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Abstract. We introduce new reproducing kernel Hilbert spaces on a trape-
zoidal semi-infinite domain B∞ in the plane. We establish uniform approxi-

mation results in terms of the number of nodes on compact subsets of B∞ for

solutions to nonhomogeneous hyperbolic partial differential equations in one
of these spaces, W̃ (B∞). Furthermore, we demonstrate the stability of such

solutions with respect to the driver. Finally, we give an example to illustrate

the efficiency and accuracy of our results.

1. Introduction

Reproducing kernel Hilbert spaces were introduced in the early twentieth cen-
tury by Zaremba to study boundary value problems for harmonic and biharmonic
functions [17,18], and by mid-century a general theory of reproducing kernel Hilbert
spaces was established by Aronszajn [3] and Bergman [5]. Since their inception, re-
producing kernel Hilbert spaces have seen increasing use for solving not only partial
differential, integral, and ordinary differential equations [2,4,14], but also problems
in optimal control [10], dynamical systems [7, 11], and statistics [12, 13, 19]. Re-
cently, reproducing kernel Hilbert spaces have attracted the attention of several
researchers (e.g. [1, 9, 15, 16]) after Cui and Lin [6] developed reproducing Hilbert
spaces with piecewise polynomial kernels on compact intervals, Wn

2 [a, b], and com-

pact rectangles, W
(m,n)
2 ([a, b] × [c, d]), and used them to help solve a wide variety

of linear and nonlinear problems.
The aim of this paper is to introduce and study a new reproducing kernel Hilbert

space W
(3,3)
2 (B∞) on a semi-infinite trapezoidal plane region:

B∞ = {(x, t) ∶ 0 ≤ t ≤ 1 and t ≤ x < ∞}.
We use this space to solve initial value problems for nonhomogeneous hyperbolic
partial differential equations, we analyze the stability of such solutions with respect
to the driver, and we discuss the local uniform approximation of solutions in this
new space in terms of the density of nodes in

Br = {(x, t) ∶ 0 ≤ t ≤ 1 and t ≤ x ≤ r}.
The semi-infinite trapezoid B∞ arises naturally in the uniqueness theory for

hyperbolic partial differential equations in Ω∞ ( [9], Theorems 4.2 and 4.5). The

new reproducing kernel Hilbert spaces W
(3,3)
2 (B∞) and W̃ (B∞), introduced in
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section 2, contain the solutions to nonhomogeneous hyperbolic partial differential
equations, provided the driver is sufficiently smooth and square-integrable. These
new spaces have piecewise polynomial kernels and this makes them convenient for
numerical approximations.

This article is organized as follows. A summary of fundamental definitions,
related notation, and common facts about reproducing kernel Hilbert spaces is
presented in section 2. Section 3 is devoted to the representation of solutions to Lu =
f where L is a one-to-one, bounded, linear transformation between reproducing
kernel Hilbert spaces. The local stability and uniform approximation of solutions

in W
(3,3)
2 (B∞) for telegraph problems is examined in section 4. We give an example

to illustrate the theory in section 5, and our conclusions are presented in section 6.

2. RKHS Preliminaries

This section is devoted to statements of basic concepts and associated notation
for reproducing kernel Hilbert spaces. We also introduce some well-known facts
about reproducing kernel Hilbert spaces which will be used in this work. Suggested
general references for reproducing kernel Hilbert spaces are [3, 5, 6] and specific
details for material in this section are given in [9, 15].

Definition 2.1. Let E be a nonempty set, and let (H, ⟨⋅, ⋅⟩) be a Hilbert space of

continuous real-valued functions on E. A function K ∶ E ×E → R is a reproducing
kernel of H if

i) K(⋅, θ) ∈ H, for all θ ∈ E and
ii) ⟨h,K(θ, ⋅)⟩ = h(θ) for all θ ∈ E and for all h ∈ H.

Such a Hilbert space possessing a reproducing kernel will be called a reproduc-
ing kernel Hilbert space (RKHS). We begin with RKHSs of functions defined on
intervals in R.

