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Abstract

Investigating the changes in streamflow regimes is useful for understanding the mechanisms

associated with hydrological processes in different watersheds and for providing information

to facilitate water resources management. In this study, we selected three watersheds, i.e.,

Sandu River, Hulu River, and Dali River on the Loess Plateau, to examine the changes in the

streamflow regimes and to determine their responses to different soil and water conservation

measures  (terracing, afforestation,  and  damming).  The  daily  runoff  was  collected

continuously by three hydrological gauges close to the outlets of the three watersheds from

1965 to 2016. The eco-surplus, eco-deficit, and degree of hydrological change were assessed

to detect hydrological alterations. The Budyko water balance equation was applied to estimate

the  potential  impacts  of  climate  change and human activities  on  the  hydrological  regime

changes. Significant decreasing trends (P < 0.05) were detected in the annual streamflow in

the Sandu and Dali River watersheds, but not in the Hulu River watershed where afforestation

dominated.  The  annual  eco-surplus  levels  were  low  and  they  decreased  slightly  at  three

stations, whereas the eco-deficit exhibited dramatic increasing trends in the Sandu and Dali

River watersheds. In the Sandu River watershed (dominated by terraces), the runoff exhibited

the most significant reduction and the eco-deficit was the highest among the three watersheds.

The integral degrees of hydrological change were higher in the Sandu River watershed than

the other two watersheds, thereby suggesting substantial variations in the magnitude, duration,

frequency, timing, and rate of change in the daily streamflow.  In the Dali River watershed

(dominated by damming), the changes in the extreme flow were characterized by a decreasing

number appearing in high flow. In these watersheds, human activities accounted for 74.1%
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and 91.78% of the runoff reductions, respectively. In the Hulu River watershed (dominated by

afforestation), the  annual  runoff  exhibited  an  insignificant  decreasing  trend  but  with  a

significant increase in the low flow duration. Rainfall changes accounted for 64.30% of the

runoff reduction.

Keywords: climate variability; human activities; indicators of hydrologic alteration (IHA);

streamflow regime
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1. Introduction

Streamflows are essential for environmental health, economic prosperity, and human well-

being. They provide the water required to produce energy, crops, and industrial products, and

for maintaining terrestrial and aquatic environment systems (Curmi et al., 2013). The water

resources in rivers determine the size, shape, structure, and dynamics of aquatic ecosystems.

The streamflow regime in a river is considered to be mainly responsible for the variations in

many  other  components  of  a  river  ecosystem,  e.g.,  fish  populations  and nutrient  cycling

(Richter  et  al.,  2003).  Streamflow  variability  influences  hydrological  functions  and  it  is

important for maintaining biodiversity in rivers and the integrity of ecosystems (Arthington et

al., 2006; Jovanovic et al., 2016; Vogel et al., 2007).

Recent  studies  have  demonstrated  that  streamflow  regimes  have  exhibited  obvious

changes in many rivers around the world. Approximately 24% of the world’s large rivers

appear to have exhibited significant changes in the water flux according to observations of the

streamflow  in  4399  rivers  (Li  et  al.,  2020).  Forest  clearing  and  large-scale  agricultural

activities have led to dramatic changes in the streamflow in Amazonian rivers over the last 40

years (Aldrich et al., 2012; Latrubesse et al., 2009; Souza-Filho et al., 2016). Milly et al.

(2002)  predicted increased streamflows for  some areas  of  equatorial  Africa,  the  La  Plata

Basin,  and  high-latitude  North  America  and  Eurasia,  but  decreases  in  southern  Africa,

southern Europe, the Middle East, and mid-latitude western North America by the year 2050.

The global mean annual temperature has increased by 0.8C since 1880 (Flato et al., 2013),

and the humidity and precipitation increased by around 2% in the last century (Huntington,

2006; Wise, 2010), which may have altered the balance of the global water circulation and
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energy cycle, thereby resulting in changes in the magnitude and spatiotemporal distribution of

streamflows (Nam et al.,  2015).  Climate change affects streamflow regimes by increasing

temperatures but also by altering precipitation patterns, rates of evaporation, transpiration, and

soil moisture contents (Merritt et al., 2006). Human activities may alter streamflow regimes

through land use  changes,  large-scale  infrastructure  such  as  reservoirs,  water  abstraction,

urbanization, and ecological restoration projects (Dey et al., 2017; Liang et al., 2015; Tamm et

al.,  2018;  Wang  et  al.,  2016b).  Both  of  these  possible  causes  of  changes  in  streamflow

regimes have been investigated widely (Li et al., 2021; Ellis, 2011; Guo et al., 2019; Munoz et

al.,  2018;  Zhang et  al.,  2017;  Smith  et  al.,  2016).  It  is  necessary  to  explore  streamflow

variations and related factors to better understand the mechanisms associated with streamflow

changes (Li and Fang, 2017; Wang et al., 2020), thereby providing useful reference data to

facilitate climate adaptation and improved water resources management.

