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ABSTRACT 
        From point of view of two different schemas several new impressive lump solutions to 
(1+1)-dimensional Ito equation have been established. The first schema is the Paul-Painleve 

approach method (PPAM) which will be applied perfectly to extract multiple lump solutions 

of this model, while the second schema is the famous one of the ansatze method and has 

personal profile named the Ricatti-Bernolli Sub-ODE method. In related subject the 
numerical solutions corresponding to all lump solutions achieved via each method have been 

demonstrated individually in the framework of the variational iteration method (VIM).  

 
Keywords: The spatio-temporal dispersion (1+1)-dimensional Ito equation; the Paul-Painleve 

approach method; the Ricatti-Bernolli Sub-ODE method; the variational iteration method; 

Lump solutions; numerical solutions. 
      

  1. Introduction 
      

 

In mathematics, Ito, s calculus is used to find a time-dependent function of a stochastic 

process, it seems as the stochastic calculus counterpart of the chain rule and the best well 
known application for it is the derivation of the Black-Scholes equation for option values. 

Moreover, Ito diffusion is a solution to a specific type of stochastic differential equation. That 

equation is similar to the Langevin equation used in physics to describe the Brownian motion 
of a particle subjected to a potential in a viscous fluid. Ito quantum stochastic differential 

equation, Ito for white noise analysis and in quantum stochastic calculus represent general 

form of Ito calculus and in the last few decades  it has same application as the renormalization 

problem in physics and the representation theory of Lie algebras. 
The  constructed (1+1)-dimensionally Ito equation is the general form of the bilinear KdV 

equation which plays vital role in many phenomena arising in various branches of nonlinear 

science . In the last few decades some studied are demonstrated for this model see for 
example Zabusky and Kruskal [1] who observed unusual nonlinear interactions among 

"solitary-wave pulses" propagating in nonlinear dispersive media when he established the 

numerical solutions of the Korteweg-de Vries equation which describe the one-dimensional 
long-time asymptotic behavior of small but finite amplitude, Ito [2] who extracted the  N -

soliton solution and the inverse scattering form for the higher order Sawada-Kotera equation 

as well as the N -soliton solutions, the Bäcklund transformation and the inverse scattering 

form for higher order modified KdV equation. In related subject recent studies to this model 
have been established through significant articles see for example; Bhrawy, et al. [3] who 

applied the extended F-expansion method based on computerized symbolic computation 

technique to extracting the hyperbolic and triangular solutions for the (1+1)-dimensional and 
(2+1)-dimensional Ito equations, Hu, et al. [4] who extracted multiple cosh-solutions of the 

(1+1)-dimension Ito equation using the systematic method, Liu, et al. [5] who achieved two 

https://en.wikipedia.org/wiki/Stochastic_differential_equation
https://en.wikipedia.org/wiki/Langevin_equation
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Viscosity


 

classes of mixed type exact solutions to the (2+1)-dimensional Ito-equation using the test 

function based on the Hirota
'
s bilinear form, Ma, [6] who extracted abounded exact 

interaction solutions, including lump-soliton, lump kink and lump periodic solutions of the 

Hirota-Satsuma-Ito-equation via conducting symbolic computations with maple of Hirota 

bilinear form. 

Various significant articles have been established to discuss the soliton dynamics of different 
non-linear evolution equations [8-28].   

 

The main target of this work, implementing the PPAM [29-32] to achieve distinct types of 
lump solutions to the (1+1)-dimensionally Ito-equation as well as other various types of lump 

solutions via RBSOM [33]. In addition the numerical solutions of this model have been 

established using the VIM [34-36]. 
 

This article is organized as follows: in Section 2, we will describe the PPAM and implement 

its application in Section 3. In Section 4, we will propose the mathematical analysis of 

RBSOM and implement its application in section 5. In Section 6, the VIM is presented and its 
applications to construct the numerical solutions are established in Section 7. In Section 8 

briefly conclusions has been drawn. 