Lemma 2.2 ( [6]). The space

W 1
2 [0,1] = {g ∶ [0,1] → R ∣ g ∈ AC[0,1] and g′ ∈ L2[0,1]},

equipped with the inner product

⟨g, h⟩W 1
2 [0,1] = g(0)h(0) +

ˆ 1

0

g′(τ)h′(τ)dτ,

is a RKHS with reproducing kernel function q given by

q(t, τ) = 1 +
ˆ τ

0

χ[0,t](s)ds.

Lemma 2.3 ( [15]). For any t and s in [0,1],
∥q(t, ⋅) − q(s, ⋅)∥2W 1

2 [0,1] = ∣t − s∣.

Lemma 2.4 ( [9]). The space

W 1
2 [0,∞) = {f ∶ [0,∞) → R ∣ f ∈ AC[0, σ] for all σ > 0 and f ′ ∈ L2[0,∞)},

equipped with the inner product

⟨f, g⟩W 1
2 [0,∞) = f(1)g(1) +

ˆ ∞

0

f ′(x)g′(x)dx,
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is a RKHS with reproducing kernel function δ given by

δ(x, ξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

r1(x, ξ) if x ∈ [0,1] and ξ ∈ [0,∞),

r2(x, ξ) if x ∈ [1,∞) and ξ ∈ [0,∞),

where

r1(x, ξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 − x if 0 ≤ ξ < x ≤ 1,
2 − ξ if 0 ≤ x < ξ ≤ 1,

1 if 1 < ξ ≤ ∞,

r2(x, ξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 0 ≤ ξ < 1,
ξ if 1 ≤ ξ < x < ∞,
x if 1 ≤ x < ξ < ∞.

Lemma 2.5. For any x and y in [0,∞),

∥δ(x, ⋅) − δ(y, ⋅)∥2W 1
2 [0,∞) = ∣x − y∣.

Proof. The proof is a minor modification of the argument used for Lemma 2.3 and
the details are omitted. �

We next turn to RKHSs of functions defined on regions in the plane.

Definition 2.6. A function u ∶ Br → R is said to be absolutely continuous (in
the sense of Carathéodory) on Br if and only if there exist λ ∈ R, f ∈ L1[0, r],
g ∈ L1[0,1], h ∈ L1(Br) such that

u(x, t) = λ +
ˆ x

1

f(ξ)dξ +
ˆ t

0

g(τ)dτ +
ˆ t

0

ˆ x

1

h(ξ, τ)dξdτ,

for all (x, t) ∈ Br. In this case we write u ∈ AC(Br). If u ∶ B∞ → R belongs to
AC(Br) for every r ≥ 1 then we say u ∈ ACloc(B∞).

Definition 2.7. A function u ∶ Br → R belongs to W
(1,1)
2 (Br) provided u ∈ AC(Br)

and the following square-integrability conditions are satisfied:

i) ∂
∂t
u(1, ⋅) ∈ L2[0,1] ;

ii) ∂
∂x
u(⋅,0) ∈ L2[0, r] ;

iii) ∂2

∂x∂t
u ∈ L2(Br).

Definition 2.8. A function u ∶ B∞ → R belongs to W
(1,1)
2 (B∞) provided u ∈

ACloc(B∞) and the following square-integrability conditions are satisfied:

i) ∂
∂t
u(1, ⋅) ∈ L2[0,1] ;

ii) ∂
∂x
u(⋅,0) ∈ L2[0,∞) ;

iii) ∂2

∂x∂t
u ∈ L2(B∞).
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Lemma 2.9. Fix d = r or d = ∞. The space W
(1,1)
2 (Bd), equipped with the inner

product

⟨u, v⟩
W
(1,1)
2 (Bd)

= u(1,0)v(1,0)+
ˆ 1

0

∂

∂τ
u(1, τ) ∂

∂τ
v(1, τ)dτ

+
ˆ d

0

∂

∂ξ
u(ξ,0) ∂

∂ξ
v(ξ,0)dξ

+
¨
Bd

∂2

∂ξ∂τ
u(ξ, τ) ∂2

∂ξ∂τ
u(ξ, τ)dξdτ,

is a RKHS with reproducing kernel function K1(x, t; ⋅,∗) = δ(x, ⋅)q(t,∗) where q
and δ are defined in Lemmas 2.2 and 2.4, respectively.

