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We present the mathematical analysis of the Isolation Random Forest Method (IRF Method) for anomaly detection,

introduced in [9] and [10]. We prove that the IRF space can be endowed with a probability induced by the Isolation

Tree algorithm (iTree). In this setting, the convergence of the IRF method is proved, using the Law of Large Numbers.

A couple of counterexamples are presented to show that the method is inconclusive and no certificate of quality can be

given, when using it as a means to detect anomalies. Hence, an alternative version of the method is proposed whose

mathematical foundation is fully justified. Furthermore, a criterion for choosing the number of sampled trees needed

to guarantee confidence intervals of the numerical results is presented. Finally, numerical experiments are presented to

compare the performance of the classic method with the proposed one. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. Introduction

Anomaly detection in big data is an important field of research due to its applications; its presence may indicate disease of

individuals, fraudulent transactions and network security breaches, among others. There is a remarkable number of methods

for anomaly detection following different paradigms, some of these are distance-based (see [2, 3, 8]), classification-based (see

[1, 12]), cluster-based (see [7]) and isolation-based presented first in [9] and later extended in [10]. In the present work we focus

on the mathematical analysis of the latter method, from now on, denoted as the IRF Method.

Despite the popularity of the IRF method, to the authors’ best knowledge, no mathematical analysis has been done to it. For

instance, there is no rigorous proof that the method converges, there is no analysis about the number of iterations needed to

build confidence intervals for the computed values. Some scenarios where the method performs poorly have been pointed out in

[9] and [10], but there are no general recommendations/guidelines for a setting where the IRF Method runs successfully. In the

present work, all these aspects are addressed with mathematical rigor.

The paper is organized as follows, in the introductory section the notation and general setting are introduced; the IRF

Method is reviewed for the sake of completeness and a prove is given that the iTree algorithm is well-defined. Section 2 presents

the analysis of the method in the general setting, the underlying probabilistic structure used by the method is revised, the

convergence of the method is proven, the cardinality of the isolation random forest (IRF) is presented and two examples are

given to analytically prove the inconclusiveness of the IRF Method. In Section 3 the method is analyzed for the 1D case and

proved to be a suitable tool for anomaly detection in this particular setting. This is done recalling a closely related algorithm,

next, estimates for the values of the expected height and variance are given; the section closes introducing an alternative version

of method (the Direction Isolation Random Forest Method, DIRF) whose mathematical foundation if fully justified. Finally,

Section 4 presents numerical examples examining the performance of both methods IRF and DIRF.

1.1. Preliminaries

In this section the general setting and preliminaries of the problem are presented. We start introducing the mathematical

notation. For any natural number N ∈N, the symbol [N]
def
= {1, 2, . . . , N} indicates the set/window of the first N natural
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numbers. For any set E we denote by #E its cardinal and by ℘(E) its power set. For any interval I ⊆R we denote by |I|
its length. Random variables will be represented with upright capital letters, namely X,Y,Z, ... and its respective expectations

with E(X),E(Y),E(Z), .... Vectors are indicated with bold letters, namely p, q, r..., etc. The canonical basis in Rd is written

{ê1, . . . , êd}, the projections from Rd onto the j-th coordinate are written as πj(x)
def
= x · êj for all j ∈ [d ], where x ∈Rd .

The isolation random tree algorithm (iTree) for a set of points in Rd is defined recursively as follows

Definition 1.1 (The iTree Algorithm) Let S
def
= {x0, x1, . . . , xN} be a set of points in Rd .

(i) An isolation random tree T (iTree), associated to this set is defined recursively as follows:

a. Define the tree root as rt(T )
def
= S.

b. Define the sets

πj(S)
def
= {πj(x) : x ∈ S}, 1 ≤ j ≤ d, ΩC

def
= {j ∈ [d ] : #πj(S) ≥ 2}. (1)

c. If the set S has two or more points (equivalently, if ΩC 6= ∅), choose randomly j in ΩC , then choose randomly

p ∈ (minπj(S),maxπj(S)) (the split value).

d. Perform an isolation random tree on the left set of data Sleft
def
= {x ∈ S : x · êj < p}, denoted by Tleft. Next, include the

arc
(

rt(T ), rt(Tleft)
)

in the edges of the tree E(T ); where rt(Tleft) = Sleft indicates the root of Tleft.

e. Perform an isolation random tree on the right set of data Sright
def
= {x ∈ S : x · êj ≥ p}, denoted by Tright. Next, define

the arc
(

rt(T ), rt(Tright)
)

in the edges of the tree E(T ), where rt(Tright) = Sright indicates the root of Tright.

(ii) We denote the set of all possible isolation random trees associated to the set S by ΩIRF(S), whenever the context is clear,

we simply write ΩIRF and we refer to it as the isolation random forest.

For the sake of completeness we present the iTree Algorithm’s pseudocode in 1.

Algorithm 1 Isolation Random Tree, returns a rooted tree with N vertices. The vertices are subsets of the input data set

S =
{

xn : n ∈ [N]
}
⊆Rd

1: procedure Isolation Random Tree(Data Set S =
{

xn : n ∈ [N]
}

.)

2: VBT = ∅ . Initializing the Vertex set in the Binary Tree as empty

3: ABT = ∅ . Initializing the list of Arcs in the Binary Tree as empty

4: rt = S . Initializing the root as empty

5: S → VBT . Push the set S to VBT

6: function Branch(S,VBT,ABT, rt)

7: if #ΩC = 1 then . Checking when to stop

8: return VBT,ABT

9: else

10: choose j ∈ ΩC randomly . Choosing the split direction.

