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Abstract. In this research, for interval-valued functions, we give a new version of Jensen inclusion
which is called Jensen-Mercer inclusion. Moreover, we establish some new inclusions of Hermite-
Hadamard-Mercer type for interval-valued functions.

1. Introduction

In literature, the well-known Jensen inequality [19] states that if � is a convex function on [�1; �2],
then

(1.1) �

0@ nX
j=1

�j{j

1A �
nX
j=1

�j�({j)

where
nP
j=1

�j :

The Hermite-Hadamard (H-H) inequality, discovered by C. Hermite and J. Hadamard (see, also, [11],
and [27, p.137]), is one of the most well-known inequalities in the theory of convex functions, with a
geometrical interpretation and a wide range of applications. The H-H inequality is stated as:

(1.2) �

�
�1 + �2
2

�
� 1

�2 � �1

Z �2

�1

�({) d{ � �(�1) + � (�2)

2

where � : I ! R is a convex function over I and �1; �2 2 I with �1 < �2: In the case of concave
mappings, the above inequality satis�es in reverse order. We should point out that H-H inequality is
a re�nement of the concept of convexity, and it follows obviously from Jensen�s inequality. In recent
years, the H-H inequality for convex functions has gotten a lot of attention, and a lot of re�nements
and generalisations have been studied.
The following variant of Jensen inequality, known as the Jensen-Mercer, was demonstrated by

Mercer [17]:

Theorem 1. If � is a convex function on [�1; �2], then the following inequality is true:

(1.3) �

0@�1 + �2 � nX
j=1

�j{j

1A � �(�1) + � (�2)�
nX
j=1

�j�({j)
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In [14], the idea of Jensen-Mercer inequality has been used by Kian and Moslehian, and the following
H-H-Mercer inequality was demonstrated:
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where � is convex function on [�1; �2] : For some recent studies linked to Jensen-Mercer inequality,
one can consult [1, 2, 8, 22].
In contrast, interval analysis is a well-known example of set-valued analysis, which is the study of

sets in the context of mathematical and general topology analysis. It was created as a solution to the
interval instability of deterministic real-world phenomena that can be found in many mathematical
or computer models. The technique of Archimede�s, which is related to computing the diameter of a
circle, is an old example of an interval enclosure. Moore, who is credited with being the �rst to use
intervals in computational mathematics, published the �rst book on interval analysis in 1966 (see, [20]).
Following the publication of his book, a number of scientists began to study the theory and applications
of interval arithmetic. Nowadays, due to its applications, interval analysis is a valuable method in
di¤erent �elds that are intensely interested in ambiguous results. Computer graphics, experimental
and computational physics, error analysis, robotics, and many other areas have applications.
In addition, several signi�cant inequalities (H-H, Ostrowski, and others) for interval-valued functions

have been studied in recent years. Chalco-Cano et al. obtained Ostrowski type inequalities for interval-
valued functions in [6,7] using the Hukuhara derivative for interval-valued functions. We refer readers
to [5, 9, 10,12,13,18,23,24,28�30,33,34] for additional relevant results.

2. Interval Calculus and Inequalities

In this section, we provide notation and background information on interval analysis. The space of
all closed intervals of R is denoted by Ic and � is a bounded element of Ic. We have the representation

� =
�
�1;�1

�
=
�
� 2 R : �1 � � � �1

	
where �1;�1 2 R and �1 � �1. L (�) = �1 � �1 can be used to express the length of the interval
� =

�
�1;�1

�
. The left and right endpoints of interval � are denoted by the numbers �1 and �1,

respectively. The interval � is said to be degenerate when �1 = �1, and the form � = �1 = [�1;�1]

is used. Also, if �1 > 0, we can say � is positive, and if �1 < 0, we can say � is negative. I+c and I
�
c

denote the sets of all closed positive intervals and closed negative intervals of R, respectively. Between
the intervals � and �, the Pompeiu-Hausdor¤ distance is de�ned by

(2.1) dH (�;�) = dH
��
�1;�1

�
;
�
�2;�2

��
= max

����1 ��2�� ; ���1 ��2��	 :
(Ic; d) is a complete metric space, as far as we know (see, [3]).
j�j denotes the absolute value of �, which is the maximum of the absolute values of its endpoints:

j�j = max
����1�� ; ���1��	 :
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The following are the concepts for fundamental interval arithmetic operations for the intervals � and
�:

