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Abstract

Using data from five long-term field sites measuring soil moisture, we show the limitations

of using soil moisture observations alone to constrain modelled hydrological fluxes. We test

a land surface model, MESH/CLASS, with two configurations: one where the soil hydraulic

properties are determined using a pedotransfer function (the texture-based calibration) and

one  where  they  are  assigned  directly  (the  hydraulic  properties-based  calibration).  The

hydraulic properties-based calibration outperforms the texture-based calibration in terms of

reproducing changes in soil moisture storage within a 1.6 m deep profile at each site, but

both perform reasonably  well,  especially  in  the summer months.  When the models are

constrained using observations of changes in soil moisture, the predicted hydrological fluxes

are subject to very large uncertainties associated with equifinality. The uncertainty is larger

for the hydraulic properties-based calibration, even though the performance was better. We

argue that since the pedotransfer functions constrain the model parameters in the texture-

based calibrations in an unrealistic way, the texture-based calibration underestimates the

uncertainty in the fluxes. We recommend that reproducing observed cumulative changes in

soil moisture storage should be considered a necessary but insufficient criterion of model

success. Additional sources of information are needed to reduce uncertainties, and these

could include improved estimation of the soil hydraulic properties and direct observations of

fluxes, particularly evapotranspiration.
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1. Introduction

Land surface models simulate the vertical exchanges of water and energy between the land

and the atmosphere. These coupled models integrate many different interacting processes

and are capable of outputting a large number of state variables and fluxes. Soil moisture is

the largest store of water on the land surface (aside from lakes) and is probably the easiest

hydrological  variable  to  measure.  That  is  not  to  say  that  obtaining  representative

measurements of soil moisture is straightforward – particular challenges are to measure soil

moisture at the appropriate scale and to capture the spatial variability (Vereecken et al.,

2008, Peterson et al., 2016, 2019, Pan et al., 2017). On the other hand, Mälicke et al. (2020)

looked at networks of soil moisture sensors and showed considerable organization in the

spatial response of soil  moisture changes, concluding that it  is the temporal information

from a few sensors, rather than the spatial variation from a large number of sensors, that is

most  valuable  for  capturing  catchment  scale  moisture  dynamics.  Often the  most  useful

metric of soil moisture is field scale (104-106 m2 area) root zone (0.5 – 2 m depth) storage, S

(mm), where S=103V w /A and V w
 (m3) is the volume of water and A (m2) is the land surface

area. Such metrics can be useful for irrigation planning, crop yield assessment, and other

vegetation productivity measures (Vereecken et al., 2008). 

Consider the simple soil water balance equation

dS
dt

=I−T−E−D (1)

Where I , T ,E and D are infiltration, transpiration, evaporation and drainage, all with units 

(mm/d). Changes in soil moisture over some time increment are obtained by

Δ S i=∫
t=t i

ti+1

(I−T−E−D )dt (2)

Subsequent values of storage are given by

Si+ 1=S i+Δ Si (3)

The water balance error, ε  (mm), over some time increment is given by
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ε=Δ Si−∫
t=t i

ti+1

(I−T−E−D )dt (4)

Equation 4 may be solved over long-term intervals (monthly,  annually or multi-year)  for

observations and field estimates of fluxes to assess consistency of those data, and large

errors (e.g. ¿50 mm/year) can be expected (e.g. Pan et al., 2017). It may also be solved for

models over the entire simulation period, to assess model errors in the simulated states and

fluxes, and in this case the errors should be very small (e.g. ¿10−3 mm/year).

Each of the fluxes in the above equations are simulated by the model – that is to say, they

are not boundary conditions (most cannot be directly measured, Vereecken et al., 2008, Li

et al., 2019), and they are all conditioned by the assumptions within the model and subject

to model errors and uncertainties. It is clear from Equations 1-3 that information about the

changes in soil moisture, Δ S, does not uniquely constrain the values that the fluxes should

take. Different fluxes can compensate for one another: if the input flux ( I) is overestimated

then overestimating one or more of the output fluxes can result in the correct change in

storage  and  hence  soil  moisture;  if  one  output  flux  is  overestimated,  this  can  be

compensated for by underestimating another output flux. However, it is also the case that

each flux is in some way dependent on the soil storage: the infiltration capacity and soil

evaporation  rate  depend  on  the  level  of  saturation  of  the  soil  at  the  ground  surface;

drainage from a free-drainage boundary depends on the saturation of the soil at the base of

the soil profile; and transpiration depends on soil water stress, determined by the saturation

of the soil over the root zone (Seneviratne et al., 2010). Given all of this, for any given model

and particular field site, it is not clear how much information content observations of soil

moisture provide for uniquely constraining the model fluxes. We can say that models should

be  required  to  reproduce  observed  changes  in  soil  moisture  storage  (within  some

acceptable error tolerance). We cannot say whether a model that does reproduce observed

changes in soil moisture storage will necessarily correctly simulate the model fluxes. 