11: define πj(S)
def
=
{
πj(x) : x ∈ S

}
, . Data set projected onto the j-th direction

12: choose p ∈
(

minπj(S),maxπj(S)
)

randomly . Choosing the split value.

13: define Sleft
def
=
{

x ∈ S : x · êj < p
}

, Sright
def
=
{

x ∈ S : x · êj ≥ p
}

. Left and Right subsets

14: Sleft → VBT, (rt, Sleft)→ ABT . Push the set Sleft to VBT and arc (rt, Sleft) to ABT

15: Branch
(
Sleft,VBT,ABT, rt

)
16: Sright → VBT, (rt, Sright)→ ABT . Push the set Sright to VBT and arc (rt, Sright) to ABT

17: Branch
(
Sright,VBT,ABT, rt

)
18: end if

19: end function

20: end procedure

Proposition 1.2 Given an arbitrary set S
def
= {x0, x1, . . . , xN} in Rd , the iTree algorithm described in Definition 1.1 needs N

instances to isolate every point in S.

Proof. We proceed by induction on the number of data N. For N = 1 the result is trivial.

Assume now that the result holds true for k ≤ N − 1 and let S
def
= {x0, x1, . . . , xN} be arbitrary inRd . Since #S ≥ 2, the set ΩC

(defined in (1)) must be nonempty. Choose randomly an index j in ΩC and choose randomly p ∈ (minSj ,maxSj). Thus, after one
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instance of the algorithm the left and right subsets are defined and they satisfy #Sleft < N, #Sright < N, #Sleft + #Sright = N.

Then, applying the induction hypothesis on each the left and right subsets it follows that the total of needed instances is

1 + (#Sleft − 1) + (#Sright − 1) = #Sleft + #Sright − 1 = N − 1,

which completes the proof. 2

Definition 1.3 (The IRF Method) Given an input data set S
def
= {x1, . . . , xN} ⊆Rd , a number of Bernoulli trials K and an

anomaly threshold criterion.

(i) For each Bernoulli trial k = 1, . . . , K, perform iTree on S (see Defintion 1.1 and/or Algorithm 1) and store the heights

{hk(x) : x ∈ S} in a Log.

(ii) For each x ∈ S, define HIRF(x) as the average height of the collection of heights {hk(x) : k = 1, . . . , K}.

(iii) Declare as anomalies A
def
= {x ∈ S : HIRF(x) satisfies the anomaly threshold criterion}.

Observe that due to Proposition 1.2 the iTree Algorithm and consequently the IRF method are well-defined. For brevity, the

proof showing that the isolation random forest can be endowed with a probability measure, defined by the iTree algorithm, will

be postponed until Theorem 2.4 in Section 2.

2. The General Setting

The present section presents the features of the isolation random forest that can be proved in general, these are its probability

structure, its cardinality and the fact that the IRF method converges and is well-defined. For the analysis of the general case

first we need to introduce a hypothesis

Hypothesis 2.1 Given a set of data S = {x0, . . . , xN} ⊆Rd , from now on it will be assumed that no coordinates are repeated

i.e.

#πj(S) = N + 1, for all j = 1, . . . , d. (2)

Here πj(S) is the j-th projection of the set S as defined in Equation (1).

Definition 2.2 Let S = {x0, . . . , xN} ⊆Rd be a data set satisfying Hypothesis 2.1.

(i) For each j ∈ [d ] denote by P(j) def
=
{
I

(j)
n : n ∈ [N]

}
, the family of intervals defined by sorting the points of the set

πj(S) =
{

xn · êj : n = 0, . . . , N
}

.

(ii) Define the grid of the set by GS
def
=

d∏
j = 1

πj(S).

(See Figure 1 (a) for an illustration when S ⊆R2.)

Remark 2.3 Observe that Hypothesis 2.1 is mild because, it will be satisfied with probability one for any sample of N + 1

elements from Rd .

Next we prove that given a data set, its isolation random forest is a probability space.

Theorem 2.4 Let S
def
= {x0, x1, . . . , xN} ⊆Rd and let ΩIRF be as in Definition 1.1. Then, the algorithm induces a probability

measure in ΩIRF.

Proof. We prove this theorem by induction on the cardinal of the set #S. For #S = N = 1 the only possible tree is the trivial

one.

Assume now that the result is true for any data set satisfying Hypothesis 2.1, with cardinal less or equal than N. Let

S = {x0, . . . , xN} be a set and let T ∈ ΩIRF be arbitrary, such that j ∈ [d ] was the first direction of separation, with corresponding

split value pT ∈ (minπj(S),maxπj(S)), Tleft, Tright left, right subtrees and Sleft, Sright left and right sets (as in Definition 1.1).

Suppose that pT belongs to the interval I
(j)
n then, the probability that T occurs, equals the probability of choosing the direction

j ∈ [d ], times the probability of choosing I
(j)
n among P(j), times the probability that Tα occurs in Sα when α ∈ {left, right}, i.e.

P(T ) =
1

d

|I(j)
n |∑

{|I| : I ∈ P(j)}Pleft(Tleft)Pright(Tright). (3)
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(a) Grid GS , S ⊆R2 satisfies Hypothesis 2.7. A potential ancestor is

delimited in thick line
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(b) Two possible alternatives (marked with � and �) generating the

potential ancestor drawn in the figure of the left.

