References
ávan der Meer, A. D., JungáKim, H.,
ávan der Helm, M. W., & den Berg, A. (2015). Measuring direct current
trans-epithelial electrical resistance in organ-on-a-chip microsystems.Lab on a Chip, 15 (3), 745-752.
Asfaha, S., Dubeykovskiy, A. N.,
Tomita, H., Yang, X., Stokes, S., Shibata, W., . . . Muthupalani, S.
(2013). Mice that express human interleukin-8 have increased
mobilization of immature myeloid cells, which exacerbates inflammation
and accelerates colon carcinogenesis. Gastroenterology, 144 (1),
155-166.
Ashammakhi, N., Nasiri, R., De Barros,
N. R., Tebon, P., Thakor, J., Goudie, M., . . . Khademhosseni, A.
(2020). Gut-on-a-chip: Current progress and future opportunities.Biomaterials , 120196.
Banks, W. A., & Erickson, M. A.
(2010). The blood–brain barrier and immune function and dysfunction.Neurobiology of disease, 37 (1), 26-32.
Bedford, A., & Gong, J. (2018).
Implications of butyrate and its derivatives for gut health and animal
production. Animal Nutrition, 4 (2), 151-159.
Booth, R., & Kim, H. (2012).
Characterization of a microfluidic in vitro model of the blood-brain
barrier (μBBB). Lab on a Chip, 12 (10), 1784-1792.
Braniste, V., Al-Asmakh, M., Kowal,
C., Anuar, F., Abbaspour, A., Tóth, M., . . . Kundu, P. (2014). The gut
microbiota influences blood-brain barrier permeability in mice.Science translational medicine, 6 (263), 263ra158-263ra158.
Carobolante, G., Mantaj, J., Ferrari,
E., & Vllasaliu, D. (2020). Cow Milk and Intestinal Epithelial
Cell-Derived Extracellular Vesicles as Systems for Enhancing Oral Drug
Delivery. Pharmaceutics, 12 (3), 226.
Chen, P., Shibata, M., Zidovetzki, R.,
Fisher, M., Zlokovic, B., & Hofman, F. (2001). Endothelin-1 and
monocyte chemoattractant protein-1 modulation in ischemia and human
brain-derived endothelial cell cultures. Journal of
neuroimmunology, 116 (1), 62-73.
Chi, M., Yi, B., Oh, S., Park, D.-J.,
Sung, J. H., & Park, S. (2015). A microfluidic cell culture device
(μFCCD) to culture epithelial cells with physiological and morphological
properties that mimic those of the human intestine. Biomedical
microdevices, 17 (3), 58.
Choe, A., Ha, S. K., Choi, I., Choi,
N., & Sung, J. H. (2017). Microfluidic Gut-liver chip for reproducing
the first pass metabolism. Biomedical microdevices, 19 (1), 4.
Colgan, O. C., Ferguson, G., Collins,
N. T., Murphy, R. P., Meade, G., Cahill, P. A., & Cummins, P. M.
(2007). Regulation of bovine brain microvascular endothelial tight
junction assembly and barrier function by laminar shear stress.American Journal of Physiology-Heart and Circulatory Physiology,
292 (6), H3190-H3197.
Dinan, T. G., & Cryan, J. F. (2017).
Brain–gut–microbiota axis—mood, metabolism and behaviour.Nature Reviews Gastroenterology & Hepatology, 14 (2), 69-70.
Ehrlich, L. C., Hu, S., Sheng, W. S.,
Sutton, R. L., Rockswold, G. L., Peterson, P. K., & Chao, C. C. (1998).
Cytokine regulation of human microglial cell IL-8 production. The
Journal of Immunology, 160 (4), 1944-1948.
Elbrecht, D. H., Long, C. J., &
Hickman, J. J. (2016). Transepithelial/endothelial Electrical Resistance
(TEER) theory and ap-plications for microfluidic body-on-a-chip devices.tc, 1 (1), 1.
Evrensel, A., & Ceylan, M. E.
(2015). The gut-brain axis: the missing link in depression.Clinical Psychopharmacology and Neuroscience, 13 (3), 239.
Ghosh, S. S., Wang, J., Yannie, P.
J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS
translocation, and disease development. Journal of the Endocrine
Society, 4 (2), bvz039.
Gorecki, A. M., Dunlop, S. A.,
Rodger, J., & Anderton, R. S. (2020). The gut-brain axis and gut
inflammation in Parkinson’s disease: stopping neurodegeneration at the
toll gate: Taylor & Francis.
Haas-Neill, S., & Forsythe, P.
(2020). A Budding Relationship: Bacterial Extracellular Vesicles in the
Microbiota–Gut–Brain Axis. International Journal of Molecular
Sciences, 21 (23), 8899.