Many studies have shown the benefits of bringing soil moisture observations to bear on the

calibration and validation of  hydrological  models (Maheu et al.  2018, examples cited by

Vereecken et al., 2008, a remote sensing example from Nijzink et al, 2018). Few studies have
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explicitly looked at the question of how much information is provided by using soil moisture

alone to constrain models. Vereecken et al. (2008) do not provide an explicit answer to this

question, though they do indirectly address this when they suggest that soil moisture data

alone is  often insufficient  to estimate  of  soil  hydraulic  properties,  and that  inclusion of

observed hydrological fluxes will improve the well posedness of the inverse problem. Li et

al. (2019) suggested a more positive answer – they suggest that soil moisture observations

could  be  used  to  estimate  hydrological  fluxes  for  a  series  of  irrigated  cropped  land

experiments. However, whilst they did consider uncertainty associated with the observed

soil moisture and other data, they did not rigorously look at parameter uncertainty and did

not consider the problem of uncertainty associated with equifinality. 

In this study, we investigate the question of how useful observations of soil moisture are to

calibrate  a  land  surface  model  and  constrain  the  uncertainty  in  predictions  of  runoff,

infiltration,  evapotranspiration  and  drainage,  all  of  which  are  crucial  fluxes  for  use  in

hydrological and biogeochemical simulations. We apply the MESH/CLASS land surface model

to  five  diverse  instrumented  field  sites  along  a  south-north  transect  in  Saskatchewan,

Canada. All sites are seasonally frozen, two are located in the Canadian prairies and three in

the southern boreal forest.

2. Methods

2.1 Soil moisture as a metric of model performance

We have available field measurements of volumetric liquid water content,  θ (m3 m-3), at a

number of discrete depth intervals, in the profile, z j (m), and recording at discrete intervals

in time, t i (d). The profile storage, S (mm), is given by

S=∫
z=0

z N

θdz=∑
j=1

N

θ j Δ z j (5)

A more useful metric of storage for use with calibrating models is the cumulative change in

storage, Ω (mm). This is defined:

Ω=∫
t=0

t i

dS=S i−S0 (6)
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We can also define the analogous cumulative change in volumetric water content, Θ (m3 m-

3) as 

Θ=∫
t=0

ti

dθ=θi−θ0 (6)

The benefits of  calibrating and validating models against  Ω or  Θrather than  S or  θ are

twofold.  Firstly,  observations  of  soil  moisture  are  made  indirectly,  and  an  instrument

calibration  relationship  is  required  for  the  probe  that  relates  some  measured  variable

(typically the dielectric constant) to the volumetric (liquid) water content (Gardner et al.,

2003).  These  calibrations  can  introduce  errors,  but  the  errors  in  the  change  in  water

content, measured between two points in time, are smaller than the errors in the absolute

water contents. Hence, we have more reliable observations of the changes in water content,

and hence changes in storage, than we do of the actual water contents. The second reason

is that in most soil moisture models, hydraulic properties are determined using a normalized

measure of water content, the effective saturation, given by

Se=
θ−θr
θp−θr

(7)

where  θr and  θp
 are the residual and saturated water content. The simulated cumulative

change inθ (i.e.  Θ¿
)  is  the same as  the simulated cumulative change in  θ−θr (i.e.  from

equation 6 we have θi−θr−θ0+θr=θi−θ0=Θ¿
). Therefore, any arbitrary value for θr can be

used  to  simulate  Θ¿
 (θr=0 is  a  sensible  choice)  and  the  number  of  free  calibration

parameters  can  be  reduced by  one.  Moreover,  after  the  model  has  been calibrated  to

reproduce ΘOBS
, if desired, the actual values of  θ¿

 can be obtained from θ¿=Θ¿−Θ¿+θOBS,

(and, if desired, the parameters θr  and θp
 can be rescaled in the same way).

2.2 Field sites 

We collected field data at five instrumented sites aligned from south to north in central

Saskatchewan, Canada. Saskatchewan has a continental and seasonally frozen climate and a

general  trend  of  increasing  mean  annual  precipitation  and  decreasing  mean  annual
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temperature from south to north. Soil type and vegetation cover at each site is summarized

in Table 1. 

The two prairie sites are in the Moist Mixed Grass ecoregion, which is correlated with semi-

arid  moisture  conditions  and  Dark  Brown  Chernozemic  soils  (Ecological  Stratification

Working Group, 1996). The Kenaston site, located 90 km southeast of Saskatoon, SK, is in a

grazing pasture surrounded by annual crops. The topography is flat to slightly undulating,

with slopes of less than 2% (Burns et al., 2016). The water table resides between 3 to 5 m

below ground surface (Pan et al., 2017). Mean annual precipitation is about 330 mm (2009 –

2014), of which 70 mm falls as snow. The mean temperature in January and July is −12.9 and

18.8 ◦C, respectively. (Pan et al., 2017).  

St.  Denis  National  Wildlife  Area  (SDNWA)  is  located  east  of  Saskatoon,  SK,  and

approximately 100 km north of the Kenaston site at the boundary between Moist Mixed

Grass  and  Aspen  Parkland  ecoregions.  The  topography  of  the  site  and  surrounding

landscape  is  hummocky,  with  local  relief  of  the  order  of  15  %  (Miller  et  al.,  1985).