Proof. The proof is completely analogous to that of Theorem 3.8 in [9]. �

Definition 2.10 ( [9]). A function u ∶ Br → R belongs to W
(3,3)
2 (Br) provided

(a) u and its following derivatives belong to AC(Br):
ut, ux, utt, utx, uxt, uxx,
uttx, utxt, uxtt, uxxt, uxtx, utxx,
uttxx, utxtx, utxxt, uxtxt, uxttx, uxxtt,

(b) and the following square-integrability conditions are satisfied:

i) ∂3

∂t3
∂i

∂xiu(1, ⋅) ∈ L2[0,1] for all i = 0,1,2 ;

ii) ∂3

∂x3
∂j

∂tj
u(⋅,0) ∈ L2[0, r] for all j = 0,1,2 ;

iii) ∂6

∂x3∂t3
u ∈ L2(Br).

Definition 2.11 ( [9]). A function u ∶ B∞ → R belongs to W
(3,3)
2 (B∞) provided

(a) u and its following derivatives belong to ACloc(B∞):
ut, ux, utt, utx, uxt, uxx,
uttx, utxt, uxtt, uxxt, uxtx, utxx,
uttxx, utxtx, utxxt, uxtxt, uxttx, uxxtt,

(b) and the following square-integrability conditions are satisfied:

i) ∂3

∂t3
∂i

∂xiu(1, ⋅) ∈ L2[0,1] for all i = 0,1,2 ;

ii) ∂3

∂x3
∂j

∂tj
u(⋅,0) ∈ L2[0,∞) for all j = 0,1,2 ;

iii) ∂6

∂x3∂t3
u ∈ L2(B∞).

Definition 2.12. The subspace W̃ (B∞) of W
(3,3)
2 (B∞) is defined by

W̃ (B∞) = {u ∈W (3,3)
2 (B∞) ∶ u(x,0) = 0 = ut(x,0) for all x > 0}.

Lemma 2.13. The space W̃ (B∞), equipped with the inner product

⟨u, v⟩
W̃ (B∞) =

2

∑
j=0

∂j

∂xj
utt(1,0)vtt(1,0) +

ˆ ∞

0

∂3

∂x3
utt(x,0)

∂3

∂x3
vtt(x,0)dx

+
2

∑
i=0

ˆ 1

0

∂3

∂t3
∂i

∂xi
u(1, t) ∂

3

∂t3
∂i

∂xi
v(1, t)dt

+
¨
B∞

∂6

∂x3∂t3
u(x, t) ∂6

∂x3∂t3
v(x, t)dxdt,
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is a RKHS with reproducing kernel function given by the product K(x, t ; ξ, τ) =
R(x, ξ)Q(t, τ) where

Q(t, τ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
4
t2τ2 + 1

12
t2τ3 − 1

24
tτ4 + 1

120
τ5 if 0 ≤ τ < t ≤ 1,

1
4
τ2t2 + 1

12
τ2t3 − 1

24
τt4 + 1

120
t5 if 0 ≤ t ≤ τ ≤ 1,

R(x, ξ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1(x, ξ) if x ∈ [0,1] and ξ ∈ [0,∞),