 

2.  The PPAM 

         

To discuss the mathematical analysis of this method, let us firstly invesitigate the general 

form of any nonlinear evolution equation hence,  let us introduce  H as a function of ( , )x t  

and its partial derivatives as, 

                                                                 

                    ( , , , , ,......) 0x t xx ttH                                                                         (1)  

that contained the highest order derivatives and nonlinear terms. This equation under the 

transformation  ( , ) ( ),x t x wt       
will be converted to the this ODE: 

                                                                                                        

                   ( , , ,......) 0Z                                                                                    (2)  

                                                           

where, Z  
is a function related to ( )  and its total derivatives, while . 

The exact solution for equation (2) in the framework of PPAM [29-32] can be proposed as,   
                                             

 

            0 1( ) ( ) , ( )NA A R X e X S                                                            (3) 

or 
2 2

0 1 2( ) ( ) ( ) , ( )N NA A R X e A R X e X S                                   (4) 

where
1( ) ,

Ne
X S C

N






   and ( )R X in equations (3) and (4) satisfy the Riccati equation 

in the form 
2 0XR AR  and its solution is, 

                   
0

1
( )R X

AX X



                                                                                       (5) 

Consequently,
 

        
N N

XN e R S e R 

                                                                            (6)
 

 



 

2 22N N N N

X X XXN e R NS e R S e R S e R   

                                 (7) 
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3 3
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X X XX XXX X
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NR S e R R S R S e R S e

  

  

  

   

   

  

   

  
          (8) 

                  
               

                  
 

3. Application 

We will implement an efficient solver to retrieve lump solutions to the (1+1)-dimensionally 

Ito-equation in the framework of the PPAM. 
 

 

The (1+1)-dimensionally Ito-equation which is the general form of the bilinear KdV equation 

[1-3] can be written as, 

3( ) 3 0

x

j

tt xxxt x t xt xx tv v v v vv v v dx


                                                      (9) 

Under the effect of this transformation 
xv  the last equation became,

 

3( ) 3 0xtt xxxxt xx xt x xxt xxx t           
                                           (10) 

When one seek to choose x wt    that represents the  traveling wave solutions with 

moving coordinate and substitute into equation (10)  it will be reduced to nonlinear ordinary 

differential equation of the form, 
( ) 3 ( ) 3 0vw w w                 

                                         (11) 

Integrating Equation (11) once we obtain, 
23 0w      

.                                                                                (12) 

Via inserting   we get,
 

23 0w    
.                                                                                 (13) 

The homogenous balance applied between 
2,  implies 2 2 2M M M     hence, the 

solution according to the proposed method is;  
 

 

          
2 2

0 1 2( ) N NA A e A e         .                                                           (14)
 

Consequently,  
2 2 3 3

1 1 2 2( 2 ) 2N N NNA e AA A N e AA e                                  (15)
 

 
2 4 4 2 3 3

2 1 2

2 2 2 2

1 2 1

6 (2 10 )

(3 2 )

N N

N N

A A e A A AA N e

AA N A N e N A e

 



  

 

 

 

    

 
                                (16) 

 

Substitute about ,   into Eq. (13) and equating the coefficients of various powers of 

( )Ne x
to zero; we obtain this system of equations, 

 



 

2 2

1 2

2

1 2 1 2

2 2

1 2 1 0 2 2

2

0

3

0 0

2 0,

2 10 6 0,

3 4 3 6 0,

6 0,

3 0.

A A A

A A AA N A A

AA N A N A A A wA

N A w

A wA

 

  

    

  

 

                                                  (17)
 

From the last equation of the system (17) it is clear that
2

03 ,w A by substituting about it in 

the third and fourth equations of this system and solve it we get many complicated results 

from which only four results are valid and the remaining will be refused because in these 

results either  0A or 1 2 0A A  and for simplicity we take 0 1A  . 