Hydrologic alterations represent the changes in streamflow regimes at different temporal

and spatial scales due to regulation and water extraction via human activities. Over recent

decades,  numerous  methods  have  been  developed  to  assess  the  streamflow variations  in

rivers.  The  Newtonian  and  Darwinian  approaches  are  currently  applied  widely  from

microscopic  and  macroscopic  perspectives,  respectively  (Omer  et  al.,  2020;  Wang et  al.,

2020). Hydrological models (e.g., SWAT, TOPMODEL, and VIC) are mainly categorized as

Newtonian approaches, and they are useful  tools for hydrologic alteration assessment and

decision making (Tamm et al., 2018). A representative Darwinian approach is the Budyko-

based method, which has been widely applied to quantify how climate change and human

activities might affect streamflow changes (Liang et al., 2015; Wang et al., 2019). 
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Many methods have been developed to assess streamflow regime changes. In particular,

Richter  et  al.  (1996)  proposed  the  indicators  of  hydrologic  alteration  (IHA)  method  for

quantifying streamflow regime changes using long-term observed daily flows in the Roanoke

River in North Carolina,  USA. Furthermore,  the range of variability approach (RVA) was

developed to meet the water requirements of ecosystems and achieve ecological sustainability,

where the degree to which the shape of a river’s natural flow regime can be altered is a well-

established approach for quantifying flow regime alteration (Olden and Poff, 2003).

Many  studies  have  demonstrated  that  hydrologic  regimes  are  associated  with  dam

construction (Yang et al., 2008). Lai et al. (2013) and Wang et al. (2016b) found that the

operation of the Three Gorges Project aggravated hydrological droughts downstream, thereby

leading to extremely low water levels and environmental flow deficits, with substantial effects

on the streamflow regimes downstream of the Yangtze River. By contrast, Du et al. (2020)

suggested that the construction of dams can stabilize hydrological regimes and reduce the

flood peaks.

The Yellow River is one of China’s largest rivers and the water it carries is utilized by

8% of the population. The lower reaches of the Yellow River appeared to have zero flows for

21 of the 27 years from 1972 to 1998, which contributed to the severe ecological damage to

the river (Chen et al., 2020). Droughts, water shortages, and soil and water losses are the most

severe environmental problems that have affected the social and economic development of the

Yellow River basin (Wu et al., 2004). The Loess Plateau is located in the middle reaches of

the Yellow River basin. Over 20 rivers flow into the Yellow River and they contribute nearly

9% of the sediment and 40% of the streamflow into the river basin. Due to severe soil erosion,
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various soil and water conservation measures have been implemented on the Loess Plateau

since the 1970s (Zhao et al., 2014). The main measures comprise afforestation, check dam

construction, and terracing, which have increased rainfall infiltration and reduced the flood

peaks,  soil  erosion,  and  sediment  transported  into  the  rivers.  Many  studies  have  been

conducted on the Loess Plateau to estimate the changes in runoff and the sediment load, as

well as their potential causes (Gao et al., 2015; Guo et al., 2020; Zhang et al., 2017; Zhang et

al., 2018; Zhou et al., 2020). These studies have clarified the effects of climate changes and

human activities on runoff and sediment load reductions. However, few studies have assessed

the  alterations  in  the  streamflow regimes  and their  responses  to  different  soil  and  water

conservation measures. Due to the limited availability of information regarding conservation

measures,  few  studies  have  also  compared  the  hydrological  responses  of  river  flows  to

individual conservation measures. Therefore, the objectives of this study were: (1) to examine

the  changes  in  the  streamflow  regimes  in  three  watersheds  with  different  conservation

measures; and (2) to quantify the effects of climate variability and human activities on the

streamflow changes.