R2(x, ξ) if x ∈ [1,∞) and ξ ∈ [0,∞),

and

R1(x, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23
10
− 13

8
ξ + 1

3
ξ2 − 13

8
x + 7

3
xξ − 3

4
xξ2 + 1

3
x2 − 3

4
x2ξ if 0 ≤ ξ ≤ x ≤ 1,

+ 1
2
x2ξ2 − 1

12
x3ξ2 + 1

24
ξx4 − 1

120
x5

23
10
− 13

8
ξ + 1

3
ξ2 − 1

120
ξ5 − 13

8
x + 7

3
xξ − 3

4
xξ2 + 1

24
xξ4 if 0 ≤ x < ξ ≤ 1,

+ 1
3
x2 − 3

4
x2ξ + 1

2
x2ξ2 − 1

12
x2ξ3

1 + (x − 1)(ξ − 1) + 1
4
(x − 1)2(ξ − 1)2 if 1 < ξ < ∞,

R2(x, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (x − 1)(ξ − 1) + 1
4
(x − 1)2(ξ − 1)2 if 0 ≤ ξ < 1,

11
5
− 11

8
ξ + 1

6
ξ2 − 1

24
xξ4 − 1

4
xξ2 + 5

3
xξ − 11

8
x if 1 ≤ ξ ≤ x < ∞,

+ 1
12
x2ξ3 − 1

4
x2ξ + 1

6
x2 + 1

120
ξ5

11
5
− 11

8
ξ + 1

6
ξ2 − 1

4
xξ2 + 5

3
xξ − 11

8
x + 1

6
x2 if 1 ≤ x < ξ < ∞.

− 1
4
x2ξ + 1

12
x3ξ2 − 1

24
x4ξ + 1

120
x5

Proof. This is demonstrated using an argument similar to that for Theorem 3.11
in [9]. �

3. Representation of solutions

Let ⟨H, ⟨⋅, ⋅⟩H⟩ and ⟨H̃, ⟨⋅, ⋅⟩H̃⟩ be reproducing kernel Hilbert spaces of continuous

functions on a set E in Rn, with reproducing kernel functions k and k̃, respectively,
and let L ∶ H → H̃ be a one-to-one, bounded, linear transformation. If u ∈ H is a
solution to

(3.1) Lu = g
for a given g ∈ H̃ then u may be expressed in terms of a complete orthonormal basis
for H generated using L. For more detail and proofs of the results in this section,
see [6], especially chapter 6.

Let {si}∞i=1 be a countable set of distinct points in E, and define

Ψi = L∗k̃si ,(3.2)

where L∗ ∶ H̃ → H is the adjoint of L.
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Theorem 3.1. If {si}∞i=1 is dense in E, then {Ψi}∞i=1 is a complete set in H and

Ψi = Lksi
for all i ∈ N.

Discarding functions from {Ψi}
∞
i=1 if necessary, we may assume that Ψi+1 is not

in the linear span of {Ψ1, ...,Ψi} for all i ∈ N. An orthonormal basis {Ψ̃i}∞i=1 for H
can then be derived by applying the Gram-Schmidt orthonormalization process to
{Ψi}∞i=1:

Ψ̃i =
i

∑
k=1

βikΨk,(3.3)

where the βik are orthonormalization coefficients of {Ψi}∞i=1.

Theorem 3.2. Let {si}∞i=1 be a countable dense set of points of E, let g ∈ H̃, and let
u ∈ H be a solution of Lu = g. Then u has the following Hilbert space representation:

(3.4) u =
∞
∑
i=1

i

∑
k=1

βikg(sk)Ψ̃i.

We observe that the truncation

un =
n

∑
i=1

i

∑
k=1

βikg(sk)Ψ̃i.(3.5)

is an approximation of the exact solution u to Lu = g.

4. Stability of solutions and an error estimate

Let T denote the telegraph operator:

Tu = utt − uxx + 2aut + b2u
for constants a > b ≥ 0. Consider the nonhomogeneous telegraph problem

(4.1) Tu = f in Ω∞

subject to

(4.2) u(x,0) = ϕ(x) and ut(x,0) = ψ(x) if x ∈ [0,∞).
In this section we investigate the stability of reproducing kernel Hilbert space

solutions u to Tu = f with respect to the driver f and analyze the approximation
error when the truncation un in (3.5) is used in place of u. Our focus in this section

will be on solutions in W̃ (B∞).
The following two reproducing kernel Hilbert space existence and uniqueness

results were obtained in [9].