Vegetation at the site is mainly native and non-native grasses, and riparian vegetation or

“willow-rings” surrounding numerous ponds. The soil moisture site is in a lowland between

two ephemeral ponds. Here, the water table has been observed within 1 m of the ground

surface.  Annual  precipitation is  approximately  360 mm, of  which 1/3 is  snowfall,  but  is

highly variable (Bam et al., 2019). Annual potential evaporation exceeds precipitation in the

region, and annual open water evaporation is approximately 700 mm (Parsons et al., 2004).

Mean January and July temperatures (1991-2018) are -16.2 and 17.7 ◦C, respectively.

The BERMS (Boreal Ecosystem Research and Monitoring Sites) study area is approximately

200  km  northeast  of  Saskatoon,  SK,  in  the  Mid-Boreal  Upland  ecoregion,  which  is

characterized by sub-humid climate and mixed coniferous and deciduous forest.  The sites

are  located  in  three  mature  forest  stands  and  include  flux-towers  and  soil  moisture

monitoring sensors. Mean air temperature in January and July in nearby Waskesiu Lake, SK,

for the period 1971-2000 are -17.9 and 16.2 ◦C, respectively; during the same period mean

annual precipitation was 467 mm, 30% of which fell as snow (Barr et al., 2012). 
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The Old Aspen site (OAS)  and surrounding landscape consists  of  hummocky terrain and

trembling aspen overstory. The underlying geology is glacial till beneath a 10 cm organic

layer and 30 cm silt loam mineral horizon. The water table is generally found 1 to 5 m below

the ground surface (Barr et al., 2012). The Old Black Spruce site (OBS) has a shallow water

table 0 to 1 m below the ground surface, with soil layers that comprise a 20-30 cm deep

peat layer overlying poorly-drained sand (Barr et al., 2012). The Old Jack Pine (OJP) site is

predominantly jack pine overstory in a well-drained sandy soil. The water table is at least 5

m below the surface at OJP (Barr et al., 2012).

Prairie sites Forest sites

Kenaston
St. Denis 
National 
Wildlife Area

Old Jack Pine
Old Black 
Spruce

Old Aspen

Location
51.382°N
106.416°W

52.208°N
106.093°W

53.916°N 
104.690°W

53.987°N 
105.117°W

53.629 °N 
106.200°W

Elevation
(m ASL)

596 557.5 579.3 628.9 600.6

Vegetation/ 
ground cover

Wheatgrass
es 
(Agropyron 
sp.) and 
needle 
grasses 
(Stipa sp.) 

Native prairie 
grasses, 
smooth brome
(Bromus 
inermis), 
cattails (Typha
latifolia) 

Jack pine 
(Pinus 
banksiana La
mb) with 
lichen,
exposed soil 
understory

Black spruce 
(Picea 
mariana) 
with exposed
soil, moss, 
herbs 
understory

Trembling 
aspen 
(Populus 
tremuloides) 
with dense 
hazel 
understory

Vegetation 
Type

Grass
Grass, wetland
riparian 
vegetation

Evergreen
needle-leaf

Evergreen
needle-leaf

Deciduous
broad-leaf

Stand density 
(trees ha-1)

1320 4330 980

Canopy height 14 m 11 m 21 m 

Soil Layer Mineral 
soil: 
loam to 
clay loam

Mineral soil: 
dark brown 
loam to 
gravelly-loam 
soils

Mineral soil: 
Fine sand

Mineral soil: 
sandy clay
Organic soil:
peat

Mineral soil: 
loam to clay
Organic
soil:
litter, fibric 
and humic

Drainage Imperfect 
to poor

Imperfect to 
poor

Very well Imperfect to 
poor

Well to 
moderately 
well

Table 1. Field site characteristics (Pan et al., 2017; Bam et al., 2019; Barr et al., 2012). 
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FIG 1 HERE

Figure 1. Field site locations (circles) and major cities (stars) in Saskatchewan, Canada.

Ecoregions of central Saskatchewan are shown in shading, each aligning with different soils,

landforms, and associated plant communities (Ecological Stratification Working Group,

1996).

2.3 Instrumentation and data

In this study, meteorological data were used to drive the model and soil moisture data were

used to  assess  the model  performance  and constrain  the simulated  fluxes.  The  specific

instruments and measurement heights/depths are summarized in Table 2. 

Variable  Kenaston SDNWA OJP OBS OAS

Volumetric 
water 
content (m3/
m3)

Stevens 
HydraProbe 
sensors 

Stevens 
HydraProbe 
sensors 

CS615 water 
content 
reflectometers

CS615 water 
content 
reflectometers 

Time domain 
reflectometers

Depths     
(cm bgl)

0, 20, 50, 75, 
100, 130, 160 

0, 5, 20, 50, 100, 
200, and 300

0–15, 15–30, 30–
60, 60–90, 90–
120, and 120-150

2.5, 7.5, 22.5, 45 
and 60-90

0–15, 15–30, 30–
60, 60–90, and 
90–120

Air 
temperature
(oC) and 
Relative 
humidity (%)

Vaisala HMP45C 
4 m above 
ground

Vaisala HMP45C 
1.5 m above 
ground

Vaisala HMP45C 
14 m above 
canopy

Vaisala HMP45C 
14 m above 
canopy

Vaisala HMP45C 
16 m above 
canopy

Wind speed 
(m/s)

