References
1. Yang, F., Gao, C., Wang, P., Zhang, G. J., & Chen, Z. (2016).
Fish-on-a-chip: Microfluidics for zebrafish research. Lab on a
Chip , 16 (7), 1106–1125. https://doi.org/10.1039/c6lc00044d
2. Lee, Y., Seo, H. W., Lee, K. J., Jang, J., & Kim, S. (2020). A
Microfluidic System for Stable and Continuous EEG Monitoring from
Multiple Larval Zebrafish . 2005 , 14–17.
3. Khalili, A., & Rezai, P. (2019). Microfluidic devices for embryonic
and larval zebrafish studies. Briefings in Functional Genomics,18 (6), 419–432.
4. Eimon, P. M., Ghannad-Rezaie, M., De Rienzo, G., Allalou, A., Wu, Y.,
Gao, M., Roy, A., Skolnick, J., & Yanik, M. F. (2018). Brain activity
patterns in high-throughput electrophysiology screen predict both drug
efficacies and side effects. Nature Communications , 9 (1).
https://doi.org/10.1038/s41467-017-02404-4
5. Chen, C. Y., & Cheng, C. M. (2014). Microfluidics expands the
zebrafish potentials in pharmaceutically relevant screening.Advanced Healthcare Materials , 3 (6), 940–945.
https://doi.org/10.1002/adhm.201300546
6. Khalili, A., van Wijngaarden, E., Youssef, K., Zoidl, G., & Rezai,
P. (2021). Designing Microfluidic Devices for Behavioral Screening of
Multiple Zebrafish Larvae. Biotechnology Journal .
https://doi.org/10.1002/biot.202100076
7. Khalili, A., van Wijngaarden, E., Zoidl, G. R., & Rezai, P. (2021).
Zebrafish Larva’s Response to Electric Signal: Effects of Voltage,
Current and Pulsation for Habituation Studies. Sensors and
Actuators: A. Physical , 332 .
8. Khalili, A., Wijngaarden, E. van, Zoidl, G. R., & Rezai, P. (2020).
Multi-phenotypic and bi-directional behavioral screening of zebrafish
larvae. Integrative Biology , 12 (8), 211–220.
9. Yokogawa, T., Iadarola, M., & Burgess, H. (2014). Thermal response
behaviors in larval zebrafish : startle escape , thermotaxis and
thermal arousal. Proceedings of Measuring Behavior , 1–2.
10. Wanzenböck, J., Lamatsch, D. K., Hartmann, S., Kuhnert, K.-D.,
Rauschert, A., Witte, K., Vogt, R., & Kunze, J. (2018). Zebrafish
larvae show negative phototaxis to near-infrared light. Plos One ,13 (11), e0207264. https://doi.org/10.1371/journal.pone.0207264
11. Peimani, A. R., Zoidl, G., & Rezai, P. (2017). A microfluidic
device for quantitative investigation of zebrafish larvae’s rheotaxis.Biomedical Microdevices , 19 (99), 1–6.
https://doi.org/10.1007/s10544-017-0240-x
12. Peimani, A. R., Zoidl, G., & Rezai, P. (2018). A microfluidic
device to study electrotaxis and dopaminergic system of zebrafish
larvae. Biomicrofluidics , 12 (1).
https://doi.org/10.1063/1.5016381
13. Nady, A., Peimani, A. R., Zoidl, G., & Rezai, P. (2017). A
microfluidic device for partial immobilization, chemical exposure and
behavioural screening of zebrafish larvae. Lab on a Chip ,17 (23), 4048–4058. https://doi.org/10.1039/c7lc00786h
14. Lin, X., Li, V. W. T., Chen, S., Chan, C. Y., Cheng, S. H., & Shi,
P. (2016). Autonomous system for cross-organ investigation of
ethanol-induced acute response in behaving larval zebrafish.Biomicrofluidics , 10 (2). https://doi.org/10.1063/1.4946013
15. Candelier, R., Sriti Murmu, M., Alejo Romano, S., Jouary, A.,
Debrégeas, G., & Sumbre, G. (2015). A microfluidic device to study
neuronal and motor responses to acute chemical stimuli in zebrafish.Scientific Reports , 5 , 1–10.
https://doi.org/10.1038/srep12196
16. Khalili, A., Peimani, A. R., Safarian, N., Youssef, K., Zoidl, G.,
& Rezai, P. (2019). Phenotypic chemical and mutant screening of
zebrafish larvae using an on-demand response to electric stimulation.Integrative Biology , 11 (10), 373–383.