Theorem 4.1. If f ∈ Y = L2(Ω∞) ∩ ( ∩4
i=1 W

(i,1)
2 (Ω∞)) then there exists u ∈

W
(3,3)
2 (Ω∞) to (4.1) satisfying

(4.3) u(x,0) = 0 = ut(x,0) for all 0 ≤ x < ∞.

Theorem 4.2. Let u and v belong to W
(3,3)
2 (B∞). If u and v satisfy (4.3) and

(4.4) Tu(x, t) = Tv(x, t) for all (x, t) ∈ B∞,

then u = v on B∞.
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Let S ∶ R2 → R be defined by

S(x, t) =
⎧⎪⎪⎨⎪⎪⎩

1
2
p ((α2 − β2)(t2 − x2)) e−αt if ∣x∣ ≤ t,

0 if ∣x∣ > t,
where

p(z) =
∞
∑
n=0

zn

4n(n!)2 .

The key idea in the proof of Theorem 4.1 is that, for a fixed f ∈ Y , the function

(4.5) u(x, t) =
ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)f(ξ, τ)dξdτ,

belongs to W̃ (B∞) and solves the nonhomogeneous telegraph equation

(4.6) Tu = f on B∞.

Theorem 4.2 shows that (4.5) is the unique solution in W̃ (B∞) to (4.6). It is easy
to see that the system (4.1) and (4.2) can be simply transformed into a nonhomoge-
neous telegraph equation subject to homogeneous initial conditions. For example,
let v(x, t) = u(x, t) − ϕ(x) − tψ(x); then (4.1) and (4.2) become

Tv = g in B∞,

subject to the homogeneous initial conditions

v(x,0) = 0 = vt(x,0) for 0 ≤ x < ∞.
Here g = f + ϕ′′ + tψ′′ − 2αψ − β2(ϕ + tψ).

Routine application of the techniques of proof of Theorems 4.1 and 4.2 yield a
stability result for the solution to (4.6) in W̃ (B∞) with respect to the driver f in
Y . To state this result we will introduce some notation. If φ is a continuous real
function on Br, let its uniform norm be denoted by

∥φ∥u(Br) = max{∣φ(x, t)∣ ∶ (x, t) ∈ Br}.
Theorem 4.3. Let f1, f2 belong to Y and let u1, u2 be the unique solutions in
W̃ (B∞) to Tui = fi (i = 1,2) on B∞. Then there corresponds an absolute constant
C > 0 with the property

∥u1 − u2∥u(Br) ≤ C∥f1 − f2∥u(Br),

for all r ∈ [1,∞).

Proof. For all (x, t) ∈ B∞,

∣u1(x, t) − u2(x, t)∣ ≤
ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)∣f1(ξ, τ) − f2(ξ, τ)∣dξdτ.

Since f1 and f2 are continuous functions on B∞,

∥f1 − f2∥u(Br)
= max

(x,t)∈Br

∣f1(x, t) − f2(x, t)∣ < ∞.

Therefore, for all (x, t) ∈ Br we have

∣u1(x, t) − u2(x, t)∣ ≤ ∥f1 − f2∥u(Br)

ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)dξdτ.

Define a subset △(x,t) of B∞ for fixed (x, t) ∈ B∞ by

△(x,t) = {(ξ, τ) ∈ R2 ∶ ∣x − ξ∣ ≤ t − τ,0 ≤ τ ≤ t}.
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Since S = S(x, t) is an analytic function on the cone ∣x∣ < t, and is continuous on
∣x∣ ≤ t, there corresponds a constant C such that

sup
(ξ,τ)∈△(x,t)

∣S(x − ξ, t − τ)∣ ≤ sup
(ξ,τ)∈△(1,1)

∣S(ξ, τ)∣ = C ≤ 1

2
.(4.7)

Hence, ∥u1 − u2∥u(Br)
≤ C∥f1 − f2∥u(Br)

. �

To analyze the local uniform error when the truncation un is used to approximate
the solution u in W̃ (B∞) to Tu = g, we will need boundedness of the telegraph

operator T ∶ W (3,3)
2 (Br) → W

(1,1)
2 (Br) for each r ≥ 1. This is the content of the

next result.