The valid results are,  

  

   

3

2

1 2

3
(1) A = 1933 1116 3,  = 3877 1933 1116 3 (1933 1116 3) ,

11 396

6
2 7 4 3 , 116 67 3

11

i i
N

A A

 
    

 

    

                (18) 

 

   

3

2

1 2

3
(2) A = 1933 1116 3,  = 3877 1933 1116 3 (1933 1116 3) ,

11 396

6
2 7 4 3 , 116 67 3

11

i i
N

A A

  
    

 

    

                (19) 

 

1 3

2

3 2

2

2 121 121 3877
(3) 20 ,  = ,

279 361933 1116 3 1933 1116 3(1933 1116 3)

1361613 43285693 7172500
3200

2 3(1933 1116 3) (1933 1116 3) 1933 1116 3
,A =  

279 51894 1933 1116 3

i
A N

i
A

 
            

 
   

  
 
  
 
 

                 (20) 

 

1 3

2

3 2

2

2 121 121 3877
(4) 20 ,  = ,

279 361933 1116 3 1933 1116 3(1933 1116 3)

1361613 43285693 7172500
3200

2 3(1933 1116 3) (1933 1116 3) 1933 1116 3
,A =  

279 51894 1933 1116 3

i
A N

i
A

 
            

 
      

 
  
 
 

                   (21) 

 

For simplicity and similarity we will take only one result of these results and extracting the 

corresponding solutions and plot it say the firs and the first result. 

 

 



 

 

 

For the first results which is, 

 

   

3

2

1 2

3
A = 1933 1116 3,  = 3877 1933 1116 3 (1933 1116 3) ,

11 396

6
2 7 4 3 , 116 67 3

11

i i
N

A A

 
    

 

    

 

This result can be simplified to be, 

1 2A =17i,  =2i, 28, 127N A A                                       (22)
 

Thus the solution is, 
  

 

                     
2 2

0 1 2( ) ( ) ( ) ,N NA A R X e A R X e        

 
2

2

0 1 2

0 0

1 1
( ) N NA A e A e

AX X AX X

       
     

    
                          (23) 

 

Where
1 ,

Ne
X C

N



  and put
1 01, 1C X   then equation (33) become, 

 
2

1 2( ) 1

1 1 1 1

N N

N N

e e
A A

e e
A A

N N

 

 
 

 

 

   
   
     
      

         
      

                                (24) 

 
2

2 2

2 2
( ) 1 28 127

17 1 1 17 1 1
2 2

i i

i i

e e

e e
i i

i i

 

 
 

 

 

   
   
     
      

         
      

                        (25) 

 

2

[4Cos 2 68Sin 2 34] [68Cos 2 4Sin 2 ]
( ) 1 28

1449 34Cos 2 1156Sin 2

[4Cos 2 68Sin 2 34] [68Cos 2 4Sin 2 ]
127

1449 34Cos 2 1156Sin 2

i

i

   
 

 

   

 

    
   

  

    
  

  

                               (26) 

 
2

4Cos 2 68Sin 2 34
Re ( ) 1 28

1449 34Cos 2 1156Sin 2

4624Sin 2 272Cos 2 5796
127

1449 34Cos 2 1156Sin 2

 
 

 

 

 

  
   

  

  
  

   

                                                     (27) 

 



 

 

 
2

68Cos 2 4Sin 2
Im ( ) 28

1449 34Cos 2 1156Sin 2

1140Sin 4 272Cos 4 2312Cos 2 272Sin 2
127

1449 34Cos 2 1156Sin 2

 
 

 
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 

 
   

  

   
  

   

                       (28) 
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Fig.1 : The plot of the Lump solution Re. part Eq.(27) in two and three dimensions when: 

1 2 0 1A =17i,  =2i, 28, 127, 1N A A X w C       
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Fig.2 : The plot of the Lump solution Im. part Eq.(28) in two and three dimensions when: 

1 2 0 1A =17i,  =2i, 28, 127, 1N A A X w C       

By the same manner we can extracting the corresponding solutions for the other three results 

and plot them. 

 

4. Mathematical analysis of the RBSOM  

 

Step (1) The solution of Eq. (2) according to the RBSOM is, 
 

               
2 n na b c                                                                                           (29)

 

 

Where a, b, c, and n are constants to be determined later. 
 