2. Study area and data

2.1. Study area

More than 20 tributaries in the middle reaches of the Yellow River flow through the

Loess Plateau and they discharge approximately 90% of the sediment that enters the Yellow

River.  Since  the  1950s,  extensive  soil  and  water  conservation  measures  have  been

implemented in these watersheds to control severe soil erosion, including afforestation, grass
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planting,  terracing,  and check dam construction.  According to  the spatial  distribution and

types of soil and water conservation measures on the Loess Plateau, we selected the following

three different watersheds and analyzed the changes in their streamflow regimes: Sandu River

watershed (dominated by terracing), Hulu River watershed (affected by afforestation), and

Dali  River  watershed  (dominated  by  check  dams).  Figure  1  shows  the  locations  of  the

watersheds and hydro-meteorological gauges.

2.1.1. Sandu River watershed

The Sandu River watershed is located upstream of the Wei River basin and it covers an

area of 2484 km2. This watershed is characterized by a continental monsoon climate, with a

mean annual temperature around 10.2°C and average annual precipitation of approximately

467.3 mm. The average annual streamflow and sediment yields are 0.45 billion m3 and 8560 t/

km2, respectively. Since the 1970s, many terraces have been constructed on the hill slopes.

Terraces with a total area of 1807.45 km2 were built by 2017, which covered 72.7% of the

whole watershed.

2.1.2. Hulu River watershed

The Hulu River is a tributary of the Beiluo River (a tributary of the Wei River, Figure 1),

with a drainage area of 4715 km2.  The mean annual  precipitation and evaporation in this

watershed are 494 mm and 1147 mm, respectively. The streamflow from July to September

accounts for about 50% of the annual total. The catchment is covered by dense forest, where

Pinus tabuliformis Carr. and Platycladus orientalis (Linn.) Franco are the major forest species

present in this watershed. More than 90% of the sloping arable land was converted into forest

or grassland after 1999 as part of the “Grain for Green” project launched by the Chinese
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government. The vegetation cover has reached approximately 80% and the sediment yield

decreased significantly from 107  104 t in the 1960s to 76.8  104 t in 2016.

2.1.3. Dali River watershed

The Dali River is the largest tributary of the Wuding River, with an area of 3906 km2 and

length of 170 km. The average annual streamflow was 1.31 billion m3 from 1960 to 2016. The

average annual precipitation is 429 mm and high-intensity rainstorms cause considerable soil

erosion in this watershed during the summer. Since the beginning of the 1980s, many check

dams have been built in the watershed to trap sediment transported from hill slopes to the

Yellow River. In 2017, 11602 check dams were present in the Wuding watershed, i.e., 1155

large sized check dams and 10174 medium to small sized check dams (Han et al., 2018) . Due

to the implementation of large-scale soil and water conservation measures in the Dali River

watershed, the sediment load decreased from 0.64  108 t/a in the 1970s to 0.15  108 t/a from

2000 to 2016 (Zhang et al., 2019). 

<Figure 1>

2.2. Data set

The daily streamflows at the Gangu (Sandu River), Zhangcunyi (Hulu River), and Suide

(Dali River) hydrological stations (Figure 1) were obtained from the Hydrological Year Book

of the Yellow River, which was published by the Ministry of Water Resources of China. In

total, the daily discharge measurements for 52 years from 1965 to 2016 were collected for

investigation.  Table  1 shows general  information for  the three stations in  the watersheds.

Monthly  rainfall,  air  temperature,  relative  humidity,  sunshine  duration,  and  wind  speed
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meteorological data at 11 climate stations were obtained from the China National Climate

Center. The potential evapotranspiration was calculated using the Penman–Monteith equation

(Allen et al., 1998). The basin-averaged precipitation and potential evapotranspiration data

were estimated, and then interpolated with the inverse distance weighted method in ArcGIS

10.6 (http://www.esri.com). The spatial distributions of soil and water conservation measures,

including  terraces,  check-dams,  and  reservoirs,  in  each  catchment  during  2017  were

interpreted with Google Earth and validated based on a field survey.  The homogeneity and

continuity  of  all  the  measured  data  were  checked  to  guarantee  the  data  integrity  and

consistency before their release.