Lemma 4.4. Let 1 ≤ r < ∞ and let Cr = max{2r, r2}. Then the telegraph operator
T satisfies

∥Tu∥
W
(1,1)
2 (Br)

≤ (2 +Cr(1 + 2a
√

2 + 2b2))∥u∥
W
(3,3)
2 (Br)

for all u ∈W (3,3)
2 (Br).

Proof. The proof is a routine application of the tools in [8] used to show bounded-

ness of the telegraph operator T ∶W (3,3)
2 ([0,1]× [0,1]) →W

(1,1)
2 ([0,1]× [0,1]) and

the details are omitted. �

It is important to mention here that the telegraph operator T is not globally
bounded on RKHSs of functions defined on the semi-infinite domain B∞. For

instance, let u(x, t) = x2t2. Then it is easy to see that u belongs to W
(3,3)
2 (B∞),

but Tu does not belong to W
(1,1)
2 (B∞).

Theorem 4.5. Let g ∈ W (1,1)
2 (B∞) and let r and N be positive integers. Let

(xi, tj) ∈ Br where tj = j
N
(j = 0,1,2, ...,N), xi = i

N
(i = j, j + 1, ..., rN), and n =

((2r−1)N+2)(N+1)
2

. Let u = u(x, t) be a solution in W
(3,3)
2 (Br) to

Tu = g in Br,

u(x,0) = 0 = ut(x,0) if 0 ≤ x ≤ r,

and let un be the truncation of u given by (3.5). Then there exists a positive constant
Cr = O(√r) such that

∣u(x, t) − un(x, t)∣ ≤ Cr∥g∥W (1,1)
2 (B∞)

1√
N

for all (x, t) ∈ Br.

Proof. For any (x, t) ∈ Br there exists (xi, tj) ∈ Br satisfying xi ≤ x, tj ≤ t, and
such that ∣ x− xi ∣< 1

N
and ∣ t− tj ∣< 1

N
. Using Tu(xi, tj) = Tun(xi, tj) for 0 ≤ j ≤ N

and j ≤ i ≤ rN , it follows that

∣Tu(x, t) − Tun(x, t)∣ =∣Tu(x, t) − Tu(xi, tj) + Tun(xi, tj) − Tun(x, t)∣

≤∣Tu(x, t) − Tu(xi, tj)∣ + ∣Tun(x, t) − Tun(xi, tj)∣.
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Observe that

∣Tu(x, t) − Tu(xi, tj)∣ =∣⟨Tu(⋅, ⋅),K(x,t)(⋅, ⋅)⟩ − ⟨Tu(⋅, ⋅),K(xi,tj)(⋅, ⋅)⟩∣

=∣⟨Tu(⋅, ⋅),K(x,t)(⋅, ⋅) −K(xi,tj)(⋅, ⋅)⟩∣

=∣⟨g(⋅, ⋅),K(x,t)(⋅, ⋅) −K(xi,tj)(⋅, ⋅)⟩∣

≤∥g∥
W
(1,1)
2 (B∞)∥K(x,t)(⋅, ⋅) −K(xi,tj)(⋅, ⋅)∥W (1,1)

2 (B∞).