�+� =
�
�1 +�2;�1 +�2

�
;

�� � =
�
�1 ��2;�1 ��2

�
;

� � � = [minU;maxU ] where U =
�
�1 �2;�1 �2; �1�2;�1 �2

	
;

�=� = [minV;maxV ] where V =
�
�1=�2;�1=�2;�1=�2;�1=�2

	
and 0 =2 �:

The interval ��s scalar multiplication is de�ned by

�� = �
�
�1;�1

�
=

8>>>><>>>>:

�
��1; ��1

�
; � > 0;

f0g ; � = 0;�
��1; ��1

�
; � < 0;

where � 2 R:
The opposite of the interval � is

�� := (�1)� = [��1;��1];
where � = �1.
In general, �� is not additive inverse for �; i.e. ��� 6= 0:
The de�nitions of operations generate a large number of algebraic properties, enabling Ic to be a
quasilinear space (see, [16]). The following are some of these characteristics (see, [3, 15,16,20]):

(1) (Law of associative under +) (� + �) + C = �+ (� + C) for all �;�; C 2 Ic;
(2) (Additivity element) �+ 0 = 0 +� = � for all � 2 Ic;
(3) (Law of commutative under +) �+� = �+� for all �;� 2 Ic;
(4) (Law of cancellation under +) �+ C = �+ C =) � = � for all �;�; C 2 Ic;
(5) (Law of associative under �) (� � �) � C = � � (� � C) for all �;�; C 2 Ic;
(6) (Law of commutative under �) � � � = � �� for all �;� 2 Ic;
(7) (Multiplicativity element) � � 1 = 1 �� for all � 2 Ic;
(8) (The �rst law of distributivity) �(� + �) = ��+ �� for all �;� 2 Ic and all � 2 R;
(9) (The second law of distributivity) (�+ �)� = ��+ �� for all � 2 Ic and all �; � 2 R:

Aside from any of these characteristics, the distributive law does not always apply to intervals. As
an example, � = [1; 2];� = [2; 3] and C = [�2;�1]:

� � (� + C) = [0; 4];
whereas

� � � +� � C = [�2; 5]:
Another distinct feature is the inclusion �, which is described by

� � �() �1 � �2 and �1 � �2:
In [20], Moore given the de�nition of the Riemann integral for functions of interval-valued. IR([�1;�2]) and

R([�1;�2]) denote the set of all Riemann integrable interval-valued functions and real-valued functions
on [�1; �2], respectively. The following theorem de�nes a relationship between Riemann integrable
(R-integrable) functions and (IR)-integrable functions (see, [21, pp. 131]):

Theorem 2. For an interval-valued mapping � : [�1; �2] ! RI with �(�) =
�
�(�);�(�)

�
: The

mapping � 2 IR([�1;�2]) if and only if �(�), �(�) 2 R([�1;�2]) and

(IR)

�2Z
�1

�(�)d� =

24(R) �2Z
�1

�(�)d� ; (R)

�2Z
�1

�(�)d�

35 :
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Zhao et al. de�ned the following convex interval-valued function in [31,32]:

De�nition 1. For all {; 
 2 [�1; �2] and � 2 (0; 1); the h-convex mapping � : [�1; �2]! R+I is stated
as:

(2.2) h(�)�({) + h(1� �)�(
) � �(�{ + (1� �)
):
Where h : [c; d] ! R is a non-negative mapping, h 6= 0; (0; 1) � [c; d]. We�ll show the set of all
h-convex interval-valued functions with SX(h; [�1; �2];R+I ).

The standard de�nition of a convex interval-valued function is (2.2) with h (�) = � (see, [30]). In
addition, if we take h (�) = � s into (2.2), then De�nition 1 gives the de�nition of s-convex interval-
valued function (see, [4]).
In [31], Zhao et al., used the h�convexity of interval-valued functions and obtained the following

H-H inclusion:

Theorem 3. If � 2 SX(h; [�1; �2];R+I ) and h
�
1
2

�
6= 0, then following inclusions are true:

(2.3)
1

2h
�
1
2

����1 + �2
2

�
� 1

�2 � �1
(IR)

�2Z
�1

�({)d{ � [�(�1) + �(�2)]
1Z
0

h(�)d� :

Remark 1. (i) The Inclusions (2.3) becomes the following for h(�) = � :

(2.4) �

�
�1 + �2
2

�
� 1

�2 � �1
(IR)

�2Z
�1

�({)d{ � �(�1) + �(�2)

2
;

which Sadowska have discovered in [30].