<Table 1>

3. Methodology

The Mann–Kendall test and accumulated anomaly method were applied to detect the

changing  trends  and  abrupt  changes  in  the  annual  streamflow  at  the  three  hydrological

stations. These methods have been used widely to examine changing hydro-meteorological

time series (Kendall, 1975; Mann, 1945; Sagarika et al., 2014; Zhao et al., 2014), so they are

not described in detail. The detailed estimation procedures were described in previous studies

(Weber et al., 2010; Zhao et al., 2019). The IHA method (Richter et al., 1996) was employed

to analyze the streamflow regime changes according to the daily streamflow, and the effects

of climate change and human activities on streamflow variations were assessed by using the

Budyko equation (He et al., 2019; Yang et al., 2014).
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3.1. Changes in hydrological regimes 

The IHA method was first developed by the Nature Conservancy and it has been applied

widely.  The IHA method employs 32 parameters  (we excluded “the number of zero-flow

days” because zero flows were never observed at the three hydrological stations) related to

hydrological  extremes  and  averages,  which  can  be  classified  according  to  five  major

categories (Table 2).

The RVA method proposed by Richter et al. (1996) was used to quantify the hydrological

changes in terms of the 32 indicators. The target range for the RVA comprises IHA values that

fall within the thresholds between the 25th and 75th percentile values (Huang et al., 2019).

The  degree  to  which  the  RVA does  not  reach  the  target  range  denotes  the  degree  of

hydrological change, and can be expressed as (Di) for each indicator. Cheng et al. (2019) and

Zhang et al. (2016) described the calculation method in detail. Therefore, the following three

equal sized categories were employed: (1) indicating little or no alteration; (2)

denoting  a  moderate  degree  of  alteration;  and  (3) 

representing a large change. 

The nondimensional eco-flow metrics comprising the eco-deficit and eco-surplus were

estimated based on the  flow duration curve (FDC) using the daily flow data  (Vogel et al.

2007)  in  order  to  provide  intuitive  representations  of  the  hydrological  impacts  and  to

supplement those characterized by the IHA. The annual FDC can be regarded as a function of

the excess of the daily streamflow over the probability in each year. The eco-flow metrics

11

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

21
22



were estimated  in  the  following four  steps. (1) According  to  the  change point,  the  daily

streamflow series covering the period from 1965 to 2016 was subdivided into two sections. In

the  baseline  period,  human  activities  were  regarded  as  having  limited  effects  on  the

streamflow regimes. (2) The 25% and 75% FDC quantiles were taken as threshold values, and

the values in the intervals were the adaptive range for the river ecosystem. (3) The eco-flow

was determined by comparing the annual FDC in other years with the previously obtained

25% and 75% FDC quantiles. The area above the 75% quantile FDC was the eco-surplus,

whereas  the  area  below  the  25%  quantile  FDC  was  the  eco-deficit.  Full  details  of  the

calculation procedure were provided by Gao et al. (2012) and Vogel et al. (2007).

<Table 2>

3.2. Impacts of climate variability and human activities 

The  Budyko  equation  is  important  in  hydrology  because  it  provides  a  concise  and

accurate representation of the relationship between the annual evapotranspiration and long-

term average water and energy balance at catchment scales (Sposito, 2017). In a natural basin,

the  long-term  average  annual  water  and  energy  balance  at  the  catchment  scale  can  be

expressed as follows.

                            (3)

The Budyko hypothesis (Budyko, 1974) considers the balance for precipitation (P) between

potential evapotranspiration (E0) and actual evapotranspiration (E). Based on the long-term

catchment  water  balance equation,   is  assumed to be zero.  By combining dimensional

analysis  and physical  principles,  Fu (1981)  analytically  derived the water–energy balance
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function at the mean annual time scale, which is expressed as:

                                ,                        (4)

where is the mean annual potential evapotranspiration and the parameter ω represents the

catchment  landscape  characteristics.  The  long-term is  mainly  controlled  by  the  water–

energy  balance   (the  dryness  index).  Changes  in  the  catchment  streamflow  can  be

expressed as the sum of three components defined by Schaake (1990) as the precipitation,

potential evapotranspiration, and catchment landscape elasticity of the streamflow, and thus

the new equation is expressed as:

                    ,           (5)

where the elasticities of the streamflow are given as:

                                   (6)

                             (7)
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 ,                   (8)

where ω is a model parameter denoting the non-climatic effects on the water–energy balance

attributed to the soil properties, topography, and vegetation (Gunkel et al., 2017; Wang et al.,

2016a).

Changes in the observed mean annual runoff depth can be estimated between the

baseline period and changing period, and they can be attributed to climate variability  a

nd human activities . The streamflow change due to climate variation ( ) includes the

streamflow changes due to precipitation variation ( ) and potential evaporation variation (

)  (Koster  &  Suarez,  1999;  Milly  &  Dunne,  2002).  The  contributions  to  annual

streamflow  changes  due  to  climate  change  and  human  activities,  respectively,  can  be

approximated as follows.