17. Lin, X., Wang, S., Yu, X., Liu, Z., Wang, F., Li, W. T., Cheng, S.
H., Dai, Q., & Shi, P. (2015). High-throughput mapping of brain-wide
activity in awake and drug-responsive vertebrates. Lab on a Chip ,15 (3), 680–689. https://doi.org/10.1039/c4lc01186d
18. Rudin-Bitterli, T. S., Tills, O., Spicer, J. I., Culverhouse, P. F.,
Wielhouwer, E. M., Richardson, M. K., Rundle, S. D., & Tanguay, R. L.
(2014). Combining motion analysis and microfluidics - a novel approach
for detecting whole-animal responses to test substances. PloS
One , 9 (12), e113235.
https://doi.org/10.1371/journal.pone.0113235
19. Erickstad, M., Hale, L. A., Chalasani, S. H., & Groisman, A.
(2015). A microfluidic system for studying the behavior of zebrafish
larvae under acute hypoxia. Lab on a Chip , 15 (3),
857–866. https://doi.org/10.1039/c4lc00717d
20. Redd, M. J., Kelly, G., Dunn, G., Way, M., & Martin, P. (2006).
Imaging macrophage chemotaxis in vivo: Studies of microtubule function
in zebrafish wound inflammation. Cell Motility and the
Cytoskeleton , 63 (7), 415–422. https://doi.org/10.1002/cm.20133
21. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., & Gupta, B. P.
(2010). Electrotaxis of Caenorhabditis elegans in a microfluidic
environment. Lab on a Chip , 10 (2), 220–226.
https://doi.org/10.1039/b917486a
22. Tabor, K. M., Bergeron, S. A., Horstick, E. J., Jordan, D. C., Aho,
V., Porkka-Heiskanen, T., Haspel, G., & Burgess, H. A. (2014). Direct
activation of the Mauthner cell by electric field pulses drives
ultrarapid escape responses. Journal of Neurophysiology ,112 (4), 834–844. https://doi.org/10.1152/jn.00228.2014
23. Steenbergen, P. J. (2018). Response of zebrafish larvae to mild
electrical stimuli: A 96-well setup for behavioural screening.Journal of Neuroscience Methods , 301 , 52–61.
https://doi.org/10.1016/j.jneumeth.2018.03.002
24. Peimani, A. R., Zoidl, G., & Rezai, P. (2018). A microfluidic
device to study electrotaxis and dopaminergic system of zebrafish
larvae. Biomicrofluidics , 12 (1), 1–15.
https://doi.org/10.1063/1.5016381
25. Souza, B. R., Romano-Silva, M. A., & Tropepe, V. (2011). Dopamine
D2 receptor activity modulates Akt signaling and alters GABAergic neuron
development and motor behavior in zebrafish larvae. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience ,31 (14), 5512–5525.
https://doi.org/10.1523/JNEUROSCI.5548-10.2011
26. Seibt, K. J., Piato, A. L., da Luz Oliveira, R., Capiotti, K. M.,
Vianna, M. R., & Bonan, C. D. (2011). Antipsychotic drugs reverse
MK-801-induced cognitive and social interaction deficits in zebrafish
(Danio rerio). Behavioural Brain Research , 224 (1),
135–139. https://doi.org/10.1016/j.bbr.2011.05.034
27. Savio, L. E. B., Vuaden, F. C., Piato, A. L., Bonan, C. D., & Wyse,
A. T. S. (2012). Behavioral changes induced by long-term proline
exposure are reversed by antipsychotics in zebrafish. Progress in
Neuro-Psychopharmacology & Biological Psychiatry , 36 (2),
258–263. https://doi.org/10.1016/j.pnpbp.2011.10.002
28. Kokel, D., & Peterson, R. T. (2008). Chemobehavioural phenomics and
behaviour-based psychiatric drug discovery in the zebrafish.Briefings in Functional Genomics and Proteomics , 7 (6),
483–490. https://doi.org/10.1093/bfgp/eln040
29. Giacomini, N. J., Rose, B., Kobayashi, K., & Guo, S. (2006).
Antipsychotics produce locomotor impairment in larval zebrafish.Neurotoxicology and Teratology .
https://doi.org/10.1016/j.ntt.2006.01.013
30. Farrell, T. C., Cario, C. L., Milanese, C., Vogt, A., Jeong, J.-H.,
& Burton, E. A. (2011). Evaluation of spontaneous propulsive movement
as a screening tool to detect rescue of Parkinsonism phenotypes in
zebrafish models. Neurobiology of Disease , 44 (1), 9–18.