(ii) The Inclusions (2.3) becomes the following for h(�) = � s:

2s�1�

�
�1 + �2
2

�
� 1

�2 � �1
(IR)

�2Z
�1

�({)d{ � �(�1) + �(�2)

s+ 1
;

which Osuna-Gómez et al. have discovered in [25].

3. Main Results

We will study convex interval-valued functions and prove Jensen-Mercer inclusion for interval-valued
functions in this section. We also use the newly proven Jensen-Mercer inclusion to prove H-H type
inclusion for convex interval-valued function. In this section, we use � =

�
�;�

�
and G =

�
G;G

�
for

brevity.

3.1. Convex interval-valued functions.

De�nition 2. [30] A function � : [�1; �2] ! I+c is said to be a convex interval-valued, if for all
{; 
 2 [�1; �2] and � 2 (0; 1); we have

��({) + (1� �)�(
) � �(�{ + (1� �)
):

Lemma 1. [30] A function � : [�1; �2]! I+c is said to be a convex interval-valued if and only if � is
a convex function on [�1; �2] and � is a concave function on [�1; �2] :

Theorem 4 (Jensen�s Inclusion). Let � be a convex interval-valued function on [�1; �2], then following
inclusion is true:

(3.1) �

0@ nX
j=1

�j{j

1A �
nX
j=1

�j�({j)

where
nP
j=1

�j = 1:
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Proof. Since � =
�
�;�

�
is convex interval-valued function, therefore � and � are convex and concave

functions, respectively. Hence, from convexity of �; we have

(3.2) �

0@ nX
j=1

�j{j

1A �
nX
j=1

�j�({j)

and from concavity of �; we get

(3.3) �

0@ nX
j=1

�j{j

1A �
nX
j=1

�j�({j) :

We get the resulting inclusion (3.1) by combining (3.2) and (3.3). �

Our goal is to show that there is a new variant of inclusion (3.1).

Theorem 5. Let � be a convex interval-valued function on [�1; �2], then following inclusion is true:

(3.4) �

0@�1 + �2 � nX
j=1

�j{j

1A � �(�1) + � (�2)�
nX
j=1

�j�({j)

where
nP
j=1

�j = 1:

Proof. Using the strategies used in the proof of Theorem 4 and inequality (1.3), one can easily prove
the necessary inclusion (3.4). �

3.2. H-H-Mercer Inclusion.

Theorem 6. Let � : [�1; �2]! I+c be a convex interval-valued function. Then

�

�
�1 + �2 �

{ + 

2

�
� 1


 � { (IR)
Z 


{
�(�1 + �2 � �) d�(3.5)

� �(�1 + �2 � {) + � (�1 + �2 � 
)
2

� �(�1) + � (�2)�
�({) + � (
)

2
:

Proof. From convexity of �, we have

(3.6) �

�
�1 + �2 �

{1 + 
1
2

�
� 1

2
[� (�1 + �2 � {1) + � (�1 + �2 � 
1)]

for all {1; 
1 2 [�1; �2] : By setting �1 + �2 � {1 = � (�1 + �2 � {) + (1� �) (�1 + �2 � 
) and �1 +
�2 � 
1 = (1� �) (�1 + �2 � {) + � (�1 + �2 � 
), � 2 [0; 1] in (3.6), we get an inclusion

�

�
�1 + �2 �

{ + 

2

�
(3.7)

� 1

2
[� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) + � ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))] :

We obtain the �rst inclusion in (3.5) by integrating the inclusion (3.7) with respect to � over [0; 1] and
using the change of variables.
On the other hand, from convexity of �, we have

(3.8) �(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) � ��(�1 + �2 � {) + (1� �)� (�1 + �2 � 
)

and

(3.9) �((1� �) (�1 + �2 � {) + � (�1 + �2 � 
)) � (1� �)� (�1 + �2 � {) + ��(�1 + �2 � 
) :
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By adding the above inclusions and from inclusion (3.4), we have

�(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) + � ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))(3.10)

� �(�1 + �2 � {) + � (�1 + �2 � 
)

� 2 [� (�1) + � (�2)]� [� ({) + � (
)] :
We obtain the second and third inclusions in (3.5) by integrating the inclusion (3.10) with respect to
� over [0; 1] and using the change of variables. �

Remark 2. If we set � = � in Theorem 7, then inclusions (3.5) reduces to the inequality (1.5).

