REFERENCES
ACIA (2005). Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press, Cambridge, UK. 1020 pp.
Aitken, S. N., Yeaman, s., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications , 1 , 95–111.
Arias, N. S., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2017) The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Tree Physiology , 37 , 1251–1262.
Armstrong, J. J., Takebayashi, N., & Wolf, D. E. (2020) Cold tolerance in the genus Arabidopsis . American Journal of Botany ,107 , 489–497.
Armstrong, J. J., Takebayashi, N., Sformo, T., & Wolf, D. E. (2015). Cold tolerance in Arabidopsis kamchatica . American Journal of Botany , 102 , 439–448.
Ashraf, M., & Foolad, M. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany , 59 , 206–216.
Auld, J., Everingham, S. E., Hemmings, F. A., & Moles, A. T. (2022). Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time. Diversity and Distributions , 28 , 943–955.
Bokhorst, S., Bjerke, J. W., Tommervik, H., Callaghan, T. V., & Phoenix, G. K. (2009). Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology , 97 , 1408–1415.
Bruch, A. A., Utescher, T., & Mosbrugger, V. (2011). Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology , 304 , 3–4.
Brule-Babel, A. L., & Fowler, D. B. (1989). Use of controlled environments for winter cereal cold hardiness evaluation: controlled freeze tests and tissue water content as prediction tests.Canadian Journal of Plant Science , 69 , 355–366.
Cieślak, E., Korbecka, G., & Ronikier, M. (2007). Genetic structure of the critically endangered endemic Cochlearia polonica(Brassicaceae): efficiency of the last-chance transplantation.Botanical Journal of the Linnean Society , 155 , 527–532.
Cieślak, E., Kaźmierczakowa, R., & Ronikier, M. (2010).Cochlearia polonica Fröhl. (Brassicaceae), a narrow endemic species of southern Poland: history of conservation efforts, overview of current population resources and genetic structure of populations.Acta Societatis Botanicorum Poloniae , 79 , 255–261.
Davey, M. P., Woodward, I., Quick, P. (2008) Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp.petraea . Metabolomics , 5 , 138-149.
Davey, M. P., Palmer, B. G., Armitage, E., Vergeer, P., Kunin, W. E., Woodward, F. I., & Quick, W. P. (2018). Natural variation in tolerance to sub-zero temperatures among populations of Arabidopsis lyratassp. petraea . BMC Plant Biology , 18 , 1–10.
Descamps, S., Aars, J., Fuglei, E., Kovacs, K. M., Lydrsen, C., Pavlova, O., Pedersen, Å. Ø., Ravolainen, V., & Strøm, H. (2017). Climate change impacts on wildlife in a High Arctic archipelago—Svalbard, Norway.Global Change Biology , 23 , 490–502.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology , 20 , 3256–3269.
Franks, S. J., Weber, J. J., & Aitken, S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations.Evolutionary Applications , 7 , 123–139.
Gilmour, S. J., Hajela, R. K., & Thomashow, M. F. (1988). Cold acclimation in Arabidopsis thaliana . Plant Physiology ,87 , 745–750.
Hannah, M. A., Wiese, D., Freund, S., Fiehn, O., Heyer, A. G., & Hinccha, D. K. (2006). Natural genetic variation of freezing tolerance in Arabidopsis . Plant Physiology , 142 , 98–112.
Hatsugai, N., & Katagiri, F. (2018). Quantification of plant cell death by electrolyte leakage assay. Bio-protocol , 8 , e2758.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology , 25 , 1965–1978.
Hincha, D. K., & Zuther, E. (2014). Introduction: plant cold acclimation and freezing tolerance. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_1
Hohmann, N., & Koch, M. A. (2017) An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics , 18 , e810.
Hohmann, N., Schmickl, R., Chiang, T.-Y., Lucanova, M., Kolar, F., Marhold, K., & Koch, M. A. (2014) Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evolutionary Biology , 14 , e224.
IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds.: H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama). Cambridge University Press, Cambridge, UK. In Press.