                       (11)

                          (12)
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4. Results

4.1. Changes in annual streamflows 

4.1.1. Temporal variations in annual streamflows 

Figure  2 shows the  linear  trends  in  the  annual  streamflows in the  three watersheds.

Overall,  the  annual  streamflows  tended  to  decrease  at  all  stations,  with  relatively  high

reductions at Gangu station (0.159 mm/10a) and Suide station (0.138 mm/10a) during 1965–

2016. For example, at Gangu station, the annual average streamflow was only 0.21  108 m3/a

from 1995 to 2016, which was much lower than that during 1965–1994 (0.629  108 m3/a).

The Mann–Kendall test showed that the annual streamflows at Gangu (Figure 2a) and Suide

stations (Figure 2c) decreased significantly (P < 0.01), but not significantly at Zhangcunyi

station (Figure 2b). Comparisons of the annual streamflow fluctuations at the three stations

showed that the variability in the annual streamflow was higher at Zhangcunyi (CV = 0.34).

<Figure 2>

4.1.2. Abrupt changes in annual streamflows

As shown in Figure 3, abrupt changes in the annual streamflows mostly occurred during

the mid-1990s and they were mainly attributable to the large-scale soil and water conservation

measures  implemented  in  the  middle  reaches  of  the  Yellow River.  Abrupt  changes  were

detected during 1994 at Gangu station (Figure 3a), 1990 at Zhangcunyi station (Figure 3b),

and 1996 at Suide station (Figure 3c). Therefore, the total time series at each station were

divided into two periods based on these breakpoints. The first period represented the baseline
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period with very limited human activities or none. The second period represented the change

period  when  the  watershed  experienced  substantial  changes  in  land  use,

afforestation/deforestation, and dam construction. 

<Figure 3>

4.2. Changes in IHA metrics 

The IHA indicators in group 1 (G1) represent the magnitudes of the average monthly

median streamflow, which clearly varied at the three gauging stations. Significant decreases

were found in all of the areas, but particularly at Gangu station, with average change rates

lower  than  –50%  (P <  0.001).  The  median  1-,  3-,  7-,  30-,  and  90-day  annual

minimum/maximum flows (Group 2, G2) tended to decrease. The highest reduction in G2 was

detected at Gangu station and the lowest at Zhangcunyi station. In addition, the 1- and 3-day

minimum flows increased at Suide station but not significantly. The Group 3 (G3) indicators

represent changes in the timing of extreme flows. The minimum and maximum dates tended

to increase at  all  three  stations,  thereby suggesting time lag effects of  the soil  and water

conservation  measures.  In  particular,  at  Gangu  station,  the  low  flow date  changed  most

greatly and reached up to 90.9%. In the Group 4 (G4), the durations of the low pulses tended

to increase at all stations during the changing period, but especially at Gangu and Zhangcunyi

stations, with higher change rates (P < 0.05) that increased from 3 to 6.5 days and 3.5 to 7.25

days, respectively. The durations of the high pulses remained relatively stable at all stations.

Different trends were found at Suide station where the median duration of high pulses during
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the change period decreased to 2.5 days and by 9.09% compared with that of 2.75 days before

the baseline period. The flow fall rates all decreased significantly at three stations (P < 0.05).

The variations in the hydrologic indicators tended to differ among the stations, as shown

in Figure 4b. We found that 13 indicators exhibited moderate alterations at Suide station, 18

indicators had low-degree alterations at Zhangcunyi station, and 75% of the indicators had

high degree alterations at Gangu station. Clearly, the fall rates exhibited the greatest changes

(|Di|>67%) in the three watersheds and they indicated declines in the streamflows,  where

more of the conditions in the post-period were below the lower limit of the RVA threshold

than those in the pre-period. At Suide station, the Di value was related to the flood season.

Indicators such as the duration of low pulses ,  baseflow index ,

and  number  of  reversal stations  were  assigned  to  the  high-degree  alteration  category  at

Zhangcunyi.