CS CSAT3 tri-axial
sonic 
anemometer 8 m
above ground

CS CSAT3 tri-axial
sonic 
anemometer 10 
m above ground

CS CSAT3 tri-axial
sonic 
anemometer 29 
m above ground 

Gill R3 or R3-50 
tri-axial sonic 
anemometer 26 
m above ground

Gill R3 or R3-50 
tri-axial sonic 
anemometer 38 
m above ground

Solar 
radiation 
(W/m2)

Kipp and Zonen 
CNR1 four-
component 
radiometer

Kipp and Zonen 
CNR4 four-
component 
radiometer

Kipp and Zonen 
CM11 paired 
pyranometer 9 -
14 m above 
canopy

Kipp and Zonen 
CM11 Paired 
pyranometer 9 -
14 m above 
canopy

Kipp and Zonen 
CM11 paired 
pyranometer 10 -
16 m above 
canopy

Longwave 
radiation 
(W/m2)

Kipp and Zonen 
CNR1 four-
component 
radiometer

Kipp and Zonen 
CNR4 four-
component 
radiometer

PIR paired 
pyrgeometer 9 -
14 m above 
canopy

PIR paired 
pyrgeometer 9 -
14 m above 
canopy

PIR paired 
pyrgeometer 10 -
16 m above 
canopy

Precipitation
(mm)

Geonor T200-B 
weighing gauge

Geonor T200-B 
weighing gauge

Belfort 3000 
accumulating 

Belfort 3000 
accumulating 

Belfort 3000 
accumulating 
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gauge gauge gauge

Table 2. Instrumentation at field sites (Pan et al., 2017; Barr et al., 2012; Bam et al., 2019)

The driving data are plotted in Figure 2, which shows the interannual, seasonal and diurnal

variation  in  these  datasets.  Precipitation  is  measured  at  each  site  with  a  weighing

precipitation gauge that captures both rainfall and snowfall. It is notable that the two prairie

sites, Kenaston and SDNWA, have higher windspeeds, which is because the forest sites are

more sheltered. As a result, the prairie sites are subject to significant redistribution of snow

laterally by the wind, and the snowfall observations from the gauges are not representative

of the snow on the ground, which could be higher or lower than the snowfall (Pan et al.,

2017). To correct for this, snow survey data from the prairie sites, which measure the peak

snow on the ground prior to melt, were used to adjust the snowfall data such that the snow

on the ground simulated by MESH would match the snow survey observations. For each

winter (typically  November to February),  every snowfall  event was scaled by a constant

correction factor that was determined for each year by trial and error. The precipitation

data in Figure 2 have been corrected in this way for the prairie sites. Precipitation data at

the forest sites were not modified.

FIG 2 HERE

Figure 2. Driving data from meteorological stations. All variables are plotted as average

values per time increment dt, where dt is indicated in the plot titles for each column.

The  calibration/validation  soil  moisture  data  are  shown  in  Figure  3.  Soil  moisture

observations were available at different depths at different sites (Table 2). We used these

data to estimate the average volumetric water content in each of the soil depth increments

that correspond to the three layers in the model (i.e. 0 – 0.1 , 0.1 – 0.35 and 0.35 – 1.6 m

depths), as shown in Figure 3. The data are considered high quality, with minimal gaps or

data  quality  problems.  Soil  freezing  is  clearly  evident  at  the prairie  sites  (Kenaston  and

SDNWA), where the water content in the first two layers drops rapidly at the start of the

winter, and rises rapidly in the spring – this is because the water turns to ice, which is not

detected by the dielectric probes. The water content in layer 3 at SDNWA is much higher
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than at Kenaston, which is because the water table is much closer to the ground surface at

SDNWA, and hence the soils are not as free-draining. The same is true of the OBS sites,

which is in a low-lying part of the landscape where again the water table is close to the

ground surface, and the upper layer has a high organic matter content and a high porosity,

with a lot of variation in storage.  The OJP site has very sandy soil, which has poor water

retention  properties,  and  has  a  deep  water  table,  and  hence  the  water  contents  are

consistently low, with a small range of variation seasonally. The OAS site has relatively fine

grained mineral soils that drain reasonably well.

FIG 3 HERE

Figure 3. Soil volumetric liquid water content observations from the five field sites, averaged

over the three model layer depth increments. The shaded cyan areas represent times of the

year when the observed soil temperature in layer 1 was below zero °C.

2.4 Model description

MESH (Modélisation Environnementale communautaire - Surface Hydrology) is a physically

based hydrological land-surface scheme built by Environment and Climate Change Canada

(ECCC) (Pietroniro et al. 2007). MESH is a configuration of the Modelling the Environment

Community (MEC) surface model that couples the Canadian Land Surface Scheme (CLASS)

(Bartlett  at  al.,  2003,  Verseghy,  2017)  with  hydrological  routing  scheme  WATFLOOD

(Kouwen 1988, recently described in Pomeroy, 2016). MESH relies on a mosaic of Group

Response Unit's (GRUs) to represent the heterogeneity and hydrological processes of the

landscape.  A  GRU  is  a  grouping  of  hydrological  response  units  with  similar  soil  and/or

vegetation attributes (Xu et al., 2017). In this study, we used a single grid cell with a single