Figure 1. The figure (a) depicts the grid GS =
{

0, p1, . . . , pN
}
×
{

0, q1, . . . , qN
}

= {x · ê1 : x ∈ S} × {x · ê2 : x ∈ S} of a particular set S satisfying Hypothesis

2.7. The corner pk ê1 + q`ê2 defines a potential ancestor, however it may or may not belong to S. The figure (b) displays two possible ways to generate

the potential ancestor of figure (b). First that the point pk ê1 + q`ê2, marked with � belongs to S. A second option that the couple of points p2ê1 + q`ê2,

pk ê1 + q1ê2, marked with � belong to S. It is direct to see there are (k − 1)× (`− 1) + 1 possibilities to generate the potential ancestor at hand. but at most

one of them is present in a given configuration/set.

Here Pα(Tα) indicates the probability that Tα occurs in the space of isolation random trees defined on the sets Sα, for

α ∈ {left, right}; which is well-defined since #Sα ≤ N. Denoting by ΩIRF(Pα) the space of isolation random trees defined

on the set Sα, by the induction hypothesis we know that Pα : ΩMRF(Pα)→ [0, 1] is a well-defined probability, then Pα(Tα) for

α ∈ {left, right} are nonnegative and consequentlyP(T ) is nonnegative. Next we show that
∑
{P(T ) : T ∈ ΩIRF} = 1. Consider

the following identities

∑
T∈ΩIRF

P(T ) =

d∑
j = 1

∑
T∈ΩIRF

pT∈ (minπj (S),maxπj (S))

P(T )

=

d∑
j = 1

N∑
n= 1

∑
T∈ΩIRF

pT∈ I(j)n

P(T )

=

d∑
j = 1

N∑
n= 1

∑
T∈ΩIRF

pT∈ I(j)n

1

d

|I(j)
n |∑

{|I| : I ∈ P(j)}Pleft(Tleft)Pright(Tright)

=

d∑
j = 1

N∑
n= 1

1

d

|I(j)
n |∑

{|I| : I ∈ P(j)}
∑

T∈ΩIRF

pT∈ I(j)n

Pleft(Tleft)Pright(Tright)

(4)

The sum nested in the third level can be written in the following way∑
T∈ΩIRF

pT∈I(j)n

Pleft(Tleft)Pright(Tright) =
∑

Tleft∈ΩIRF(Sleft)
Tright∈ΩIRF(Sright)

Pleft(Tleft)Pright(Tright)

=
∑

Tleft∈ΩIRF(Sleft)

∑
Tright∈ΩIRF(Sright)

Pleft(Tleft)Pright(Tright)

=
∑

Tleft∈ΩIRF(Sleft)

Pleft(Tleft)
∑

Tright∈ΩIRF(Sright)

Pright(Tright).
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Due to the induction hypothesis, each factor in the last term equals to one. Replacing this fact in the expression (4) we get

∑
T∈ΩIRF

P(T ) =

d∑
j = 1

N∑
n= 1

1

d

|I(j)
n |∑

{|I| : I ∈ P(j)} =

d∑
j = 1

1

d

1∑
{|I| : I ∈ P(j)}

N∑
n= 1

|I(j)
n | =

d∑
j = 1

1

d
= 1,

which completes the proof. 2

Corollary 2.5 Let S
def
= {x0, x1, . . . , xN} ⊆Rd and let ΩIRF be as in Definition 1.1. Given a sequence of random iTree algorithm

experiments (or Bernoulli trials), denoted by (Tn)n∈N, denote by
(
Hx(Tn)

)
n∈N the sequence of the corresponding depths for the

point x ∈ S. Then,
Hx(T1) + Hx(T2) + . . .+ Hx(Tn)

n
−−−→
n→∞

E(Hx). (5)

In particular, the IRF method converges and it is well-defined.

Proof. It is a direct consequence of the Law of the Large Numbers, see [4]. 2

Next we present the cardinal of the space ΩIRF.

Theorem 2.6 (Cardinal of the Isolation Random Forest) Let S
def
= {x0, x1, . . . , xN} ⊆Rd and ΩIRF be as in Hypothesis 1.1,

then

# ΩIRF(S) ≡ 1

N

(
2(N − 1)

N − 1

)
dN−1 = CN−1d

N−1, ∀N ≥ 1. (6)

Here CN−1 denotes the N − 1 Catalan number.

Proof. Let ti be the number of all possible isolation trees on i data, with the artificial convention t0 = 0. It is direct to see that

t1 = 1. Then, repeating the reasoning used to derive the expression (4) the following recursion follows

tN+1 =
∑

T ∈ΩIRF(S)

1 =

d∑
j = 1

N∑
n= 1

∑
T ∈ΩIRF

pT∈ I(j)n

1

Notice that if pT ∈ I(j)
n then #Sleft = n and #Sright = N + 1− n. Therefore, the sum

∑
{1 : T ∈ ΩIRF, p

T ∈ I(j)
n } counts all the

possible trees on Sleft, times the number of trees on Sright; whose cardinals are tn and tN+1−n respectively. Replacing the latter

in the expression above, we have

tN+1 =

d∑
j = 1

N∑
n= 1

tntN+1−n = d

N∑
n= 1

tntN+1−n = d

N+1∑
n= 0

tntN+1−n, ∀N ∈N. (7)

Let g(x)
def
=
∑
i ≥ 1

tix
i be the generating function of the sequence (ti)i ≥ 1, then the relation dg2(x) + x = g(x) holds which, solving

for g(x) and recalling that g(0) = t0 = 0 gives

g(x) =
1−
√

1− 4dx

2d
.

The generalized binomial theorem states

g(x) =
1

2d

(
1−

∑
k ≥ 0

(
1/2

k

)
(−4dx)k

)
=

1

d

∑
k ≥ 1

(
1/2

k

)
(−1)k+122k−1dkxk .