<Figure 4>

4.3. Changes in eco-flow metrics 

In Figure 5, the blue and red curves correspond to the 25th percentile and 75th percentile

FDC,  respectively,  during  the  baseline  period  at  each  station. Compared  with  the  daily

streamflow indices in the baseline period, the high and low flows decreased significantly at

the three stations, where the reductions in the low flow (Q90) rates were lower than those in

the  high  flow (Q10)  rates  at  Gangu  and  Zhangcunyi  stations.  In  particular,  the  low flow

declined greatly by 69.57% at  Gangu station. By contrast,  the daily streamflow remained

relatively  stable  at  Zhangcunyi  station,  where  the  Q10 and  Q90 components  decreased  by
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23.48% and 18.4%, respectively. At Suide station, the reduction in the low flow component

(44.64%) was higher than that in the high flow (23.33%) during the changing period.

<Figure 5>

Figure 6 shows the annual eco-flow metrics (eco-surplus and eco-deficit) obtained based

on the annual FDC and temporal variations in the annual precipitation anomaly at the three

stations. Overall, the annual eco-surplus and annual eco-deficit tended to fluctuate greatly.

Remarkably, the variations in the annual eco-deficit were more substantial than those in the

annual eco-surplus. Figures 6b, 6d, and 6e show the eco-surplus and eco-deficit results for the

three  stations  in  different  decades.  From  the  1990s,  the  annual  eco-deficit  increased

dramatically at Gangu station (a), but there was no apparent variation at Zhangcunyi (b) and

only a slight increase at Suide station (c). The eco-surplus tended to decrease at the three

stations. At Gangu station, persistent and high peaks were detected in the eco-deficit and eco-

surplus during the early baseline period and later changing period. In addition, the  negative

deviation in  the  precipitation explained the eco-deficit  during 1994–2002.  At  Zhangcunyi

station, the eco-flow metrics varied consistently with the changes in precipitation, thereby

suggesting that afforestation did not change the eco-flow metrics in the watershed and climate

change may have contributed more to the streamflow changes. At Suide station, the eco-flow

metrics and precipitation were strongly correlated. During the changing period, the eco-deficit

increased because of the implementation of soil and water conservation measures, although

the precipitation increased. According to Figure 6, the low flow rate contributed more to the
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eco-surplus whereas the high flow rate contributed more to the eco-deficit. These results are

similar to those reported by Du et al. (2020).

<Figure 6>

4.4.  Attribution of streamflow variations to climate variability and

human activities

Significant reductions in the annual streamflow could be attributed to climate change and

human activities. We employed the Budyko equation to quantify the effects of climate change

and land surface changes on the streamflow variations. After comparing the annual runoff

rates in the changing period and baseline period, we found that the streamflow decreased by

16.83 mm, 4.16 mm, and 9.95 mm at Gangu, Zhangcunyi, and Suide stations, respectively.

Thus,  the  annual  streamflow  reduction  was  lowest  at  Zhangcunyi  station  in  the  forest

dominated watershed. As shown in Table 3, climate change only accounted for 25.9% and

8.22%  of  the  reductions  in  the  Sandu  and  Dali  River  watersheds,  respectively.  Human

activities were mainly responsible for the runoff reductions, particularly in the Dali River

watershed (91.78%).  In contrast  to  the  Sandu and Dali  River  watersheds,  the  streamflow

reduction in the Hulu River basin was attributed primarily to climate change (64.30%), and

human activities (mainly afforestation) were only responsible for the other 35.70%.

<Table3>
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5. Discussion

5.1. Impacts of climate change and human activities on streamflows 

Using  hydro-climatic  data,  the  elasticity/sensitivity  method  based  on  the  Budyko

equation has been widely applied to quantify the effects of climate variability and human

activities on streamflow changes. Wang et al. (2020) found that human activities accounted

for over 50% of the runoff reductions in four catchments in the Yellow River basin from 1960

to  2015.  Gu  et  al.  (2019)  showed  that  precipitation  and  human  activities  contributed

approximately 20% and 80%, respectively, to the runoff reductions in both river sources and

the middle reaches of the Yellow River basin. Similar results were obtained in our analyses of

watersheds dominated  by  terraces  and check dams,  but  different  results  in  the  afforested

watershed (Hulu River watershed). 

To further verify our results, we applied the double mass curve method to quantify the

effects of climate change and human activities on the runoff changes (Chang et al., 2015; Gao

et al., 2017). Figure 7 shows that changes were found in the cumulative annual runoff curves

and precipitation at Suide and Gangu stations, thereby indicating that the runoff changes were

more  significant  in  these  two  watersheds.  The  estimates  indicate  that  human  activities

accounted for 86.85% of the runoff reduction at Gangu station and 97.11% at Suide station.