GRU  to  represent  the  point  scale  vertical  processes.  MESH  employs  CLASS  to  simulate

vertical water fluxes and energy balances for each GRU (Verseghy, 2017). CLASS divides the

soil column into three layers and the vertical movement of water between each soil layer is

governed  by  a  finite  difference  solution  of  one-dimensional  Richards’  equation  for

unsaturated flow in porous media (Soulis, 2000). The hydraulic properties in CLASS adopt
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the Clapp and Hornberger (1978) model to determine the relationship between hydraulic

conductivity, K  (m/d), matric potential, ψ  (m), and soil moisture, where

ψ=ψ s( θθ p
)
−b (8)

K=K s( θθp
)
2b+3

(9)

where ψ s
 (m) is the saturated matric potential, θp

 is the saturated water content, K s
 (m/d) is

the saturated hydraulic  conductivity,  and  b (-)  is  a shape parameter.  Note,  temperature

corrections are applied to  K s
 to account for changes in the viscosity of water (Verseghy,

2017, p. 122), and in frozen conditions an additional impedance factor is applied to reduce

K s
 to  account  for  the  ice  blockages  in  the  pore  space  (Verseghy,  2017,  p.  146).  The

parameters in Equations 8 and 9 are normally determined using the empirical pedotransfer

functions of Cosby et al. (1984), whereby

θp=
−0.126 XS+48.9

100.0

(10)

b=0.159 XC+2.91 (11)

ψs=0.01 e
(−0.0302X S+4.33) (12)

K s=0.60960384 e
(0.0352X S−2.035) (13)

Where X S
 (%) and XC

(%) are the percentage sand and clay, respectively, of the soil in a 

particular layer. Note, in Equation 13 K s
 is given in units of m/d. The pedotransfer function 

relationships and the resulting hydraulic properties are shown in Figure 4.

FIG 4 HERE

Figure 4. The pedotransfer functions that define soil hydraulic properties as a function of

sand and clay content, and ψ (θ) and K (θ) relationships used in CLASS for three example

soil textures.

The way that the fluxes in Equation 1 are calculated in CLASS are briefly described in Table 3.
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Flux Calculation description

Infiltration Rainfall  and throughfall  on the ground are combined with snowmelt to
form the potential infiltration flux; the infiltration capacity is calculated by
a Green-Ampt model and depends on the soil hydraulic properties; water
that cannot infiltrate forms ponding on the ground-surface, where it may
later infiltrate unless the surface ponding capacity is exceeded, in which
case the excess water forms overland runoff.

Drainage The bottom of  the soil  profile,  i.e.  the base of  soil  layer 3,  has  a  free

drainage  boundary  condition,  (Soulis  et  al.,  2000),  where  D=ϕK3 (θ3 ),
where ϕ  is a drainage parameter that restricts free drainage (0-1).

Soil 
evaporation

Soil evaporation is the sum of evaporation from bare soil and evaporation
from  soil  below  the  canopy,  both  of  which  are  driven  by  a  humidity
gradient. The humidity at the soil surface, and hence the soil evaporation
flux, is reduced as the water content in layer 1 drops below field capacity,
and soil evaporation is limited by the availability of water in the top soil
layer and surface ponding (Sun and Verseghy, 2019).

Transpiration Transpiration is extracted from all soil layers, weighted by the root density
in each layer, as long as the liquid water content is greater than 0.04. The
flux rate depends on the leaf-to-air humidity gradient, the boundary layer
resistance  and  the  canopy  resistance,  which  in  turn  is  related  to  leaf
stomatal  resistance and leaf  area index.  The stomatal  resistance  has  a
reference value,  r s ,min,  and  is  modified as  a  function of  incoming solar
radiation, vapour pressure deficit, soil moisture in the wettest layer, and
air  temperature.  Through  the stomatal  conductance  term transpiration
rates are reduced exponentially as the soil  suction in the wettest layer
reduces below ψ s

, i.e. as the soil moisture reduces (Verseghy, 2017, Sun
and Verseghy, 2019).

Table 3. Description of soil flux calculations in CLASS

2.5 Monte Carlo simulations

To investigate how information from soil moisture observations constrains simulated fluxes,

we apply a simple Monte Carlo approach. We allow for uncertainty in the model parameters

by randomly sampling parameter values from a uniform (or log-uniform) distribution. We

generate 10,000 parameter combinations and run the model with each parameter set over

a  two-year  calibration  period.  The  performance  of  each  realization  is  determined  by

calculating ϵ j
, the root mean squared error (RMSE) of the cumulative change in liquid water

content (equation 6), for each depth, j, as in equation 14, and then averaging these over the

three layers, as in equation 15
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ϵ j=√∑i=1
n

(Θo(i , j)−Θ s(i , j))
2

n

(14)

ϵT=∑
j=1

3 ϵ j

3

(15)

where Θo (i , j)
 and Θs (i , j )

 are the cumulative change in volumetric liquid water content from

the observations and simulations, respectively, at time index  i and depth index  j,  nis the

number of points in time, and ϵT  is the overall performance metric, with units of volumetric

water content (m3/m3). The layer average RMSE was used, so that the performance in each

layer would have an equal weighting – if the total storage was used the performance would

be biased towards the 3rd soil layer, as this is much thicker (1.25 m) than the 1st (0.1 m) and

2nd (0.25 m) layers.