Step (2) From Eq. (29) and by directly calculating, we get 

 

                    

2 2 3 2

2 2 1 2

(3 ) (2 )

( 1) (2 ) ,

n n

n n

ab n a n

nc bc n ac b

  

  

 



    

    
                                         (30) 

 

Remark: When ac  0 and n = 0, Eq. (29) is a Riccati equation. When a  0, c = 0 and n  1, 

Eq. (29) is a Bernoulli equation. Obviously, the Riccati equation and Bernoulli equation are 

special cases of Eq. (29). Because Eq. (29) is firstly proposed, we call Eq. (29) the Riccati-



 

Bernoulli Sub-ODE equation in order to avoid introducing new terminology. Eq. (3) has the 

following solutions: 

 

Case (1) When n= 1, the solution of Eq. (29) is 

 

                
( )( ) a b cC e    

                                                                                            (31)
 

Case (2) When n  1, b = 0 and c = 0, the solution of Eq. (29) is 
 

                   
1

(1 )( ) ( 1)( ) ,na n C     
                                                                       (32)

 

 

Case (3) When n  1, b  0 and c = 0, the solution of Eq. (29) is 

                

1

( 1)
( 1)( ) ,

n
b na

Ce
b

 


 
   
 

                                                                         (33)
 

Case (4) When n  1, a  0 and  < 0, the solution of Eq. (29) is 

                 

1

(1 )

2 24 (1 ) 4
( ) tan ( ) ,

2 2 2

n

b ac b n ac b
C

a a
  



    
   
 
 

               (34)
 

and 

                

1

(1 )

2 24 (1 ) 4
( ) cot ( ) ,

2 2 2

n

b ac b n ac b
C

a a
  



    
   
 
 

              (35)
 

Case (5) When n  1, a  0 and  > 0, the solution of Eq. (29) is 

                

1

(1 )

2 24 (1 ) 4
( ) coth ( ) ,

2 2 2

n

b b ac n b ac
C

a a
  



    
   
 
 

            (36)
 

and 

                

1

(1 )

2 24 (1 ) 4
( ) tanh ( ) ,

2 2 2

n

b b ac n b ac
C

a a
  



    
   
 
 

           (37)
 

Case (6) When n  1, a  0 and  = 0 the solution of Eq. (29) is 

 

                

1/(1 )

1
( ) .

( 1)( ) 2

n

b

a n C a
 





 
  

  
                                                            (38)

 

 

where C is an arbitrary constant. 

 

Step (3) Substituting the derivatives of  into Eq. (29) yields an algebraic equation of . 

Noticing the symmetry of the right-hand item of Eq. (29) and setting the highest power 

exponents of   to be equivalence in Eq. (29), m can be determined. Comparing the 

coefficients of 
i  yields a set of algebraic equations for a, b, c, and C. Solving the set of 

algebraic equations and substituting m, a, b, c, C, ( )x wt   to Eq.(31)-(38), we can get the 

traveling wave solutions of Eq.(2). 
 



 

Moreover, we will give a Bäcklund transformation of the RBSOM which is important 

extension that improves and gives power to this method. 
 

5. Bäcklund transformation of the Riccati-Bernoulli equation 
 

In this sub-paragraph we will give brief description for the Bäcklund transformation as 
follow, 

Let us consider 1( )n   and
1( )( ( ) ( ( )))n n n n       are the solution of equation (29) 

then, 
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1 1
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m mn n n n
n n n
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d d d d
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  

     


  

 
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This tends to, 

 

                 
1
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.

( ) ( )
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n n n n n n

d d
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   
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
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
     

 

By integrating both sides of this equation with respect to  and simplifying it we obtain the 

Backlund transformation of equation (29) which is, 

  
 

                     

1
1 1

1 2 1

1

1 2 1 1

( ( ))
( ) .

( )

m m
n

n m

n

cD aD

bD aD aD

 
 



 






  
  

  
                                            (39) 

Where 1D , 2D are arbitrary constants. 

According to this transformation when we obtain the solution of any equation by using the 
RBSOM we can generate new infinite sequence of solutions to this equation, consequently an 

infinite sequence of solution for equation (2) could be realized. 