Recalling that (
1/2

k

)
=

(−1)k−1

2k
1 · 3 · . . . · (2k − 3)

1 · 2 · . . . · k ,

we conclude

tk =
1

k

(
2(k − 1)

k − 1

)
dk−1.

The above concludes the proof. 2
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2.1. The Inconclusiveness of the Expected Height.

In the present section, it will be seen that the expectation of the depth, depending on the configuration of the points, can

have different topological meanings, when working in multiple dimensions. This is illustrated with two particular examples in 2D.

Before presenting them some context needs to be introduced

Hypothesis 2.7 (Adopted in the section 2.1 only.) The data set S ⊆R2 satisfies

(i) All the data are contained in the first quadrant of the plane.

(ii) The set S contains the origin 0.

(iii) The set S verifies the hypothesis 2.1 of Section 2.

From now on we concentrate on analyzing the depth of origin 0 in ΩIRF. Notice that in this case the potential ancestors of 0 have

the structure A = S ∩ R where R ⊆R2 is a rectangle whose edges are parallel to the coordinate axes, see Figure 1 (a). Given that

infinitely many rectangles satisfy this conditions we consider RA
def
=
⋂
{R : A = R ∩ S and R is a rectangle}. Now, RA can be

identified with its upper right corner, moreover, given a set S with associated grid GS =
{

0, p1, . . . , pN
}
×
{

0, q1, . . . , qN
}

,

we denote a potential ancestor by [pi , qj ]
def
= {x ∈ S : x · ê1 ≤ pi , x · ê2 ≤ qj}, see Figure 1. Notice that, depending on the

configuration of S, not every element of GS defines a potential ancestor, also observe that different configurations/sets may

have an ancestor identified by the same pair, as it is the case of [pk , q`] in Figure 1 (a) and (b). Finally, we introduce the following

indicator function

X[pi ,qj ]
def
=

{
1, [pi , qj ] is ancestor of 0,

0, otherwise.

It is direct to see H0 =
∑{

X[pi ,qj ] : [pi , qj ] is a potential ancestor of 0
}

as the sum counts the number of ancestors of 0.

Lemma 2.8 (Inconclusiveness in 2D) Given a set S = {x0, x1, . . . , xN} in⊆R2, the topological meaning of the expected height,

found by the IRF method is inconclusive and no general quality certificate can be established for the method.

Proof. Consider the following two sets.

Set 1. (A monotone configuration.) Let S1 = {x0, x1, . . . , xN} ⊆R2 satisfy Hypothesis 2.7. Let GS1 =
{

0, p1, . . . , pN
}
×{

0, q1, . . . , qN
}

be its associated grid, understanding that p0 = q0 = 0 and suppose that xi = pi ê1 + qi ê2 for i =

0, 1, . . . , N. In this particular case, the ancestors are identified with the points xi ∈ S, moreover they are the upper

right corners of the associated rectangles. Hence,

H0 =
∑
i ∈ [N]

X[pi ,qi ].

Next, observe that

E
(
X[pi ,qi ]

)
=

{
1
2

pi+1−pi
pi+1

+ 1
2

qi+1−qi
qi+1

, 1 ≤ i ≤ N − 1,

1, i = N.

Thus, the expectation is given by

E
(
H0

)
= 1 +

N−1∑
i = 1

1

2

qi+1 − qi
qi+1

+
1

2

pi+1 − pi
pi+1

, (8a)

and the distance from the origin to the rest of the set is given by

d1
def
= dist

(
x0, S1 − {x0}

)
=
√
p2

1 + q2
1 . (8b)

Set 2. (A strategic transposition.) Let S2 = {y0, y1, . . . , yN} ⊆R2 satisfy Hypothesis 2.7. Let GS2 =
{

0, p1, . . . , pN
}
×{

0, q1, . . . , qN
}

be its associated grid, understanding that p0 = q0 = 0 and suppose that

y0 =

(
0

0

)
, y1 =

(
p1

q2

)
, y2 =

(
p2

q1

)
, yi =

(
pi
qi

)
, for all i = 3, . . . , N.

In this particular case, all the points yi ∈ S define each one a potential ancestor, but there is an additional one, the

potential ancestor [p2, q2]. Then

H0 = X[p2,q2] + X[p1,q2] + X[p2,q1] +

N∑
i = 3

X[pi ,qi ]

= X[p1,q2] + X[p2,q1] +

N∑
i = 2

X[pi ,qi ].

6 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–18
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Computing the expectations of each function we get

E
(
X[pi ,qj ]

)
=


1
2
p2−p1
p2

, i = 2, j = 1,
1
2
q2−q1
q2

, i = 1, j = 2,
1
2

pi−pi−1

pi
+ 1

2

qi−qi−1

qi
, 2 ≤ i = j ≤ N − 1,

1, i = j = N.

Therefore,

E
(
H0

)
=

1

2

q2 − q1

q2
+

1

2

p2 − p1

p2
+

N−1∑
i = 2

1

2

qi − qi−1

qi
+ 1 +

1

2

pi − pi−1

pi
.

Hence, the expected height is given by

E
(
H0

)
= 1 +

N−1∑
i = 1

1

2

qi − qi−1

qi
+

1

2

pi − pi−1

pi
(9a)

and the distance from the origin to the rest of the set is given by

d2
def
= dist

(
x0, S2 − {x0}

)
= min

{√
p2

1 + q2
2 ,
√
p2

2 + q2
1

}
. (9b)

Notice that for both sets S1 and S2 the expected height has identical value, as Equations (8a) and (9a) show. However, the

topological distance from 0 to the sets S1 − {0}, S2 − {0} is different as Equations (8b) and (9b) show. Moreover, for simplicity

assume that p1 = q1, p2 = q2 and let p1 → 0. Then, the distances behave as follows

d1 −−−→
p1→ 0

0, d2 −−−→
p1→ 0

p2. (10)

Since p2 can take any value in R, the difference between distances can be arbitrarily large while their expected heights remain

equal. In other words, in the first case the point is close to the set while in the second one p2 ∈R can be chosen so that 0

becomes an anomaly.