As described in section 2.3, the CLASS model is typically run using the Cosby et al (1984)

pedotransfer function, which determines the soil  hydraulic properties from soil  texture –

specifically  sand  percentage,  X S
 and  clay  percentage  XC

.  We  perform  two  separate

calibration  experiments  here:  the  first  using  these  pedotransfer  functions  samples  the

parameters X S
 and XC

 for each soil layer – i.e. six free parameters; the second does not use

the pedotransfer functions, and samples the four hydraulic properties (θp
, b, ψ s

, K s
) directly

for  each  soil  layer  –  i.e.  twelve  free  parameters.  Hereafter  we  describe  these  two

experiments as the texture-based calibration and hydraulic properties-based calibration. In

addition to the six/twelve soil parameters, we also sample four additional parameters that

are understood to have a strong control on the simulated fluxes (Nazarbakhsh et al., 2020):

the minimum and maximum annual leaf area index, Lmin
 and Lmax

 (-), the minimum stomatal

conductance,  r s ,min (s/m)  and  a  drainage  index,  ϕ (-)  (Table  4).  To  prevent  the  random

parameter sampling procedure from generating Lmin>Lmax
 we instead sample  Lmax

 and the

factor  f L such  that  Lmin=min ⁡(Lmax , Lmax f L).  f L is  randomly  sampled  from  a  uniform

distribution between 0.5 – 1.25, which ensures that around one-third of combinations will

have Lmin=Lmax
. For the texture sampling, we need to specify ranges in sand (X S ¿, clay (XC

)

and silt (X L
) and ensure that the sum of the three equals 100%, which is done by randomly

sampling  X S
,  XC

 and  X L
 from  uniform  distributions  (see  ranges  in  Table  4),  and  then
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rescaling each by the same scale factor such that X S+XC+XL=100. The texture-based and

hydraulic properties-based calibrations sample 10 and 16 free parameters, respectively. The

parameter  ranges  considered  for  each  site  were  based  on  knowledge  of  the  soils  and

vegetation characteristics at each site, and are shown in Table 4.
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Kenaston SDNWA OJP OBS OAS

Texture-based calibration parameters:

X S
 (%) 20−70 20−70 45−100 20−70 20−70

X L
 (%) 30−80 30−80 0−55 30−80 0−50

XC
 (%) 0−60 0−60 0−55 0−60 5−35

Hydraulic properties-based calibration parameters:

θp
 (-) 0.2−0.5 0.2−0.5 0.1−0.4 0.2−0.7 0.2−0.5

b (-) 3−18 3−18 3−18 3−18 3−18

ψs
 (m) 0.05−3 0.05−3 0.05−3 0.05−3 0.05−3

K s
 (m/s) 10−7

−10−4 10−7
−10−4 10−7

−10−4 10−7
−10−4 10−7

−10−4

Additional parameters:

Lmax
 (-) 0.5−3 0.5−3 2−4 2−4 1−4

f L (-) 0.5−1.25 0.5−1.25 0.5−1.25 0.5−1.25 0.5−1.25

r s ,min (s/m) 50−300 50−300 50−300 50−300 50−300

ϕ (-) 0−1 0−1 0−1 0−1 0−1

Table 4. Parameter ranges considered. All parameters are sampled from a uniform

distribution except K s
 which is sampled from a log-uniform distribution.

The models were all initialized on 1st August 2013, and the calibration period ends on 30th

September 2015 (two complete hydrological years) while the validation period ends on 30 th

September  2017  (two additional  complete  hydrological  years).  Initializing  the models  in

August eliminates the need to specify initial soil  ice content or the initial snowpack. The

initial water content of the model was based on observed estimates of the initial saturation,

combined with the current realization value of θp
, i.e.

θ j ,ini=
θO , j ,ini−min (θO, j )

max(θO , j)−min (θO, j )
θp , j

(16)
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where  θO is the observed liquid volumetric water content, and subscripts  j is  the depth

index and ini is the initial time. This approach ensures that the initial relative saturation is

always the same, regardless of the porosity value that was sampled randomly in the Monte

Carlo simulation.

For the validation run, only the 30 best ranked parameter sets were considered (due to the

excessive computational expense of running 10,000 models for a 4 year period). We seek to

validate the model  validation performance with the  Ω observations,  and to explore the

uncertainty in the model fluxes associated with these runs.