 

6. Application: 

From the point power of view of the RBSOM, via inserting
 Eq. (30) into Eq. (13) 

mentioned above and equating the coefficients of different powers of 
i after suitable choice 

of n we get this system of equations,
                

 
3 2

2

2 2 2 2

3

2 2 2

2 0,

2 0,

6 6 2 3 6 0,

6 2 6 0,

3 2 0.

a a

a b ab

ab a c a c ab b ac wa

abc abc b bc wb

c ac b c wc

 

 

      

    

   

                               (40)
 

From which we can easily obtain these results, 

0 , 1/ 2 , 0, / 2a a b c w    
                                                       (41)

 

These achieved results implies case (4) and case (5) which are, 

Case (4) when n  1, a  0 and  < 0, 0,w  the solution of Eq. (29) is 

                 

1

(1 )

2 24 (1 ) 4
( ) tan ( )

2 2 2

n

b ac b n ac b
C

a a
  



    
   
 
 

               (42)
 

and 



 

                

1

(1 )

2 24 (1 ) 4
( ) cot ( )

2 2 2

n

b ac b n ac b
C

a a
  



    
   
 
 

              (43) 
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Fig. 3 : The plot of the Lump solution Eq.(42) in two and three dimensions when: 

1/ 2 , 0, 1, 2, 1a b c w C         
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Fig. 4 : The plot of the Lump solution Eq.(43) in two and three dimensions when: 

1/ 2 , 0, 1, 2, 1a b c w C         
 

Case (5) when n  1, a  0 and  > 0, 0,w the solution of Eq. (29) is 

                

1

(1 )

2 24 (1 ) 4
( ) coth ( ) ,

2 2 2

n

b b ac n b ac
C

a a
  


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 
 

            (44)
 

                

1
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2 24 (1 ) 4
( ) tanh ( ) ,

2 2 2

n

b b ac n b ac
C

a a
  


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   
 
 

           (45)
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Fig. 5 : The plot of the Lump solution Eq.(44) in two and three dimensions when:  

1/ 2 , 0, 2, 1a b w c C       
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Fig. 6 : The plot of the Lump solution Eq.(45) in two and three dimensions when:  

1/ 2 , 0, 2, 1a b w c C       

 

Moreover in the framework of Bäcklund transformation we can generate infinite sequence of 

solution for each achieved solution. 

 

7. The VIM schemas 

 

To investigate VIM algorithm, let us assume this differential equation, 

 

  ( ).LR NR g                                                                                               (46) 

Where ( )g   is nonhomogeneous function and the operators L, N related to the linear and the 

nonlinear respectively.
 

 
The correction functional for equation (46) according to the VIM is; 

            1

0

( ) ( ) ( )( ( ) ( ) ( )) .m m m mt L t N t f t dt



                                               (47) 

Where  is a general Lagrange’s multiplier, which can be determined using variational 

theory, from Eq. (47) the following relations will be extracted:
 

                                                                                                  

For the 1-st order ODE in the form, 

 

               ( ) ( ), (0) ,q p                                                                                  (48)  

For which 1   , the correction function implies this iteration rule; 

          
1

0

( ) ( ) ( ( ) ( ) ( ) ( )) .m m m mt q t t p t dt



     
                                                   (49) 

The 2-nd order ODE in the form, 

 

           ( ) ( ) ( ) ( ), (0) , (0) .c dh f                                                     (50) 

For which t x   , the correction function implies this iteration rule; 

           
1

0

( ) ( ) ( )( ( ) ( ) ( )) .m m m m mt x t c t d f t dt



      
                                     (51) 

The 3-rd order ODE in the form, 

 

 ( ) ( ) ( ) ( ) ( ), (0) , (0) , (0) ,c d eH f H                                 (52) 



 

 

For which 
2

2!
1 ( )t x    , the correction function implies this iteration rule;              
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1 2

0

!
( ) ( ) ( ) ( ( ) ( ) ( ) ( )) ,m m m m m mt x t c t d t e f t dt



       
                           (53) 

Hence,for the general form of ODE, 

 
( ) ( 1) 1

0 1 2 1( , , ,..., ) ( ), (0) , (0) , (0) ..., (0) ,m m m

mg f              


                     (54) 

The lagrange multiplier  takes the general form 
( 1)!

( 1) 1( )
m

m

m
t x  


  , which implies this 

general iteration rule, 

    ( 1) 1 ( ) ( 1)

1 ( 1)!