Remark 3. If we use { = �1 and 
 = �2 in Theorem 7, then inclusion (3.5) reduces to the inclusion
(2.4).

Theorem 7. Let �;G : [�1; �2]! I+c be two convex interval-valued functions. Then

(3.11)
1


 � { (IR)
Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d� �

1

3
M (�1; �2;{; 
) +

1

6
N (�1; �2;{; 
)

where

M (�1; �2;{; 
) = � (�1 + �2 � {)G (�1 + �2 � {) + � (�1 + �2 � 
)G (�1 + �2 � 
)
and

N (�1; �2;{; 
) = � (�1 + �2 � {)G (�1 + �2 � 
) + � (�1 + �2 � 
)G (�1 + �2 � {) :

Proof. From convexity of �, we have

(3.12) �(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) � ��(�1 + �2 � {) + (1� �)� (�1 + �2 � 
)
and

(3.13) G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) � �G (�1 + �2 � {) + (1� �)G (�1 + �2 � 
) :
We get the following inclusion by multiplying (3.12) and (3.13)

�(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.14)

� �2�(�1 + �2 � {)G (�1 + �2 � {) + (1� �)2�(�1 + �2 � 
)G (�1 + �2 � 
)

+� (1� �)� (�1 + �2 � {)G (�1 + �2 � 
) + � (1� �)� (�1 + �2 � 
)G (�1 + �2 � {) :
Likewise, we have

�((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))(3.15)

� (1� �)2�(�1 + �2 � {)G (�1 + �2 � {) + �2�(�1 + �2 � 
)G (�1 + �2 � 
)

+� (1� �)� (�1 + �2 � {)G (�1 + �2 � 
) + � (1� �)� (�1 + �2 � 
)G (�1 + �2 � {) :
We get the following inclusion by adding (3.14) and (3.15)

�(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.16)

+�((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))

�
h
�2 + (1� �)2

i
M (�1; �2;{; 
) + 2� (1� �)N (�1; �2;{; 
) :

We obtain the resulting inclusion (3.11) by integrating the inclusion (3.16) with respect to � over [0; 1]
and using the change of variables. �
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Remark 4. In Theorem 7 if we set { = �1 and 
 = �2, then Theorem 7 becomes [31, Theorem 4.5
for h (t) = t].

Corollary 1. If we set � = � in Theorem 7, then we have the following inequality

(3.17)
1


 � {

Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d� �

1

3
M (�1; �2;{; 
) +

1

6
N (�1; �2;{; 
) :

Remark 5. If we set { = �1 and 
 = �2 in Corollary 1, then inequality (3.17) reduces to inequality
(1) of [26, Theorem 1].

Theorem 8. Let �;G : [�1; �2]! I+c be two convex interval-valued functions. Then

1


 � { (IR)
Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d�(3.18)

� M (�1; �2) +N (�1; �2)�
1

2
[M1 (�1; �2;{; 
) +N1 (�1; �2;{; 
)

+M2 (�1; �2;{; 
) +N2 (�1; �2;{; 
)]

+
1

3
M ({; 
) +

1

6
N ({; 
)

where

M (u; v) = � (u)G (u) + � (v)G (v) ;

N (u; v) = � (u)G (v) + � (v)G (u) ;

M1 (�1; �2;{; 
) = � (�1)G ({) + � (�2) (
) ;

N1 (�1; �2;{; 
) = � (�1)G (
) + � (�2)G ({) ;

M2 (�1; �2;{; 
) = � ({)G (�1) + � (
)G (�2)
and

N2 (�1; �2;{; 
) = � ({)G (�2) + � (
)G (�1) :
Proof. From inclusion (3.4), we have

(3.19) �(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) � �(�1) + � (�2)� [��({) + (1� �)� (
)]
and