Since K(x,t)(⋅, ⋅) = Rx(⋅)Qt(⋅), by using Lemmas 2.3 and 2.5 and the general prop-
erties of an inner product we obtain

∣Tu(x, t)−Tu(xi, tj)∣ ≤ ∥g∥
W
(1,1)
2 (B∞)∥δx(⋅)qt(⋅) − δxi(⋅)qtj(⋅)∥W (1,1)

2 (B∞)

=∥g∥
W
(1,1)
2 (B∞)∥δx(⋅)qt(⋅) − δx(⋅)qtj(⋅) + δx(⋅)qtj(⋅) − δxi(⋅)qtj(⋅)∥W (1,1)

2 (B∞)

≤∥g∥
W
(1,1)
2 (B∞)∥δx(⋅)∥W 1

2 [0,∞)∥qt(⋅) − qtj(⋅)∥W 1
2 [0,1])

+ ∥g∥
W
(1,1)
2 (B∞)∥δx(⋅) − δxi(⋅)∥W 1

2 [0,∞)∥qtj(⋅)∥W 1
2 [0,1]

≤
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)(

√
∣t − tj ∣ +

√
∣x − xi∣)

≤
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)(

1√
N

+ 1√
N

)

=2
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)

1√
N
.

Proceeding in the same way as we did above, the following inequality holds:

∣Tun(x, t) − Tun(xi, tj)∣ ≤ 2
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)

1√
N
.

As a result we conclude that

∣Tu(x, t) − Tun(x, t)∣ ≤ 4
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)

1√
N
.

Therefore, it follows from (4.5) that

∣u(x, t) − un(x, t)∣ ≤
ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)∣g(ξ, τ) − gn(ξ, τ)∣dξdτ

=
ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)∣Tu(ξ, τ) − Tun(ξ, τ)∣dξdτ

≤
ˆ t

0

ˆ x+t−τ

x−t+τ
S(x − ξ, t − τ)(4

√
r + 1 ∥g∥

W
(1,1)
2 (B∞)

1√
N

)dξdτ

≤4
√
r + 1 ∥g∥

W
(1,1)
2 (B∞)

1√
N

sup
(ξ,τ)∈△(1,1)

∣S(ξ, τ)∣

=Cr∥g∥W (1,1)
2 (B∞)

1√
N
,

where Cr = 4
√
r + 1 sup

(ξ,τ)∈△(1,1)
∣S(ξ, τ)∣ ≤ 2

√
r + 1. �
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5. Application

Example 5.1. Solve the nonhomogeneous partial differential equation utt − uxx +
4ut+u = f in B∞ subject to the homogeneous initial conditions u(x,0) = 0 = ut(x,0)
for x ∈ (0,∞); here

f(x, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−1((2 + 8t + t2)p(x) − t2p′′(x)) if 0 ≤ t ≤ x ≤ 1,

(2 + 8t)e−x if 0 ≤ t ≤ 1 and 1 < x,

where p(x) = − 1
6
x3 +x2 − 5

2
x+ 8

3
. Observe that an exact solution for this problem is

u(x, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t2p(x)e−1 if 0 ≤ t ≤ x ≤ 1,

t2e−x if 0 ≤ t ≤ 1 and 1 < x,

and u ∈W (3,3)
2 (B∞). We truncate B∞ to B5 and approximate the solution numeri-

cally. The results of applying the reproducing kernel method with the reproducing
kernel function in W̃ (B∞) with 30 and 95 uniformly distributed nodes in B5 are
shown in Tables 1 and 2, respectively. We observe from Theorem 4.5 that the the-
oretical upper bound for the uniform error on B5 when N = 4 and r = 5 is given
by

∣u(x, t) − un(x, t)∣ ≤
4
√

6 sup(x,t)∈△(1,1) ∣S(x, t)∣ ∥f∥W (1,1)
2 (B∞)

2

≤
√

6∥f∥
W
(1,1)
2 (B∞) ≈ 0.48721.