Hirotani, Y., Ikeda, K., Kato, R.,
Myotoku, M., Umeda, T., Ijiri, Y., & Tanaka, K. (2008). Protective
effects of lactoferrin against intestinal mucosal damage induced by
lipopolysaccharide in human intestinal Caco-2 cells. Yakugaku
Zasshi, 128 (9), 1363-1368.
Iannone, L. F., Preda, A., Blottière,
H. M., Clarke, G., Albani, D., Belcastro, V., . . . Ferraris, C. (2019).
Microbiota-gut brain axis involvement in neuropsychiatric disorders.Expert review of neurotherapeutics, 19 (10), 1037-1050.
Jiang, L., Li, S., Zheng, J., Li, Y.,
& Huang, H. (2019). Recent progress in microfluidic models of the
blood-brain barrier. Micromachines, 10 (6), 375.
Kim, H. J., Huh, D., Hamilton, G., &
Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora
that experiences intestinal peristalsis-like motions and flow. Lab
on a Chip, 12 (12), 2165-2174.
Lauritzen, K. H., Morland, C.,
Puchades, M., Holm-Hansen, S., Hagelin, E. M., Lauritzen, F., . . .
Bergersen, L. H. (2014). Lactate receptor sites link neurotransmission,
neurovascular coupling, and brain energy metabolism. Cerebral
cortex, 24 (10), 2784-2795.
Lee, D. W., Ha, S. K., Choi, I., &
Sung, J. H. (2017). 3D gut-liver chip with a PK model for prediction of
first-pass metabolism. Biomedical microdevices, 19 (4), 1-13.
Lee, S. H., & Sung, J. H. (2018).
Organ‐on‐a‐chip technology for reproducing multiorgan physiology.Advanced healthcare materials, 7 (2), 1700419.
Lee, S. Y., & Sung, J. H. (2018).
Gut–liver on a chip toward an in vitro model of hepatic steatosis.Biotechnology and bioengineering, 115 (11), 2817-2827.
Li, H., Sun, J., Wang, F., Ding, G.,
Chen, W., Fang, R., . . . Liu, J. (2016). Sodium butyrate exerts
neuroprotective effects by restoring the blood-brain barrier in
traumatic brain injury mice. Brain research, 1642 , 70-78.
Ma, C., Peng, Y., Li, H., & Chen, W.
(2020). Organ-on-a-Chip: A New Paradigm for Drug Development.Trends in Pharmacological Sciences .
Maheshwari, R., Gupta, A.,
Ganeshpurkar, A., Chourasiya, Y., Tekade, M., & Tekade, R. K. (2018).
Guiding Principles for Human and Animal Research During Pharmaceutical
Product Development Dosage Form Design Parameters (pp. 621-664):
Elsevier.
Manca, S., Upadhyaya, B., Mutai, E.,
Desaulniers, A. T., Cederberg, R. A., White, B. R., & Zempleni, J.
(2018). Milk exosomes are bioavailable and distinct microRNA cargos have
unique tissue distribution patterns. Scientific reports, 8 (1),
1-11.
Martin, C. R., Osadchiy, V., Kalani,
A., & Mayer, E. A. (2018). The brain-gut-microbiome axis.Cellular and molecular gastroenterology and hepatology, 6 (2),
133-148.
McAllister, M. S., Krizanac-Bengez,
L., Macchia, F., Naftalin, R. J., Pedley, K. C., Mayberg, M. R., . . .
Janigro, D. (2001). Mechanisms of glucose transport at the blood–brain
barrier: an in vitro study. Brain research, 904 (1), 20-30.
Mutai, E., Zhou, F., & Zempleni, J.
(2017). Depletion of dietary bovine milk exosomes impairs sensorimotor
gating and spatial learning in C57BL/6 mice. The FASEB Journal,
31 (1_supplement), 150.154-150.154.
Oddo, A., Peng, B., Tong, Z., Wei,
Y., Tong, W. Y., Thissen, H., & Voelcker, N. H. (2019). Advances in
microfluidic blood–brain barrier (BBB) models. Trends in
biotechnology, 37 (12), 1295-1314.
Papademetriou, I., Vedula, E.,
Charest, J., & Porter, T. (2018). Effect of flow on targeting and
penetration of angiopep-decorated nanoparticles in a microfluidic model
blood-brain barrier. PloS one, 13 (10), e0205158.
Parker, A., Fonseca, S., & Carding,
S. R. (2020). Gut microbes and metabolites as modulators of blood-brain
barrier integrity and brain health. Gut Microbes, 11 (2), 135-157.
Peng, H., Ji, W., Zhao, R., Yang, J.,
Lu, Z., Li, Y., & Zhang, X. (2020). Exosome: a significant nano-scale
drug delivery carrier. Journal of Materials Chemistry B, 8 (34),
7591-7608.