(3.20) G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
)) � G (�1) + G (�2)� [�G ({) + (1� �)G (
)] :
We get the following inclusion by multiplying (3.19) and (3.20)

�(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.21)

� [� (�1) + � (�2)] [G (�1) + G (�2)]� [� (�1) + � (�2)] [�G ({) + (1� �)G (
)]

� [G (�1) + G (�2)] [��({) + (1� �)� (
)] + [��({) + (1� �)� (
)] [�G ({) + (1� �)G (
)] :
Likewise, we have

�((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))(3.22)

� [� (�1) + � (�2)] [G (�1) + G (�2)]� [� (�1) + � (�2)] [(1� �)G ({) + �G (
)]

� [G (�1) + G (�2)] [(1� �)� ({) + ��(
)] + [(1� �)� ({) + ��(
)] [(1� �)G ({) + �G (
)] :
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We get the following inclusion by adding (3.21) and (3.22)

�(� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.23)

+�((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))

� 2 [M (�1; �2) +N (�1; �2)]

� [M1 (�1; �2;{; 
) +N1 (�1; �2;{; 
) +M2 (�1; �2;{; 
) +N2 (�1; �2;{; 
)]

+
h
�2 + (1� �)2

i
M ({; 
) + 2� (1� �)N ({; 
) :

We obtain the resulting inclusion (3.18) by integrating the inclusion (3.23) with respect to � over [0; 1]
and using the change of variables. �

Remark 6. In Theorem 8, if we assume { = �1 and 
 = �2 ; then Theorem 8 becomes [31, Theorem
4.5 for h (t) = t].

Corollary 2. If we set � = � in Theorem 8, then we have the following inequality

1


 � {

Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d�(3.24)

� M (�1; �2) +N (�1; �2)�
1

2
[M1 (�1; �2;{; 
) +N1 (�1; �2;{; 
)

+M2 (�1; �2;{; 
) +N2 (�1; �2;{; 
)]

+
1

3
M ({; 
) +

1

6
N ({; 
) :

Remark 7. If we set { = �1 and 
 = �2 in Corollary 2, then inequality (3.24) reduces to inequality
(1) of [26, Theorem 1].

Theorem 9. Let �;G : [�1; �2]! I+c be two convex interval-valued functions. Then

2�

�
�1 + �2 �

{ + 

2

�
G
�
�1 + �2 �

{ + 

2

�
(3.25)

� 1


 � { (IR)
Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d� +

1

6
M (�1; �2;{; 
) +

1

3
N (�1; �2;{; 
)

whereM (�1; �2;{; 
) and N (�1; �2;{; 
) are de�ned in Theorem 7.

Proof. From convexity of �, we have

�

�
�1 + �2 �

{ + 

2

�
� 1

2
[� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.26)

+�((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))]

and

G
�
�1 + �2 �

{ + 

2

�
� 1

2
[G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))(3.27)

+G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))] :
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We get the following inclusion by multiplying (3.26) and (3.27)

�

�
�1 + �2 �

{ + 

2

�
G
�
�1 + �2 �

{ + 

2

�
(3.28)

� 1

4
[� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))

+� ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))

+� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))

+� ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))]

� 1

4
[� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))

+� ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))]

+
1

4
[f��(�1 + �2 � {) + (1� �)� (�1 + �2 � 
)g

�f(1� �)G (�1 + �2 � {) + �G (�1 + �2 � 
)g

+ f�G (�1 + �2 � {) + (1� �)G (�1 + �2 � 
)g

�f(1� �)� (�1 + �2 � {) + ��(�1 + �2 � 
)g]

=
1

4
[� (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))G (� (�1 + �2 � {) + (1� �) (�1 + �2 � 
))

+� ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))G ((1� �) (�1 + �2 � {) + � (�1 + �2 � 
))]

+
1

4

h
2� (1� �)M (�1; �2;{; 
) +

n
�2 + (1� �)2

o
N (�1; �2;{; 
)

i
:

We obtain the resulting inclusion (3.25) by integrating the inclusion (3.28) with respect to � over [0; 1]
and using the change of variables. �

Remark 8. If we assume { = �1 and 
 = �2 in Theorem 9, then Theorem 9 becomes [31, Theorem
4.6 for h (t) = t].