 

3. Results and Discussion

Figure 5 shows the performance of the model at each of the five sites, for the two sets of

Monte Carlo runs: i) sampling the soil texture parameters; and ii) sampling the soil hydraulic

properties. The results are shown in units of the cumulative change in storage in the profile

(i.e. Ω ¿. In the calibration period, the range of Ω from all 10,000 simulations is shown, along

with the range from the best 30 simulations, with the ranking based on ϵT  (equation 14 and

15). Dotty plots for each simulation are provided in the Appendix. The model performance is

variable  between  the  different  sites,  and  between  the  texture  based  and  hydraulic

properties-based calibration. The rise in storage in the spring (March-April) is characteristic

of seasonally frozen soils, and is a complex combination of snowmelt infiltration and soil

thaw (whereby ice becomes liquid water, leading to an apparent observed increase in liquid

water content, which may or may not be associated with an actual increase in total, that is

ice plus liquid, water content). The timing of this rise is delayed in all models, suggesting

there may be some limitations with either the snowmelt,  the infiltration flux or the soil

thawing. However, the magnitude of the rise, and the overall seasonal changes in storage

are generally well captured in the models. The worst performance is at the OJP field site,

with the texture-based calibration. The reason this is poor is because the sandy soils at OJP

have a very small range of moisture variation, never rising as high as 0.2 (Figure 3). The

texture-based properties only allow for a variation in  θp
, the saturated water content, of

between 0.36 and 0.49, as shown in Figure 4 (top left), and therefore the model always

over-estimates the range of variation of water content. This restriction is removed using the

hydraulic  properties-based  calibration.  This  improvement  in  performance  using  the
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hydraulic  properties-based  calibration  is  true  for  all  field  sites.  This  is  because  the

pedotransfer functions used in the texture-based calibration artificially constrain the agility

of the model, as discussed by Mendoza et al (2015). To elaborate, when using pedotransfer

functions, for a given parameter value of θp
 there will always be a unique parameter value

of  K s
,  and there is no way to explore deviations in this combination. With the hydraulic

properties-based calibration applied here, this constraint is removed, and  θp
 and  K s

 are

treated as completely independent of one another. These two cases therefore represent

two extreme possibilities in terms of the possible parameter space that is explored by the

model.

FIG 5 HERE

Figure 5. Model calibration and validation performance in terms of cumulative change in

storage over the profile (mm) plotted for all 10,000 runs and the best 30 runs, ranked by ϵT

Figure 6 shows box plots of each of the soil  water fluxes (Equation 1), plotted as annual

fluxes over the calibration period of the model, for both all simulations and the best 30. In

the box plots,  the whiskers  represent  the complete  range of  the data,  i.e.  minimum to

maximum data points, which is taken as a simple measure of the overall uncertainty. The

range of the “all” plots represents the uncertainty of the simulated flux in the absence of

any  constraints,  while  the  range  of  the  “best”  plots  represents  the  uncertainty  of  the

simulated flux when constrained by observed changes in soil moisture (as in Figure 5 and

the dotty plots in the appendix). If we consider each of the 30 best realizations as equally

credible, then the spread in the fluxes from these models is attributable to equifinality –

that  is,  different parameter  sets that  provide the same performance in one metric,  but

provide  different  outcomes  in  terms  of  some  other  state  or  flux.  The  texture-based

calibration, which had a lower performance, appears to be slightly better at constraining the

fluxes than the hydraulic properties-based calibration. For example, at Kenaston, the range

of uncertainty in soil evaporation, E, is reduced from 300 mm/year (unconstrained) to 176

mm/year (constrained) using soil texture-based calibration. Using the hydraulic properties-

based calibration, uncertainty was reduced from 394 mm/year (unconstrained) to 327 mm/

year  (constrained).  We  consistently  see  higher  uncertainties  when  we  calibrate  the

hydraulic properties rather than the texture, which is expected because there are more
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degrees of freedom in the hydraulic properties-based calibration. The infiltration flux has

the highest value and the lowest uncertainty of all  of the fluxes, though the uncertainty

increases  markedly  for  the  hydraulic  properties-based  calibration.  This  is  because  the

infiltration  capacity  of  the  soil  depends  on  the  hydraulic  properties  directly,  and  these

properties are overly restricted in the texture-based calibration. At different sites for the

constrained  (best)  simulations  the  relative  size  of  uncertainty  in  the  soil  evaporation,

transpiration and drainage does vary, but is in almost all cases too large to be useful. The

possible exception to this is at OBS for the texture-based calibration – where the fluxes are

most effectively constrained. Here the median/uncertainty range values for the constrained

fluxes are: I  443/27 mm/year; E 90/36mm/year; T347/39 mm/year; D 0/1 mm/year. These

uncertainties  are  perhaps  low  enough  that  the  model  predictions  could  be  considered

useful,  but note that we are only reporting here the uncertainty based on soil  moisture

observations,  and  an  assessment  of  the  performance  of  these  fluxes  against  flux

observations is still needed.

FIG 6 HERE

Figure 6. Box plots of annual modelled soil fluxes including infiltration, I , soil evaporation, E,

transpiration, T , and drainage, D, for all 10,000 runs and the best 30 runs, ranked by ϵT . The

whiskers represent the entire range of the data (i.e. minimum to maximum) and the boxes

represent the 1st, 2nd and 3rd quartiles.

Figure 7 shows cumulative fluxes of evapotranspiration (which includes soil evaporation plus

transpiration plus canopy evaporation and snow sublimation), runoff and drainage, for both

the  calibration and  validation period.  As  in  Figure  6,  this  plot  shows that  soil  moisture

overall is acting as a poor constraint on all of these fluxes. In the prairie sites (Kenaston and

SDNWA) we see evapotranspiration is the dominant flux; simulated runoff is associated with

the melt period; and drainage is relatively small but highly uncertain. At OJP we see the

largest uncertainties, particularly in the drainage fluxes that could be anywhere from zero to

> 200 mm/year. At OBS, where again the uncertainties are lowest overall, evaporation is

relatively well constrained, but drainage and runoff are still  quite uncertain, especially in
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2017. At OAS, the evaporation is somewhat well constrained, runoff is small, but drainage is

highly uncertain. 