For  the  Hulu River  watershed,  human activities  accounted for  35.70% of  the  streamflow

reduction  and  the  remaining  64.30% was  attributed  to  climate  change.  Thus,  the  results

obtained using the double mass curve were consistent with those produced by the Budyko

method.
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<Figure 7>

5.2. Impacts of soil and water conservation measures on streamflow

regime changes

Soil and water conservation measures have been implemented in the upper and middle

reaches of the Yellow River basin since the late 1950s (Zhang et al., 2018). These measures

include biological measures comprising afforestation and grassing, and engineering measures

comprising terracing and check dams.  Approximately 58000 check dams have been built,

including 5546 large sized dams.  The area covered by terraces  is  5.5  104 km2,  mostly

upstream of the Wei River and in the middle reaches of the Yellow River basin.

The proportion of vegetation cover in the study area was 28.6% in the 1980s and it

increased  to  63.2%  by  2018.  These  obvious  changes  in  the  land  surface  cover  were

responsible for the significantly reduced river streamflow. Vegetation plays a vital  role in

regulating terrestrial water flows, where forests can fix and store carbon as well as regulating

water functionalities (Bai et al., 2020; Ellison et al., 2017; Farooqi et al., 2020). The “Grain

for Green” project launched in 1999 greatly increased the vegetation cover and reduced soil

erosion on the Loess Plateau (Zhou et al.,  2015). Figure 8 shows the vegetation cover at

different levels (high, medium, and low vegetation cover) in the three watersheds. Changes in

the medium and high vegetation cover levels occurred in the three watersheds. In general, the

Hulu River watershed had a high vegetation cover rate, and transformations occurred from

medium vegetation to high vegetation cover in the other two watersheds from 1998 to 2016

(Figures 8b and 8c). These results are consistent with previous reports of great increases in the
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vegetation cover in the middle reaches of the Yellow River basin (Wang et al., 2019), and the

vegetation cover has increased significantly since 2002 (Xin et al. 2008).

<Figure 8>

The hydrological responses to afforestation differed among the three river basins. We

found significant  reductions in the runoff  in the Sandu and Dali  River watersheds,  and a

constant increase in the eco-deficit values after the abrupt change. The results suggest that

engineering  measures  had  more  significant  effects  on  runoff  reduction.  A non-significant

decrease in the annual runoff was found in the forest-dominated basin (Hulu River basin),

thereby confirming that afforestation affected the river streamflow by increasing terrestrial

interception and evapotranspiration (ET). Moreover, large differences in the eco-flow metrics

and degree of  hydrologic  alteration according  to  most  of  the  IHA indicators  were  found

between the Hulu River basin and other watersheds. Previous studies by Zhou et al. (2015),

Ellison  et  al.  (2017), and  Evaristo  et  al.  (2019) showed  that  afforestation  can  effectively

moderate  floods  by  storing  or  recycling  substantial  amounts  of  water  via interception,

infiltration, transpiration, evaporation, and groundwater recharge. Vegetation cover can help

to maintain a low flow by moderating the streamflow and conserving water. The change in

precipitation was also an important factor that  affected the variations in vegetation cover .

Thus,  the  relatively  stable  streamflow  regime  in  the  Hulu  River  basin  was  caused  by

afforestation. 

However, compared with the changes in the annual runoff in the humid region, the dry

region tended to decrease due to both climate variability and afforestation. Zhou et al. (2020)
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reported that the water conserving effects of afforestation were higher than those of increased

terrestrial interception and evapotranspiration in a humid region. However, this is the opposite

of the effect found in dry areas, such as the Hulu River watershed. Afforestation can increase

low flows and reduce high floods through more interception and infiltration, but it also results

in higher evapotranspiration. This may explain the decreased runoff at Zhangcunyi station. 

<Figure 9>

Terraced fields are essential  measures  for reducing the transport  of  soil  eroded from

upstream to downstream areas by reshaping the microtopography and increasing the slope

length (Tarolli et al., 2014), as demonstrated by Zhang et al. (2008) and Chen et al. (2017). An

experimental study conducted by Ran et al. (2006) suggested that terraces could reduce the

runoff by 60.7% and sediment yield by 58.0% in the Wei River Basin.  In the Sandu River

basin, about 72.7% of the watershed is covered by terraces (Table 4), which is much higher

than  the  coverage  rates  found  in  the  Dali  and  Hulu  River  basins.  The  change  in  the

streamflow regime in the Sandu River basin differed from those in the other watersheds.  The

annual  streamflow  and  eco-deficit  decreased  most  in  the  Sandu  River  basin  watershed,

thereby demonstrating the significant effect of terraces on the surface runoff. The Budyko

method indicated that the evaporation was 40 mm higher during the changing period than the

baseline period. Moreover, the duration of the low flow increased, whereas the number of

high flows clearly decreased.