Corollary 3. If we set � = � in Theorem 9, then we have the following inequality

2�

�
�1 + �2 �

{ + 

2

�
G
�
�1 + �2 �

{ + 

2

�
(3.29)

� 1


 � {

Z 


{
�(�1 + �2 � �)G (�1 + �2 � �) d� +

1

6
M (�1; �2;{; 
) +

1

3
N (�1; �2;{; 
)

Remark 9. If we set { = �1 and 
 = �2 in Corollary 3, then inequality (3.29) reduces to inequality
(2) of [26, Theorem 1].

4. Application to Special Means

For arbitrary positive numbers �1; �2 (�1 6= �2), we consider the means as follows:
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(1) The arithmatic mean

A = A(�1; �2) =
�1 + �2
2

:

(2) The geometric mean
G=G (�1; �2) =

p
�1�2:

(3) The logarithmic mean

L = L (�1; �2) =
�1 � �2

ln�2 � ln�1
:

(4) The identric mean

I = I (�1; �2) =

8<: 1
e

�
�2
�1

� 1
�2��1

; if �1 6= �2;
�1; if �1 = �2;

�1; �2 > 0:

Proposition 1. For �1; �2 2 (e;1), the following inclusion is true:h
(2A (�1; �2)�A ({; 
))�1 ; ln (2A (�1; �2)�A ({; 
))

i
(4.1)

�
�
L�1 (�1 + �2 � {; �1 + �2 � 
) ; ln I (�1 + �2 � {; �1 + �2 � 
)

�
�

h
A
�
(2A (�1; �2)� {)�1 ; (2A (�1; �2)� 
)�1

�
; lnG (2A (�1; �2)� {; 2A (�1; �2)� 
)

i
�

�
2A (�1; �2)� lnG ({; 
) ; lnG2 (�1; �2)�A

�
{�1; 
�1

��
:

Proof. We consider a convex interval-valued function � : [�1; �2] � (e;1) ! I+c which is de�ned as
� =

�
�;�

�
=
�
1
x ; ln{

�
, then we have

�

�
�1 + �2 �

{ + 

2

�
=

�
�

�
�1 + �2 �

{ + 

2

�
;�

�
�1 + �2 �

{ + 

2

��
(4.2)

=
h
(2A (�1; �2)�A ({; 
))�1 ; ln (2A (�1; �2)�A ({; 
))

i
;

1


 � { (IR)
Z �1+�2�{

�1+�2�

�(�) d�(4.3)

=

�
1


 � { (R)
Z �1+�2�{

�1+�2�

�(�) d� ;

1


 � { (R)
Z �1+�2�{

�1+�2�

�(�) d�

�
=

�
L�1 (�1 + �2 � {; �1 + �2 � 
) ; ln I (�1 + �2 � {; �1 + �2 � 
)

�
;

�(�1 + �2 � {) + � (�1 + �2 � 
)
2

(4.4)

=

�
�(�1 + �2 � {) + � (�1 + �2 � 
)

2
;
�(�1 + �2 � {) + � (�1 + �2 � 
)

2

�
=

h
A
�
(2A (�1; �2)� {)�1 ; (2A (�1; �2)� 
)�1

�
; lnG (2A (�1; �2)� {; 2A (�1; �2)� 
)

i
and

�(�1) + � (�2)�
�({) + � (
)

2
(4.5)

=
�
�(�1) + � (�2) ;�(�1) + � (�2)

�
�
�
�({) + � (
)

2
;
�({) + � (
)

2

�
=

�
�(�1) + � (�2)�

�({) + � (
)
2

;�(�1) + � (�2)�
�({) + � (
)

2

�
=

�
2A (�1; �2)� lnG ({; 
) ; lnG2 (�1; �2)�A

�
{�1; 
�1

��
:

We derive the necessary results from (4.2)-(4.5) and inclusions (3.5). �
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5. Conclusion

In this work, we proposed Jensen-Mercer inclusion for interval-valued functions and developed H-
H-Mercer type inclusion using the newly proposed Jensen-Mercer inclusion. We discussed the special
cases of recently proven �ndings and found some recent and old results in the literature. It�s a new
problem that future researchers will be able to prove similar inclusions for di¤erent kinds fractional
operators.
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