Peng, L., He, Z., Chen, W., Holzman,
I. R., & Lin, J. (2007). Effects of butyrate on intestinal barrier
function in a Caco-2 cell monolayer model of intestinal barrier.Pediatric research, 61 (1), 37-41.
Puscas, I., Bernard-Patrzynski, F.,
Jutras, M., Lécuyer, M.-A., Bourbonnière, L., Prat, A., . . . Roullin,
V. G. (2019). IVIVC Assessment of Two Mouse Brain Endothelial Cell
Models for Drug Screening. Pharmaceutics, 11 (11), 587.
Qin, L., Wu, X., Block, M. L., Liu,
Y., Breese, G. R., Hong, J. S., . . . Crews, F. T. (2007). Systemic LPS
causes chronic neuroinflammation and progressive neurodegeneration.Glia, 55 (5), 453-462.
Raimondi, I., Izzo, L., Tunesi, M.,
Comar, M., Albani, D., & Giordano, C. (2020). Organ-on-a-chip in vitro
models of the brain and the blood-brain barrier and their value to study
the Microbiota-Gut-Brain Axis in neurodegeneration. Frontiers in
Bioengineering and Biotechnology, 7 , 435.
Saeedi, S., Israel, S., Nagy, C., &
Turecki, G. (2019). The emerging role of exosomes in mental disorders.Translational psychiatry, 9 (1), 1-11.
Sandhu, K. V., Sherwin, E.,
Schellekens, H., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017).
Feeding the microbiota-gut-brain axis: diet, microbiome, and
neuropsychiatry. Translational Research, 179 , 223-244.
Schumann, R. (1992). Function of
lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor
for LPS/LBP complexes: a short review. Research in immunology,
143 (1), 11-15.
Sharma, G., Sharma, A. R., Lee,
S.-S., Bhattacharya, M., Nam, J.-S., & Chakraborty, C. (2019). Advances
in nanocarriers enabled brain targeted drug delivery across blood brain
barrier. International Journal of Pharmaceutics, 559 , 360-372.
Shemesh, J., Jalilian, I., Shi, A.,
Yeoh, G. H., Tate, M. L. K., & Warkiani, M. E. (2015). Flow-induced
stress on adherent cells in microfluidic devices. Lab on a Chip,
15 (21), 4114-4127.
Shimizu, F., Nishihara, H., & Kanda,
T. (2018). Blood–brain barrier dysfunction in immuno-mediated
neurological diseases. Immunological Medicine, 41 (3), 120-128.
Srinivasan, B., Kolli, A. R., Esch,
M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2015). TEER
measurement techniques for in vitro barrier model systems. Journal
of laboratory automation, 20 (2), 107-126.
Sung, J. H., Wang, Y. I., Narasimhan
Sriram, N., Jackson, M., Long, C., Hickman, J. J., & Shuler, M. L.
(2018). Recent advances in body-on-a-chip systems. Analytical
chemistry, 91 (1), 330-351.
Verma, S., Nakaoke, R., Dohgu, S., &
Banks, W. A. (2006). Release of cytokines by brain endothelial cells: a
polarized response to lipopolysaccharide. Brain, behavior, and
immunity, 20 (5), 449-455.
Voelkl, B., Altman, N. S., Forsman,
A., Forstmeier, W., Gurevitch, J., Jaric, I., . . . Van de Casteele, T.
(2020). Reproducibility of animal research in light of biological
variation. Nature Reviews Neuroscience , 1-10.
Wang, X., Hou, Y., Ai, X., Sun, J.,
Xu, B., Meng, X., . . . Zhang, S. (2020). Potential applications of
microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug
development. Biomedicine & Pharmacotherapy, 132 , 110822.
Zempleni, J., Sukreet, S., Zhou, F.,
Wu, D., & Mutai, E. (2019). Milk-derived exosomes and metabolic
regulation. Annual review of animal biosciences, 7 , 245-262.
Zhang, B., Korolj, A., Lai, B. F. L.,
& Radisic, M. (2018). Advances in organ-on-a-chip engineering.Nature Reviews Materials, 3 (8), 257-278.
Zhu, X., Han, Y., Du, J., Liu, R.,
Jin, K., & Yi, W. (2017). Microbiota-gut-brain axis and the central
nervous system. Oncotarget, 8 (32), 53829.
Zucco, F., Batto, A.-F., Bises, G.,
Chambaz, J., Chiusolo, A., Consalvo, R., . . . Fabre, G. (2005). An
inter-laboratory study to evaluate the effects of medium composition on
the differentiation and barrier function of Caco-2 cell lines.Alternatives to laboratory animals, 33 (6), 603-618.