https://doi.org/10.1016/j.nbd.2011.05.016
31. Boehmler, W., Carr, T., Thisse, C., Thisse, B., Canfield, V. A., &
Levenson, R. (2007). D4 Dopamine receptor genes of zebrafish and effects
of the antipsychotic clozapine on larval swimming behaviour.Genes, Brain, and Behavior , 6 (2), 155–166.
https://doi.org/10.1111/j.1601-183X.2006.00243.x
32. Burgess, H. A., & Granato, M. (2007). Modulation of locomotor
activity in larval zebrafish during light adaptation. Journal of
Experimental Biology . https://doi.org/10.1242/jeb.003939
33. Irons, T. D., Kelly, P., Hunterb, D. L., MacPhail, R. C., &
Padilla, S. (2013). Acute Administration of Dopaminergic Drugs has
Differential Effects on Locomotion in Larval Zebrafish . 103 (4),
792–813. https://doi.org/10.1016/j.pbb.2012.12.010.Acute
34. Bartolini, T., Mwaffo, V., Butail, S., & Porfiri, M. (2015). Effect
of acute ethanol administration on zebrafish tail-beat motion.Alcohol , 49 (7), 721–725.
https://doi.org/10.1016/j.alcohol.2015.06.004
35. Morgan, R. P., Ulanowicz, R. E., Rasin, V. J., Noe, L. A., & Gray,
G. B. (1976). Effects of Shear on Eggs and Larvae of Striped Bass,
Morone saxatilis, and White Perch, M. americana. Transactions of
the American Fisheries Society , 105 (1), 149–154.
https://doi.org/10.1577/1548-8659(1976)105<149:eosoea>2.0.co;2
36. Ulanowicz, R. E. (1976). The mechanical effects of water flow on
fish eggs and larvae. Fisheries and Energy Production: A
Symposium , 1 (593), 77–87.
http://aquaticcommons.org/id/eprint/1986
37. Ek, F., Malo, M., Åberg Andersson, M., Wedding, C., Kronborg, J.,
Svensson, P., Waters, S., Petersson, P., & Olsson, R. (2016).
Behavioral Analysis of Dopaminergic Activation in Zebrafish and Rats
Reveals Similar Phenotypes. ACS Chemical Neuroscience ,7 (5), 633–646. https://doi.org/10.1021/acschemneuro.6b00014
38. Irons, T. D., Kelly, P. E., Hunter, D. L., MacPhail, R. C., &
Padilla, S. (2013). Acute administration of dopaminergic drugs has
differential effects on locomotion in larval zebrafish.Pharmacology Biochemistry and Behavior , 103 (4), 792–813.
https://doi.org/10.1016/j.pbb.2012.12.010
39. Outeiro, T. F., & Ferreira, J. J. (2018). Zebrafish as an
Animal Model for Drug Discovery in Parkinson ’ s Disease and Other
Movement Disorders : A Systematic Review . 9 (June).
https://doi.org/10.3389/fneur.2018.00347
40. Jauhar, S., Veronese, M., Rogdaki, M., Bloom, M., Natesan, S.,
Turkheimer, F., Kapur, S., & Howes, O. D. (2017). Regulation of
dopaminergic function : an [ 18 F ] -DOPA PET apomorphine challenge
study in humans . February 2016 , 1–7.
https://doi.org/10.1038/tp.2016.270
41. Nyberg, S., Chou, Y., & Halldin, C. (2002). Saturation of
striatal D 2 dopamine receptors by clozapine . 11–16.
42. Voith, K., & Herr, F. (1975). The behavioral pharmacology of
butaclamol hydrochloride (AY-23,028), a new potent neuroleptic drug.Psychopharmacologia , 42 (1), 11–20.
https://doi.org/10.1007/BF00428819
43. Bergman, J., Madras, B. K., & Spealman, R. D. (1991). Behavioral
effects of D1 and D2 dopamine receptor antagonists in squirrel monkeys.The Journal of Pharmacology and Experimental Therapeutics ,258 (3), 910–917.
44. Beninger, R. J., Mazurski, E. J., & Hoffman, D. C. (1991). Receptor
subtype-specific dopaminergic agents and unconditioned behavior.Polish Journal of Pharmacology and Pharmacy , 43 (6),
507–528.