Janská, A., Marsík, P., Zelenková, S., & Ovesná, J. (2010) cold stress and acclimation – what is important for metabolic adjustment?Plant Biology , 12 , 395-405.
Kaplan, F., Kopka, J., Sung, D. Y., Zhao, W., Popp, M., Porat, R., & Guy, C. L. (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content.The Plant Journal , 50 , 967-981.
Kiefer, M., Schmickl, R., German, D., Lysak, M., Al-Shehbaz, I. A., Franzke, A., Mummenhoff, K., Stamatakis, A., & Koch, M. A. (2014)BrassiBase : Introduction to a Novel Knowledge Database on Brassicaceae Evolution. Plant Cell and Physiology , 55 , e3.
Koch, M. (1996) Zur Ausbreitung des Dänisches Löffelkrautes (Cochlearia danica L. ) als Küstensippe in das Niedersächsische Binnenland. Floristische Rundbriefe , 30 , 20–23.
Koch, M. (1997) Kurznotiz zur südlichen Ausbreitung des Dänischen Löffelkrauts ( Cochlearia danica L. ) in Nordrhein-Westfalen. Floristische Rundbriefe , 31 , 136–138.
Koch, M. (2002): Genetic differentiation and speciation in prealpineCochlearia (Brassicaceae): Allohexaploid Cochlearia bavarica (Brassicaceae) compared to its diploid ancestorCochlearia pyrenaica in Germany and Austria. Plant Systematics and Evolution , 232 , 35–49.
Koch, M. A. (2012) Mid-Miocene divergence of Ionopsidium andCochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae). Taxon, 61, 76–92.
Koch, M. A. (2018) The plant model system Arabidopsis set into an evolutionary, systematic and spatio-temporal context. Journal of Experimental Botany , 70 , 55–67.
Koch, M., & Bernhardt, K.-G. (2004): Cochlearia macrorrhiza , a highly endangered lowland species from Eastern Austria. Conservation genetics, ex situ and in situ conservation efforts. Scripta Botanica Belgica , 29 , 157–164.
Koch, M., Dobes, C., Bernhardt, K.-G., & Kochjarova, J. (2003).Cochlearia macrorrhiza : A bridging species between Cochlearia taxa from the Eastern Alps and the Carpathians. Plant Systematics and Evolution , 242 , 137–147.
Koch, M. A., German, D. A., Kiefer, M., & Franzke, A. (2018). Database taxonomics as key to modern plant biology. Trends in Plant Sciences , 23 , 4–6.
Koch, M., Hurka, H., Mummnhoff, K. (1996). Chloroplast DNA restriction site variation and RAPD-analyses in Cochlearia (Brassicaceae). Biosystematics and speciation processes. Nordic Journal of Botany , 16 , 585–604.
Koch, M., Huthmann, M., & Hurka, H. (1998). Isozymes, speciation and evolution in the polyploid complex Cochlearia L. (Brassicaceae).Botanica Acta , 111 , 451–466.
Koch, M. A., Kiefer, M., German, D., Al-Shehbaz, I. A., Franzke, A., Mummenhoff, K., & Schmickl. R. (2012). BrassiBase: Tools and biological resources to study characters and traits in the Brassicaceae – version 1.1. Taxon , 61 , 1001–1009.
Koch, M., Mummenhoff, K., & Hurka, H. (1999) Molecular phylogenetics ofCochlearia L. and allied genera based on chloroplast trn L intron and nuclear ribosomal ITS DNA sequence analysis contradict traditional classification. Plant Systematics and Evolution ,216 , 207–230.
Kovach, W. L. (2007). MVSP - A MultiVariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales, U.K.
Kreyling, J. (2010). Winter climate change: a critical factor for temperate vegetation performance. Ecology , 91 , 1939–1948.
Lee, B. H., & Zhu, J. K. (2010) Phenotypic analysis ofArabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protocols, pdb.prot4970. doi: 10.1101/pdb.prot4970.