From the discussion above, it follows that although the IRF method is well-defined and it converges to E(Hx) for every

x ∈ S (see Corollary 2.5), the topological-metric meaning of such expected value may change according to the combinatorial

configuration of the data. More specifically, the value E(Hx) is inconclusive from the topological-metric point of view and

therefore, its reliability to asses whether or not a point is an anomaly is uncertain. Moreover, the analysis of limits in the

expression (10) discussed above, shows that no general quality certificate about the method can be given. 2

Remark 2.9 A third example can be constructed similarly to the sets S1, S2 in the proof of Lemma 2.8. Let S =

{z0, z1, . . . , zN} ⊆R2 be given by

z1 =

(
p1

qN

)
, zi =

(
pi
qi−1

)
, for all i = 2, . . . , N.

Then, in this configuration E(H0) satisfies the identity (9a), while the distance from the origin to the rest of the set is given by

d3
def
= dist

(
x0, S − {x0}

)
= min

{√
p2

1 + q2
N ,
√
p2

2 + q2
1

}
.

This third example ads even more inconclusiveness to the IRF method in multiple dimensions, in addition to that detected by

the analysis presented in Lemma 2.8.

Theorem 2.10 (Inconclusiveness of the IRF Method) Given a set S = {x0, x1, . . . , xN} in ⊆Rd , the topological meaning of

the expected height, found by the IRF method is inconclusive and no general quality certificate can be established for the method.

Proof. We proceed as in the proof of Lemma 2.8. In particular the result has been already shown for d = 2 then, from now on

we assume that d ≥ 3.

Consider a sequence of numbers 0 = r0 < r1 < . . . < rn, consider the sets S̃1
def
= {x̃0, x̃1, . . . , x̃N}, S̃2

def
= {ỹ0, ỹ1, . . . , ỹN}, whose

elements are given by

x̃i
def
= ri

∑
j ∈ [N]

êj , ∀i ∈ [N],

ỹi
def
= ri

∑
j ∈ [N]

êj , ∀i ∈ {0, 3, 4, . . . , N},

ỹ1 =
r1
2

ê1 +
r1
4

ê2 + r1

N∑
j = 3

êj , ỹ2 =
r1
4

ê1 +
r1
2

ê2 + r2

N∑
j = 3

êj .
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Consider the projection map π :RN →R2 defined by π(x)
def
= π(x) = (x · ê1) ê1 + (x · ê2) ê2. It is direct to see that π(S̃1), π(S̃2),

have the same structure of the sets S1, S2 introduced in the proof of Lemma 2.8, hence, they have their same properties.

Consequently, the element 0 in the sets S̃1, S̃2 has the same the number and description of potential ancestors as in S1, S2

respectively. Therefore, the values of the expected height for the point 0 will agree, but the distances from it to the nearest

point in S1 − {0}, S2 − {0} can arbitrarily disagree as already shown in Lemma 2.8. 2

3. The 1D Setting

The present section has several objectives. • Show that the IRF method is conclusive in the 1D setting (Section 3.1). • Estimate

de variance of ΩIRF and use it to derive confidence intervals for the method in the general setting (Section 3.2). • Introduce an

alternative version of the IRF method, based on the mathematical robustness of the 1D case (Section 3.4).

In order to study the problem for sets S = {x0, x1, . . . , xN} in R, it is strategic to start analyzing another well-known related

problem, analyzed in [11]. We begin introducing some definitions.

Definition 3.1 It will be said that family P = {In : n ∈ [N]} is a monotone partition of an interval [a, b] if there exists a

monotone sequence a = x0 < x1 < . . . < xN = b such that the extremes of In are xn−1 and xn for all n ∈ [N]. (See Figure 2 (a)

for an example with |P| = 5.)

Definition 3.2 Let P = {In : n ∈ [N]} be a monotone partition of the interval I = [a, b], with set of endpoints x0 = a < x1 <

. . . < xN = b, from now denoted by S(P).

(i) A monotone random tree T , associated to this partition is defined recursively as follows (see Figures 2 (a) and (b) for an

example.):

a. If the partition is non-empty, choose rt(T ) = Ik ∈ P randomly as the root of T , with probability
|Ik |
|I| =

xk−1 − xk
b − a .

b. Perform a monotone random tree on the left partition of intervals Pleft
def
= {In : n ∈ [N], n < k}, denoted by Tleft. Next,

include the arc
(

rt(T ), rt(Tleft)
)

in the edges of the tree E(T ) and label it with {xj : 0 ≤ j < k}. Here rt(Tleft) indicates

the root of Tleft.

c. Perform a monotone random tree on the right partition of intervals Pright
def
= {In : n ∈ [N], n > k}, denoted by Tright.

Next, include the arc
(

rt(T ), rt(Tright)
)

in the edges of the tree E(T ) and label it with {xj : k ≤ j ≤ N}. Here rt(Tright)

indicates the root of Tright.

(ii) We denote the set of all possible monotone random trees associated to the partition P by ΩMRF(P). Whenever the context

is clear, we simply write ΩMRF, and we refer to it as the monotone random forest.

Remark 3.3 Labeling the edges of the monotone random tree is done to ease, later on, the connection between these trees and

the iTrees for the 1D case.