0

( ) ( ) ( ) ( , , ,..., ) ( ) ,
m

m m m

m m m
t x g f t dt



          

 
                         (55) 

Furthermore, the zeros approximation 
0( )   can be perfectly selected to be,  

 

  2! 3! ( 1

2 3 1 11 1 1
)!0 0( ) (0) (0) (0) (0) ....... (0)m m

m
          



                   (56) 

 

where m is the rank of the ODE.
 

 

8. Application: 

This section involves the implementing of the VIM to construct the numerical solutions 

corresponding to the exact solutions using the above schemas individually. The numerical 

solution corresponding to the first solution achieved using PPAM which is, 

              

2

2 2

2 2
( ) 1 28 127

17 1 1 17 1 1
2 2

i i

i i

e e

e e
i i

i i

 

 
 

 

 

   
   
     
      

         
      

 

 

That possesses these values of the constants,  
1 2 0 1A =17i,  =2i, 28, 127, 1N A A X w C              

 
   

 

Thus, the first iteration in the framework of the VIM is, 

 
 
 

 0( ) (0) (0),     0( ) 0.8 6 (1.8 6.8 ),i                                                     (57)
 

 2

1 0 0 0 0

0

2

1

0

( ) ( ) 3 ,

0.8 6 (1.8 6.8 ) 3[(0.8 6 ) (1.8 6.8 )] [(0.8 6 ) (1.8 6.8 )] .

w dt

i t i t t i t dt





      

  

   

           





    (58) 

2 3

1Re 0.8 16.84 25.3 82.24 .                                                                           (59) 

2 3

1Im 3.8 19.5 81.3 .                                                                                       (60) 
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Fig. 7 : The plot of the numerical solution Re. Part Eq.(59) in two and three dimensions when:  

1 2 0 1A =17i,  =2i, 28, 127, 1N A A X w C       
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Fig. 8 : The plot of the numerical solution Im. Part Eq.(60) in two and three dimensions when:  

1 2 0 1A =17i,  =2i, 28, 127, 1N A A X w C       

 

By the same manner we can construct the numerical solutions corresponding to the other 

three cases.  

 

The numerical solutions corresponding to the first and the fourth solution that achieved using 

RBSODM.  

Firstly, for the first solution that achieved in terms of these constants 1/ 2 , 0, 2, 1a b w c C       
which is; 

                   ( ) 2 tan( 1)      

Thus, the first iteration in the framework of the VIM is, 

 
 
 

 0( ) (0) (0),     0 ( ) 0.03 2 ,                                                                    (61)
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( ) ( ) 3 ,
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w dt

t t dt
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 
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                                                   (62) 
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Fig. 9 : The plot of the numerical solution Eq.(62) in two and three dimensions when:  

1/ 2 , 0, 2, 1a b w c C        
Secondly, for the fourth solution that achieved in terms of these constants

 
1/ 2 , 0, 2, 1a b w c C       

which is;
 

                   ( ) 2 tanh( 1)      

Thus, the first iteration in the framework of the VIM is, 

 
 
 

 0( ) (0) (0),     0( ) 1.5 ,                                                                    (63)
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Fig. 10 : The plot of the numerical solution Eq.(64) in two and three dimensions when:  

1/ 2 , 0, 2, 1a b w c C       
For all the last three cases, the successive iterations to the VIM could been easily obtained as; 
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



      

      

      
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   

   


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                                            (63) 

Using the fact that the exact solution is obtained by using  ( ) lim ( )N


   


  



 

 

Conclusion 

 

In the framework of two distinct and impressive different methods we established the lump 

solutions of the spatio temporal dispersion (1+1)-dimensional Ito equation. These two various 

manners are the PPAM which has been applied perfectly to extract new lump solutions for 

this model figures (1-2), while the other one is the RBSODM which also success to 

demonstrate other new lump solutions of this model in Figures (3-6). The two schemas are 

implemented at the same time and parallel. Furthermore, the numerical solutions 

corresponding for the lump solutions emergence from these two methods have been extracted 

in the framework of the VIM in Figures (7-10). The achieved new lump solutions which 

weren’t realized are new and express the novelty of these results. These new achieved 

solutions will be representing new perceptions of the lump solutions which more significant 

compared with that achieved lastly by [3-6]. 
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