45. Morato, G. S., Lemos, T., & Takahashi, R. N. (1989). Acute exposure
to maneb alters some behavioral functions in the mouse.Neurotoxicology and Teratology , 11 (5), 421–425.
https://doi.org/10.1016/0892-0362(89)90018-4
46. Giacomini, N. J., Rose, B., Kobayashi, K., & Guo, S. (2006).
Antipsychotics produce locomotor impairment in larval zebrafish.Neurotoxicology and Teratology , 28 (2), 245–250.
https://doi.org/10.1016/j.ntt.2006.01.013
47. Choi, W. Y., Morvan, C., Balsam, P. D., & Horvitz, J. C. (2009).
Dopamine D1 and D2 antagonist effects on response likelihood and
duration. Behavioral Neuroscience , 123 (6), 1279–1287.
https://doi.org/10.1037/a0017702
48. King, D. J., & Lucas, M. B. R. A. (1995). Antipsychotic
Drug-Induced Dysphoria . 480–482.
49. Spulber, S., Kilian, P., Ibrahim, W. N. W., Onishchenko, N., Ulhaq,
M., Norrgren, L., Negri, S., Di Tuccio, M., & Ceccatelli, S. (2014).
PFOS induces behavioral alterations, including spontaneous hyperactivity
that is corrected by dexamfetamine in zebrafish larvae. PLoS ONE ,9 (4). https://doi.org/10.1371/journal.pone.0094227
50. Dracheva, S., Xu, M., Kelley, K. A., Haroutunian, V., Holstein, G.
R., Haun, S., Silverstein, J. H., & Sealfon, S. C. (1999). Paradoxical
locomotor behavior of dopamine d1 receptor transgenic mice.Experimental Neurology , 157 (1), 169–179.
https://doi.org/10.1006/exnr.1999.7037
51. Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., &
Graybiel, A. M. (1994). Dopamine Dl Receptor Mutant Mice Are
Deficient in Striatal Expression of Dynorphin and in Dopami !
lie-Mediated Behavioral Responses . 79 , 729–742.
52. White, N. M., Packard, M. G., & Hiroi, N. (1991). Place
conditioning with dopamine D1 and D2 agonists injected peripherally or
into nucleus accumbens. Psychopharmacology , 103 (2),
271–276. https://doi.org/10.1007/BF02244216
53. Shieh, G. J., & Walters, D. E. (1996). Stimulating dopamine D1
receprors increases the locomotor activity of developing rats.European Journal of Pharmacology , 311 (2–3), 103–107.
https://doi.org/10.1016/0014-2999(96)00417-7
54. Scott, L., Forssberg, H., Aperia, A., & Diaz-heijtz, R. (2005).Locomotor Effects of a D1R Agonist Are DARPP-32 Dependent in Adult
but not Weanling Mice . 58 (4), 779–783.
https://doi.org/10.1203/01.PDR.0000180553.23507.31
55. Chausmer, A. L., & Katz, J. L. (2002). Comparison of interactions
of D1-like agonists, SKF 81297, SKF 82958 and A-77636, with cocaine:
Locomotor activity and drug discrimination studies in rodents.Psychopharmacology , 159 (2), 145–153.
https://doi.org/10.1007/s002130100896
56. Sobrian, S. K., Jones, B. L., Varghese, S., & Holson, R. R. (2003).
Behavioral response profiles following drug challenge with dopamine
receptor subtype agonists and antagonists in developing rat.Neurotoxicology and Teratology , 25 (3), 311–328.
https://doi.org/https://doi.org/10.1016/S0892-0362(03)00009-6
57. Millan, M. J., Maiofiss, L., Cussac, D., Audinot, V., Boutin, J.-A.,
& Newman-Tancredi, A. (2002). Differential actions of antiparkinson
agents at multiple classes of monoaminergic receptor. I. A multivariate
analysis of the binding profiles of 14 drugs at 21 native and cloned
human receptor subtypes. The Journal of Pharmacology and
Experimental Therapeutics , 303 (2), 791–804.
https://doi.org/10.1124/jpet.102.039867
58. Hyttel, J. (1983). SCH 23390 - the first selective dopamine D-1
antagonist. European Journal of Pharmacology , 91 (1),
153–154. https://doi.org/10.1016/0014-2999(83)90381-3
59. Bymaster, F. P., Calligaro, D. O., Falcone, J. F., Marsh, R. D.,
Moore, N. A., Tye, N. C., Seeman, P., & Wong, D. T. (1996).
Radioreceptor binding profile of the atypical antipsychotic olanzapine.Neuropsychopharmacology : Official Publication of the American
College of Neuropsychopharmacology , 14 (2), 87–96.
https://doi.org/10.1016/0893-133X(94)00129-N