However, the much more accurate results displayed in Tables 1 and 2 reflect the
extreme smoothness of the driver f at points in B∞ off the line segment from (1,0)
to (1,1).

t/x 0 1/2 1 3/2 2 5/2
0 0 0 0 0 0 0
1/2 - 76 × 10−8 15 × 10−6 18 × 10−6 68 × 10−6 14 × 10−5

1 - - 16 × 10−5 10 × 10−5 15 × 10−5 24 × 10−5

t/x 3 7/2 4 9/2 5
0 0 0 0 0 0
1/2 24 × 10−5 38 × 10−5 54 × 10−5 74 × 10−5 95 × 10−5

1 43 × 10−5 67 × 10−5 98 × 10−5 13 × 10−4 16 × 10−4

Table 1. The absolute error for Example 5.1 with 30 equally

spaced nodes in B5 in the space W̃ (B∞).
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t/
x

0
1
/
4

1
/
2

3
/
4

1
5
/
4

6
/
4

7
/
4

2
9
/
4

5
/
2

0
0

0
0

0
0

0
0

0
0

0
0

1
/
4

-
17
×

10
−7

18
×

10
−7

36
×

10
−8

14
×

10
−7

83
×

1
0
−8

7
8
×

1
0
−8

1
4
×

1
0
−7

2
6
×

1
0
−7

4
0
×

1
0
−7

5
6
×

1
0−

7

1
/
2

-
-

12
×

10
−6

31
×

10
−7

12
×

10
−6

12
×

1
0
−7

8
1
×

1
0
−7

3
7
×

1
0
−7

4
2
×

1
0
−7

7
6
×

1
0
−7

1
2
×

1
0−

6

3
/
4

-
-

-
73
×

10
−7

42
×

10
−6

32
×

1
0
−6

1
3
×

1
0
−6

8
0
×

1
0
−7

1
2
×

1
0
−6

2
0
×

1
0
−6

2
9
×

1
0−

6

1
-

-
-

-
97
×

10
−6

81
×

1
0
−6

3
2
×

1
0
−6

1
4
×

1
0
−6

1
6
×

1
0
−6

2
4
×

1
0
−6

3
4
×

1
0−

6

t/
x

1
1
/
4

3
1
3
/
4

7
/
2

1
5
/
4

4
1
7
/
4

9
/
2

1
9
/
4

5
0

0
0

0
0

0
0

0
0

0
0

1
/
4

74
×

10
−7

97
×

10
−7

12
×

1
0
−6

1
4
×

1
0
−6

1
7
×

1
0
−6

2
0
×

1
0
−6

2
4
×

1
0
−6

2
8
×

1
0
−6

3
2
×

1
0−

6
3
6
×

1
0−

6

1
/
2

22
×

10
−6

29
×

10
−6

36
×

1
0
−6

4
4
×

1
0
−6

5
3
×

1
0
−6

6
2
×

1
0
−6

7
3
×

1
0
−6

8
4
×

1
0
−6

9
6
×

1
0−

6
1
0
×

1
0−

5

3
/
4

38
×

10
−6

50
×

10
−6

63
×

1
0
−6

7
7
×

1
0
−6

9
3
×

1
0
−6

1
1
×

1
0
−5

1
2
×

1
0
−5

1
4
×

1
0
−5

1
7
×

1
0−

5
1
7
×

1
0−

5

1
46
×

10
−6

58
×

10
−6

74
×

1
0
−6

9
1
×

1
0
−6

1
1
×

1
0
−5

1
3
×

1
0
−5

1
5
×

1
0
−5

1
7
×

1
0
−5

1
9
×

1
0−

5
1
9
×

1
0−

5

Table 2. The absolute error for Example 5.1 with 95 equally
spaced nodes in B5 in the space W̃ (B∞).
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6. Conclusion

In this paper, we introduced new reproducing kernel Hilbert spaces, W
(3,3)
2 (B∞)

and a closed subspace W̃ (B∞), on a non-rectangular semi-infinite domain, B∞.
Despite the non-rectangular, non-compact nature of B∞, the reproducing kernels
for these spaces are piecewise polynomial functions. We established a uniform
approximation result on Br for solutions to the nonhomogeneous telegraph equation
in W̃ (B∞) in terms of the number of nodes. Finally, we illustrated the stability of
such solutions with respect to the driver through a numerical example.
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