkar, 2009). The fulfilment of nitrogen content in grasses induces nitrogen fixation by

legumes; grasses can use 3 to 102 kg N/ha/yr of fixed nitrogen (Milcu et al., 2008). Both grass and

legumes vegetation raising the soil nutrient cycling, maintain C:N ratio, and restoring soil health for

next plant spices (Mati and Maiti, 2015).Legume-grass can fix nitrogen from about 13 to 682 kg N/

ha/yr  in  FA-CL (Maiti  and Prasad  ,  2016)  and similarly  lemon  grass  (Crotalaria  juncea)  can

potentially fix 1.1 kg/ha N in just 9 to 12 week (Akhila, 2010).

Jambhulkar and Juwarkar (2009) reported that  Cassia siameacan adopt and grow in field of FA-

CL, and after three-year restoration of FA-CL following further flourishment. Similarly, Qadir et.

al.,  (2019)  illustrates  that  Pithecellobium dulce  can  fit  for  growing in  FA-CL and can  induce

reclamation of FA-CL due to enhanced ability of antioxidant mechanism against free radicals and

stress  conditions.  Sustainable  restoration  initiatives  for  FA-CL  through  the  application  of

vegetation  can  be  estimated  via  mathematical  models  for  selecting  the  suitable  plant  species

(Mendez and Maier, 2008). Maiti and Prasad, (2016) illustrated the mathematical models such as

BAF (Bioaccumulation factor), BCF, TF, MPI (Metal pollution index), Ef (Enrichment factor), Ei

(Enrichment  index)  and  Igeo  (Geo-accumulation  index).  Singh  et  al.,  (2010)  earlier  applied

mathematical  models  such  as  MCI,  EF,  and  TF  in  FA-CL  for  screening  suitable  restoration

correlation  among the grown plant  root-shoot.  Kishu et  al.,  (2018) illustrate  mathematically  to

screening the efficient candidate restoration plant species for restoration in FA-CL, FA-CL heavy
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metal concentration (µg-1) of  Cd (2.9), Cr (9.5), Ni (13.6), Pb (25.4), Mn (60.6), Zn (134.8) and Fe

(909.4)and soil enrichment factors Zn and Cd was 1.9 and 2.7,respectively.Out of twelve grown

species in this FA-CL sites enrichment factors for all plant root and shoot exhibits 3.8 and 4.3 for

Zn and 3.5 and 3.8 for Cd, respectively,  only six plant species (Saccharum ngrum ,  S. Munja,

Parthenium hysterophorus, Ipomea carnea and Typha Angustifolia) shows P-S and P-X behavior

for Cd, Cr, Ni, Pb, Cu, Mn, Zn and Fe.

Eco-friendly sustainable amendments with FA can be a power full technique to restore FA-CL and

overcome problem of THM and OPs in agriculture field, forestry and growth of other plants. The

application of eco-friendly sustainable amendments restores FA-CL in lesser time as compare with

natural succession process. Spontaneous colonization of Calamagrostis epigejous grass in FA-CL,

fall under PS- and P-X (for boron and arsenic) category takes thirteen years to restore the FA-CL

for vegetation (Mitrovic et al., 2008). Similar finding was demonstrate by Pandey et al., 2012, after

eleven year FA-CL restore and fit for vegetation practices through spontaneous colonization of IPS

saccharum munja. Saccharum munja is an important P-S and P-X category plant and can imply for

restoration in FA-CL (Pandey et al., 2012). Eco-friendly sustainable amendments such as manure,

cow-dung, poultry bio-solid, epigenic earthworm, wheat straw, and PGPM in FA are some of the

suitable  components  for  managing  the  problems  of  THM  and  OPs  and  restore  FA-CL faster

(Reynolds et al., 1999; Gaind and Gaur, 2002; Pati and Sahu, 2003; Jamil et al., 2009; Lau and

wang, 2001;Upadhyay et al., 2021). Punshon et al., (2002) demonstrated that  co-application of fly

ash  (1120  tons  ha-1)  and  poultry  bio-solid  (10  tons  ha-1)  significantly  influence  biomass  of

grassesPanicum amarum, Lespedeza cuneata, and Eragrostis curvulaover 3-years ofthe study, and

found that no harmful effects of THM in plant as well as inthe aquifer.Upadhyay et al.  (2021)

demonstrated that alkaline nature of FA induces significant growth-performance of Chickpea plant

under acidic soil (pH 6.1) followed by neutral and alkaline.However, the maximum concentration