Next we recall a classic definition, see [6]

Definition 3.4 Let T be a binary tree, the left (resp. right) subtree of a vertex v is the binary subtree spanning the left (resp.

right)-child of v and all of its descendants.

Theorem 3.5 Let P =
{
In : n ∈ [N]

}
and ΩMRF, be as in Definition 3.2, then the algorithm induces a probability measure in

ΩMRF.

Proof. Analogous to the proof of Theorem 2.4. 2

Definition 3.6 Let P = {In : n ∈ [N]}, ΩMRF be as in Definition 3.2 and let i ∈ [N] be fixed. Define

(i) Hi : ΩMRF →N ∪ {0}, Hi(T ) = the depth of the interval In in the tree T ∈ ΩMRF.

(ii) Given k ∈ [N]− {i}, define Xi ,k : ΩMRF → {0, 1} as Xi ,k(T ) = 1 if Ik is ancestor of i in T and Xi ,k(T ) = 0 otherwise.

(iii) For k 6= i define the quantity

wi ,k
def
=

max{i ,k}∑
`= min{i ,k}

|I`|. (11)

Notice that while Hi , Xi ,k are random variables, depending on the tree, the quantities wi ,k are not, moreover wi ,k = wk,i .
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x0 = a x1 x2 x3 x4 x5 = b

| | | | | |

I1 I2 I3 I4 I5

1©
2©

3©

4©

2©

(a) Monotone partition P = {In : 1 ≤ n ≤ 5}.

I4

I1

I3

I2

I5

{x0, x1, x2, x3} {x4, x5}

{x1, x2, x3}

{x2, x3}

(b) Structure T , possible monotone random tree on the

monotone partition P

Figure 2. Example of a generated monotone random tree. Figure (a) displays a partition of 5 intervals. The circled numbers represent the instance when each

interval was chosen, understanding that I1, I5 have both number 2 since they were belonged to left and right sub-tree after the first choice I4. Figure (b) depicts

the monotone random tree T that is formed after the choices made in the figure (a), observe the labeling of the edges.

Lemma 3.7 Let P = {In : n ∈ [N]} and ΩMRF be as in Definition 3.2. Then

(i) The height of the interval Ii satisfies Hi =
∑
k 6=i

Xi ,k .

(ii) E(Xi ,k) =
|Ik |
wi ,k

, with wi ,k as defined in (11).

(iii)

E(Hi) = O
(

log
(∑{|I| : I ∈ P}

|Ii |

))
. (12)

Proof. See [11]. 2

3.1. The Quality of the Bound b(H)

In this section we discuss the quality of the bound (12). To that end, we introduce the quantities

b(Hi)
def
= log

∑
{|I| : I ∈ P}
|Ii |

, i = 1, . . . , N, (13)

for a monotone partition P = {Ii : 1 ≤ i ≤ N}.

Theorem 3.8 Consider a monotone partition P = {In : n ∈ [N]} defined by the sequence of points

S
def
=
{

0, d, x2, . . . , xN−1, 1
}
, 0 < d < x2 < . . . < xN−1 < 1.

Then,

E
(
H1

)
b
(
H1

) −−−→
d→ 0

0,
E
(
H1

)
b
(
H1

) −−−→
d→ 1

1. (14)

Therefore, the quality of the bound b(Hi) improves as the point becomes more of an outlier and it deteriorates as the point gets

closer to the cluster of points. Hence, E(Hi) contains reliable topological information for outliers, though its quality of information

is poor for cluster points. (Notice that there are no conditions for xk with k = 2, . . . , N − 1, other than the monotonicity and

the boundedness detailed above.)

Proof. First observe that

b(H1) = log
1

d
= − log d. (15)
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Recall that the height of the interval I1 is given by H1 =
N∑

k = 2

X1,k . From Lemma 3.7 we have E(X1,k) =
xk − xk−1

xk
then,

E
(
H1

)
=

N∑
k = 2

xk − xk−1

xk
. Now consider the following estimates

E
(
H1

)
= (N − 1)−

N∑
k = 2

xk−1

xk
≤ (N − 1)− (N − 1)

( N∏
k = 2

xk−1

xk

) 1
N−1

= (N − 1)(1− d
1

N−1 ). (16a)

Here, the arithmetic-geometric mean inequality was used, together with the telescopic properties of the product left. Next,

observing that xk ≥ d for all k = 2, . . . , N and using telescopic properties of the remaining terms we get

E
(
H1

)
≤

N∑
k = 2

xk − xk−1

d
=

1− d
d

. (16b)

Again, using that xk ≤ 1 for all k = 2, . . . , N combined with the telescopic properties of the remaining terms we get

E
(
H1

)
=

N∑
k = 2

xk − xk−1

xk
≥

N∑
k = 2

xk − xk−1

1
= 1− d. (16c)

Combining (15) with the upper bound (16a) we get

0 ≤
E
(
H1

)
b
(
H1

) ≤ (N − 1)(1− d
1

N−1 )

− log d
.

Letting d → 0, the upper bound above delivers the first limit in (14). Combining (15) with the upper and lower bounds (16b),

(16c) we get

d − 1

log d
≤
E
(
H1

)
b
(
H1

) ≤ d − 1

d log d
.

Letting d → 1, the second limit in (14) follows. 2

3.2. Variance and Confidence Intervals of the Monotone Random Forest ΩMRF

In the present section we estimate the variance of the heights through the monotone random forest and use this information to

give a number of Bernoulli trials (random sampling) in order to guarantee a confidence interval with a confidence level for the

computed value of the expected height.