Lesica, P., & McCune, B. (2004). Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming.Journal of Vegetation Science , 15 , 679–690.
Loarie, S., Duffy, P. B., Hamilton, Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009) The velocity of climate change.Nature , 462, 1052–1055.
Mascle, G., & Mascle, J. (2019) The Messinian salinity legacy: 50 years later. Mediterranean Geoscience Reviews , 1, 5–15.
Meireles, J. E., Beulke, A., Borkowski, D. S., Romero-Severson, J., & Cavender-Bares, J. (2017). Balancing selection maintains diversity in a cold tolerance gene in broadly distributed live oaks. Genome ,60 , 762–769.
Parolo, G., & Rossi, G. (2008). Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology , 9 , 100–107.
Pomeroy, J.W., & Brun, E. (2001). Physical properties of snow. Pp. 45–126.
In: Snow ecology: An interdisciplinary examination of snow-covered ecosystems (eds. Jones, H.G., Walker, D.A., Pomeroy, J.W., Hoham, R.). Cambridge University Press, Cambridge, UK. Pp. 378.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Renaut, J., Hoffmann, L., & Hausman, J.-F. (2005). Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiologia Plantarum ,125 , 82–94.
Reyes-Díaz, M., Ulloa, N., Zúniga-Feest, A., Gutiérrez, A., Gidekel, M., Alberdi, M., Corcuera, L. J., & Bravo, L. A. (2006). Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany , 57 , 3687–3696.
Ritonga, F. N., & Chen, S. (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants , 9 , 560.
Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival.Proceedings of the National Academy of Sciences, USA ,117 , 4211–4217.
Schmickl, R., Jorgenson, M., Brysting, A., & Koch, M. A. (2010). The evolutionary history of the Arabidopsis lyrata complex: A hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evolutionary Biology , 10 , e98.
Sonesson, M., & Callaghan, T. V. (1991). Strategies of survival in plants of the Fennoscandian tundra. Arctic , 44 , 95–105.
Thalhammer, A., Hincha, D. K., & Zuther, E. (2014). Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_3.
Thomashow, M. F. (20120) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiology , 154 , 571–577.
Uemura, M., Joseph, R. A., & Steponkus, P. L. (1995). Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiology ,109 , 15–30.
Vogt, R. (1987). Die Gattung Cochlearia L. (Cruciferae) auf der Iberischen Halbinsel. Mitteilungen Botanische Staatssammlung München , 23 , 393–421.
Walden, N., German, D. A., Wolf, E. M., Kiefer, M., Rigault, P., Huang, X.-C., Kiefer, C., Schmickl, R., Franzke, A., Neuffer, B., Mummenhoff, K., & Koch, M. A. (2020) Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae.Nature Communications , 11, 3795.
Walther, G.-R., Beisner, S., & Burga, C. A. (2005) Trends in the upward shift of alpine plants. Journal of Vegetation Science ,16 , 541–548.
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., & Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology ,6 , e325.
Wipf, S., & Rixen, C. (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research ,29 , 95–109.
Wolf, E., Gaquerel, E., Scharmann, M., Yant, L., Koch, M. A. (2021). Evolutionary footprints of a cold relic in a rapidly warming world.Elife , 10 , e71572.
Wos, G., & Willi, Y. (2015). Temperature-stress resistance and tolerance along a latitudinal cline in North American Arabidopsis lyrata . PloS One , 10 , e0131808.
Wos, G., & Willi, Y. (2018). Thermal acclimation in Arabidopsis lyrata : genotypic costs and transcriptional changes. Journal of Evolutionary Biology , 31 , 123–135.
Xin, Z., & Browse, J. (2000). Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell & Environment ,23 , 893–902.
Zhen, Y., Dhakal, P., & Ungerer, M. C. (2011). Fitness benefits and costs of cold acclimation in Arabidopsis thaliana . The American Naturalist , 178 , 44–52.
Zuther, E., Schulz, E., Childs, L. H., & Hincha, D. K. (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant, Cell & Environment , 35 , 1860–1878.