(40%) of FA utilization triggers by eco-friendly augmentation (Upadhyay et al., 2021).Similarly,

Dwivedi et al., (2007) screened for FA tolerance and metal uptake behavior in three rice varieties
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(Saryu-52, Sabha-5204, and pant-4). Around 25% of FA with garden soil reveled significant plant

growth and metal accumulation obtained as Fe>Si>Mn>Zn>Cu>As. Results indicate that Pant-4 is

less tolerance as Saryu-52 and Sabha-5204 under high concentration of FA.  Saryu-52 and Sabha-

5204 plant have sound rhizofilter mechanism as pant-4, which provides coping mechanism against

THM and OPs of FA.

6. CHALLENGES IN GROUND IMPLEMENTATION: WIDE-SCALE PERSPECTIVE

Though above-mentioned suggestive approaches have promising future, still it may subject to few

challenges  while  implementing  on the ground. Addressing these issues would certainly  help in

achieving efficient remediation and thereby attaining UN-SDGs. Indeed selecting indigenous plant

having fast growing traits in harsh condition could have broaden prospects, but growth rate usually

slows down during the implementation in the heavily contaminated sites (Patra et al., 2020). The

impact  of  contamination  is  directly  observed  in  the  plant  biomassdue  to  the  stunted  growth.

Occurrence of pest attacks further perturbed the restoring ecosystems of contaminated sites, which

often affect predicted expectations (Mahar et al., 2016). Importantly, the major concern is the post-

harvest efficient utilisation, as the harvested biomass could often reflect low quality (Gerhardt et

al., 2009). The burgeoning issue of global warming is yet another challenge for the acclimatization

of the planted species for the restoration initiatives. Hence, the restoration of heavily contaminated

sites  still  unravelled.  Under  seldom  instances,  if  the  highly  contaminated  sites  would  be

mainstreamed into the phytoremediation, there would also be a genuine apprehension of transfer of

critically toxic heavy metals in the food chain. Inappropriately adopted agronomic practices or the

application of inefficient soil amendments might adversely affects contaminants mobilization here

are  other  technological  and  funding  limitations,  which  decelerates  the  process  of  restoration

initiatives. It could be further affected by the inappropriate policies or the lack of strict regulations

(Odoh et al., 2019). 

7. CONCLUSIONS AND WAY FORWARD
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Though our current perception  and approaches  to restore the FA induced contaminated  land is

progressively developing, still we are in midst of numerous burgeoning challenges, which needs

immediate  action  to  avoid  any  downfall.  Addressing  the  challenges  discussed  in  the

abovementioned section could certainly help in ensuring the success of undertaken initiatives for

the reclamation and restoration FA-CL. We have to focus and develop a kind of decentralized and

distributed system to counter this global issue at multiple fronts. For example, the technologies of

checking the excess FA generation must be adopted immediately across worldwide perspective.

Following this the generated FA should efficiently utilised for other multifaceted purposes. In this

way,  we  can  reduce  the  amount  of  FA that  is  subjected  for  dumping  into  the  land  systems.

Moreover, it will reduce the pressure on the land system and enable it to be less prone for the heavy

contamination. Further, the utilisation of sustainable measures discussed in the previous sections

could be the promising approaches to restore the contaminated sites successfully. Besides, there are

other  underestimated  challenges,  which  can  appear  while  the  implementation  of  restoration

initiatives,  for  which  the  remediation  experts  and  the  implementing  bodies  should  prepared

accordingly. For example, the societal acceptance and the socio-political issues could be raised in

the  regions  of  people  with  diverse  mental  attitude.  Moreover,  the  incentivisation  should  be

promoted to enhance public participation, which could be made flexible enough to overcome any

shortcomings during the restoration programme.
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