Theorem 3.9 Let P = {In : n ∈ [N]} and ΩMRF be as in Definition 3.2. Then

Var(Hi) =
∑
k 6=i

E(Xi ,k) +
∑
k 6=i

E(Xi ,k)
∑
6̀=i
` 6=k

E(Xi ,`)− E2(Hi), (17a)

Var(Hi) ≤ E(Hi), (17b)

for all i = 0, . . . , N.

Proof. Recall that Var(Hi) = E(H2
i )− E2(Hi) and that Hi =

∑
k 6=i

Xi ,k , then

Var(Hi) = E(H2
i )− E2(Hi) =

∑
k 6=i

E(Xi ,k) +
∑
k 6=i

∑
6̀=i
6̀=k

E(Xi ,kXi ,`)− E2(Hi).
(18)

In order to analyze the independence of the random variables involved in the expression above we proceed by cases

k < i < ` or ` < i < k :

P(Xi ,kXi ,` = 1) = P(X`,k = 1)P(Xi ,` = 1),

k < ` < i or i < ` < k :

E(Xi ,kXi ,`) = P(Xi ,kXi ,` = 1) = P(Xi ,k = 1)P(Xi ,` = 1|Xi ,k = 1) = E(Xi ,k)E(Xi ,`),
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` < k < i or i < k < ` :

E(Xi ,kXi ,`) = P(Xi ,kXi ,` = 1) = P(Xi ,` = 1)P(Xi ,k = 1|Xi ,` = 1) = E(Xi ,`)E(Xi ,k).

Using the latter to bound the second summand of the right hand side in the expression (18), we get∑
k 6=i

∑
6̀=i
6̀=k

E(Xi ,kXi ,`) =
∑
k 6=i

∑
6̀=i
6̀=k

E(Xi ,k)E(Xi ,`)

=
∑
k 6=i

E(Xi ,k)
∑
` 6=i
6̀=k

E(Xi ,`)

≤
∑
k 6=i

E(Xi ,k)
∑
` 6=i

E(Xi ,`) = E2(Hi).

Combining the equality of the second line above with (18), Equation (17a) follows. Finally, combining the inequality of the third

line in the expression above with (18), the estimate (17b) follows. 2

Getting an estimate of the variance is useful to determine the number of Bernoulli trials (sampling) that has to be done in order

to assure a confidence level for the numerical results. For instance, if the confidence interval is to furnish, respectively a 90%

and 95% confidence, the number of trials is given by (see [13])

K0
def
=
(1.645

0.1

)2Var(Hi), K0
def
=
(1.96

0.05

)2Var(Hi).

Therefore, we would like the value of
N

max
j = 1
Var(Hj). However, it is not possible to give a closed formula, hence we aim for an

estimate. For a fixed number of N points distributed inside a fixed interval, namely (0, 1), it is well-known that the variance of

the heights will be maximum when the points are equidistant i.e., the chances for an interval to be chosen attain its maximum

level of uncertainty. Consequently, we adopt the maximum possible variance of a monotone partition P whose endpoints are

xi =
i

N
, i = 0, 1, . . . , N. We use the equality (18) to compute numerically such maxima, the table 1 displays certain important

values.

Exponent Intervals Maximum

j 3j Variance

1 3 0.25

2 9 1.32

3 27 3.22

4 81 5.32

5 243 7.48

6 729 9.67

7 2187 11.86

Table 1. Maximum Variance Table

An elementary linear regression adjustment gives

Var(3j) = 1.99j − 2.38, κ = 0.9967, σ = 0.076.

Here κ is the correlation coefficient and σ is the standard error. A quick change of variable gives

Var(n) =
1.99

log 3
log n − 2.38, κ = 0.9967, σ = 0.076, (20)

where n is the number of intervals in the monotone partition P.

For a general problem, we compute the corresponding value σ̃2
N from the expression (18), adopt it from a table such as 1, or

use a regression model such as Equation (20). In the following, we use the adopted value of σ̃2
N in (21), to compute the number

of necessary Bernoulli trials K according to the desired confidence level

K
def
=
(1.645

0.1

)2
σ̃2
N , K

def
=
(1.96

0.05

)2
σ̃2
N . (21)
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3.3. The Relationship Between Monotone Random Trees and iTrees

In the present section, we illustrate the link between the monotone random tree algorithm introduced in Definition 3.2 and the

iTree introduced in Definition 1.1 for the 1D setting. To that end we first recall a definition and a proposition from basic graph

theory (see [6])

Definition 3.10 The line graph L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if

and only if the corresponding edges in G have a vertex in common.

Proposition 3.11 The line graph of a tree is also a tree. Moreover, h
(
L(T )

)
= h(T )− 1, where h(·) denotes the height of the

graph.

Proof. See [6]. 2

In order to illustrate the relationship between monotone random trees and iTrees consider the tree T of Figure 2 and transform

it into the one displayed in Figure 3 (a), denoted by G(T ). The set of data S is given by the extremes of the intervals in P, each

node hosting an interval has two children and the edges were labeled, using the corresponding left and right subsets generated

when the interval is chosen. Abstract vertices were added whenever the label had a singleton. The root of G(T ) is also an

abstract vertex; additionally, we introduce an edge connecting rt(G(T )) with rt(T ), labeled by the full set S. Once the G(T )

tree is constructed, it is direct to see that its line graph L
(
G(T )

)
is an isolation tree (iTree) of the data S.

I4

I1

I3

I2

I5

•

•

••

•

••

{x0, x1, x2, x3, x4, x5}

{x0, x1, x2, x3} {x4, x5}

{x0} {x1, x2, x3} {x4} {x5}

{x1} {x2, x3}

{x2} {x3}

(a) Structure G(T ), extension and relabeling of the monotone

random tree T of Figure 2.