<Table 4>
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Check dams were initially built to trap sediment and produce fertile agricultural land in

the gully-dominated region of the Loess Plateau. According to Li et al. (2016), check dams

are  vital  engineering  measures  for  retaining  flood  water,  trapping  upstream  sediment,

increasing the availability of farmland for agricultural production, and reducing downstream

sediment transport. In the Dali River watershed, 46.7% of the total area was controlled by

check dams and reservoirs in 2017. By contrast, far fewer check dams were present in the

other two watersheds. Dams and reservoirs can effectively reduce flood peaks and increase

their slow time, as indicated by the IHA metrics. Dam construction significantly increases the

seepage  of  soil  water  into  groundwater,  thereby  leading  to  an  increase  in  low  flows.

According to Martin-Rosales et al. (2007), check dams increased the infiltration of runoff by

3–50% in a semiarid region of Spain. Unlike vegetation measures, engineering measures can

immediately  regulate  surface  runoff,  especially in  high  flow  events.  Furthermore,  the

hydrological alteration degree in the Dali River watershed changed significantly in terms of

the streamflow regime among the watersheds, thereby demonstrating the strong influence of

dams on hydrological processes. 

Previous  studies  employed  the  IHA/RVA  approach  to  analyze  the  hydrological

alterations in the middle reaches of the Yellow River. Zhang et al.  (2016) determined the

effects of reservoir construction and operation in the upper Yellow River basin on alterations

in the ecological flow regimes, and found decreases in high flows and increases in low flows

at mainstream stations. Indicators of low flow and rising and falling water conditions changed

greatly, and they were consistent with our results. However, we obtained more detailed results
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regarding  the  streamflow regime changes related  to  different  soil  and water  conservation

measures. 

6. Conclusion

In  this  study,  we  applied  the  IHA/RVA method  and  eco-flow  metrics  to  estimate

streamflow regimes based on the daily discharge in three watersheds where different soil and

water conservation measures were implemented from 1965 to 2016 on the Loess Plateau. The

Budyko equation was employed to quantify the effects of climate change and human activities

on the streamflow variations. Our main conclusions can be summarized as follows.

(1) The annual streamflows decreased significantly at Gangu station (Z = –6.75) in the Sandu

River watershed and Suide station (Z = –3.28) in the Dali River watershed. The decrease

in the annual streamflow was not significant at Zhuangcunyi station (Z = –1.75) in the

Hulu River watershed. Abrupt change points were mostly detected in the 1990s for all

watersheds.

(2) The hydrological indicators obtained with the IHA/RVA method showed that the degrees

of hydrological change in the Sandu River, Dali River, and Hulu River basins were at

high,  medium,  and  low  levels,  respectively,  thereby  suggesting  that  the  streamflow

regimes varied under different soil conservation measures. On the microscale level, the low

flow duration and the number of high flows had great influences at the three stations.

(3) The changes in the eco-deficit were more remarkable than those in the eco-surplus at all

stations. The annual eco-deficit increased dramatically after the 1980s at Gangu station,

but there was no obvious change at Zhangcunyi and it only increased moderately after the
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1990s at Suide station. The annual eco-surplus tended to decrease slightly at all  three

stations.

(4) The significant annual runoff reductions were primarily attributed to human activities in

the Dali River watershed (91.7%) and Sandu River watershed (74.1%). Climate change

accounted for 64.30% of the annual streamflow decrease in the Hulu River watershed

where afforestation dominated.

The  streamflow  at  Gangu  station  changed  greatly  due  to the  significant  effect  of

numerous terraces, which apparently led to an eco-deficit. The flow regime was altered in the

forest dominated watershed but the overall streamflow was relatively weaker and vulnerable

to climate change. Moreover, human activities made the greatest contribution to the reduced

runoff in the Suide watershed. The results obtained in this study provide novel insights into

hydrological  regime changes and their  responses  to  different  soil  and  water  conservation

measures. 
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