FIG 7 HERE

Figure 7. Simulated cumulative fluxes from the unconstrained (all 10,000) and constrained

(best 30) model runs for the calibration and validation periods.

4. Conclusions

We have shown that the MESH/CLASS model is capable of simulating the changes in soil

moisture within a 1.6 m deep profile at five diverse prairie/forest field sites relatively well,

albeit with some limitations associated with the timing of the rise in liquid water content

during  the  spring  melt  period.  However,  this  relatively  good  performance  at  simulating

water content did not result in well constrained predictions of hydrological fluxes. From a

simple  and  qualitative  assessment  of  Figure  6  and 7  we conclude  that  the  information

content in soil moisture data is relatively low. The texture-based calibration is apparently

slightly  better  at  constraining the fluxes than the hydraulic  properties-based calibration,

which  demonstrates  that  uncertainties  in  models  can  be  reduced  by  embedding

assumptions  within  the  models.  However,  this  also  requires  that  these  embedded

assumptions are reasonable. In this case, the embedded assumption is that the hydraulic

properties can be determined from pedotransfer functions. Since we see in Figure 5 that

doing this degrades the performance of the model in reproducing observed changes in soil

moisture storage, this is not deemed a reasonable assumption in this case; the reduction in

uncertainty is considered misleading. We therefore conclude that the very wide uncertainty

bounds predicted by the hydraulic properties-based calibration are in fact a more accurate

reflection of the true uncertainty in the system. It is important to recognize that we are only

looking at one form of uncertainty here: uncertainty associated with parameters. There are

still  other  sources  of  uncertainty,  most  importantly  uncertainty  in  the  input  data  and

uncertainty  in  the model  structure,  that  are not  addressed here.  We conclude that  soil

moisture observations,  while valuable in combination with other data,  on their  own are

inadequate for calibration of land surface models. Reproducing the cumulative change in

soil moisture storage is a necessary but insufficient criterion for model success. Uncertainty

is reduced by bringing in more information. If we had knowledge of the hydraulic properties,
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for example from direct field observations, we would have a reduction in the parametric

uncertainty,  resulting  in  less  spread  in  the  simulated  fluxes.  However,  representative

parameter values are hard to obtain. Another valuable source of information comes from

observations  of  fluxes,  which  can  be  used  to  better  constrain  the  model,  and  we

recommend  that  multi-objective  calibration,  using  ET  estimates  from  flux  towers,  will

improve the situation.
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Appendix: Parameter identifiability

Figures A1 – A10 present the dotty plots for the texture-based and hydraulic properties-

based calibrations for each of the five sites. On the x-axes are plotted the parameter values

(refer  to sections 2.4 and 2.5 for  symbols),  and on the y-axes  are plotted the objective

function values,  i.e.  ϵT  (Equations  14 and 15).  For  all  sites,  we see that  the parameter

identifiability is better for the texture-based calibration than for the hydraulic properties-

based calibration. For the hydraulic properties-based calibration, the parameters are often

completely unidentifiable. One notably exception is at OJP (Figure A6) where the porosity is

identifiable and low values are clearly preferred. This poor identifiability is associated with

the equifinality in the model, and further shows that additional observations are needed to

constrain the parameters.

FIG A1 HERE

Figure A1. Dotty plots for the Monte Carlo runs at Kenaston using the texture based soil

parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.
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Figure A2. Dotty plots for the Monte Carlo runs at Kenaston using the hydraulic properties

based soil parameterisation. RMSE is the root mean squared error between the observed

and simulated cumulative change in water content for the unfrozen period, averaged

between the three layers, in units of volumetric water content.

FIG A3 HERE

Figure A3. Dotty plots for the Monte Carlo runs at St Denis using the texture based soil

parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A4 HERE

Figure A4. Dotty plots for the Monte Carlo runs at St Denis using the hydraulic properties

based soil parameterisation. RMSE is the root mean squared error between the observed

and simulated cumulative change in water content for the unfrozen period, averaged

between the three layers, in units of volumetric water content.

FIG A5 HERE

Figure A5. Dotty plots for the Monte Carlo runs at OJP using the texture based soil

parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A6 HERE

Figure A6. Dotty plots for the Monte Carlo runs at OJP using the hydraulic properties based

soil parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A7 HERE

Figure A7. Dotty plots for the Monte Carlo runs at OBS using the texture based soil

parameterisation. RMSE is the root mean squared error between the observed and
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simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A8 HERE

Figure A8. Dotty plots for the Monte Carlo runs at OBS using the hydraulic properties based

soil parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A9 HERE

Figure A9. Dotty plots for the Monte Carlo runs at OAS using the texture based soil

parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.

FIG A10 HERE

Figure A10. Dotty plots for the Monte Carlo runs at OAS using the hydraulic properties based

soil parameterisation. RMSE is the root mean squared error between the observed and

simulated cumulative change in water content for the unfrozen period, averaged between

the three layers, in units of volumetric water content.
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