{x0, x1, x2, x3, x4, x5}

{x0, x1, x2, x3} {x4, x5}

{x0} {x1, x2, x3} {x4} {x5}

{x1} {x2, x3}

{x2} {x3}

(b) Structure L
(
G(T )

)
, line graph of G(T ).

Figure 3. Schematics of the bijection between ΩMRF and ΩIRF. Figure (a) shows the first part of the transformation, while Figure (b) depicts the the mapped

graph in ΩIRF.

Remark 3.12 It is possible to furnish a mathematically rigorous algorithm that would give a probability-preserving bijection

between the spaces ΩMRF and ΩIRF in 1D. This would deliver relationships between expected heights and topological properties,

as well as properties of the variance for the 1D ΩIRF. However, such construction is highly technical and contributes little to our

topic of interest, therefore we omit it here. On the other hand, we present Theorem 3.13 as a simple theoretical tool relating

expected heights and topological properties.

Theorem 3.13 Let S
def
= {x0, x1, . . . , xN} be an arbitrary set of points on the line such that x0 < x1 < . . . < xN . Let Hi : ΩIRF →N

be the random variable with Hi(T ) defined as the depth of the data xi in the isolation random tree T . Then

E(Hi) = O
(

log
( xN − x0

dist(xi , S − {xi})

))
. (22)
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Proof. Define the intervals In
def
= xn − xn−1 for every n ∈ [N] and the partition P def

= {In : n ∈N}. Denote by H̃i the random

variable indicating the depth in ΩMRF of the interval Ii , then the following relations are direct

Hi = 1 + max{H̃i , H̃i−1}, i ∈ {1, . . . , N},

H0 = 1 + H̃0, HN = 1 + H̃N .

Since H̃j ≥ 0 for all j ∈ [N], then Hi ≤ 1 + H̃i + H̃i−1, for all i ∈ [N]; hence

E(Hi) ≤ 1 + E(H̃i) + E(H̃i−1)

≤ 1 +O
(

log
(∑{|Ii | : n ∈ [N]}

|Ii |

))
+O

(
log
(∑{|Ii | : n ∈ [N]}

|Ii−1|

))
≤ O

(
log
(∑{|Ii | : n ∈ [N]}

min{|Ii−1|, |Ii |}

))
.

Since xN − x0 =
∑
{|In| : n ∈ [N]} and dist(xi , S − {xi}) = min{|Ii−1|, |Ii |}, the proof is complete. 2

3.4. A Modification of the IRF Method

In the current section we present an alternative version of the IRF Method motivated by the mathematical understanding we

have on the 1D setting. The Directional Isolation Random Forest Method (DIRF Method) works as follows

Definition 3.14 (The DIRF Method) Given an input data set S
def
= {x0, x1, . . . , xN} ⊆Rd , a number of Bernoulli trials K and

an anomaly threshold criterion.

(i) Find the principal directions of the set S.

(ii) Project the data on each direction, i.e., generate πj(S)
def
= {x · êj : x ∈ S}, for j = 1, . . . , d .

(iii) For each Bernoulli trial, select at random one direction, namely j ∈ [d ]. Perform iTree (see Defintion 1.1 and/or Algorithm

1) on Sj = πj(S) and store the heights {h(x) : x ∈ S} in a Log.

(iv) For each x ∈ S, define HDIRF(x) as the average height of the collection of heights {hk(x) : k = 1, . . . , K}.

(v) Declare as anomalies A
def
= {x ∈ S : HDIRF(x) satisfies the anomaly threshold criterion}.

It is understood that the number of Bernoulli trials K (see Section 3.2), is chosen to assure a confidence level for the computed

value of the expected heights. Notice that

HDIRF(x) −−−−→
K→∞

1

d

d∑
i = 1

E
(
H(i)(x)

)
, for all x ∈ S. (23)

Here, E
(
H(i)(x)

)
indicates the expected height of the data x · êi within the IRF of the set Si , for all i ∈ [d ]. The statement (23)

can be easily seen as follows: define Ai
def
= {k ∈ [K] : trial k choses directon i}, then

HDIRF(x) =
1

K

K∑
k = 1

hk(x) =

d∑
i = 1

#Ai
K

1

#Ai

∑
k ∈Ai

hk(x). (24)

Due to the Law of Large Numbers (see [4]) it is clear that for all i ∈ [d ], it holds that #Ai
K
−−−−→
K→∞

1
d

and due to Corollary 2.5

1
#Ai

∑
k ∈Ai

hk(x) −−−−→
K→∞

E
(
H(i)
(
x
))

.

Theorem 3.15 (Computational Complexity of the Methods) (i) The computational cost of the DIRF method is O(n log n).

(ii) Under the hypothesis that DIRF and IRF have variance of the same order, the IRF method’s computational cost is

O(n log n). (As suggested in [9, 10].)

Proof.

(i) Combining (21) and (20) with Proposition 1.2 the result follows.

(ii) The hypothesis on the IRF variance implies that (21) and (20) are valid. Therefore, the previous reasoning applies and the

proof is complete.

2
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4. Numerical Experiments.

The present section is devoted to the design and execution of numerical experiments in order to compare the performance of

both methods: IRF and DIRF. The following aspects are important in this respect

(i) The codes are implemented in python, some of the used libraries are pandas, scipy, numpy and matplotlib.

(ii) Although the experiments use benchmarks already labeled, we also use the distance-based definition 4.1 of outlier, introduced

in [2]

Definition 4.1 Let r > 0 and 0 ≤ p ≤ 1 be two fixed parameters and S ⊆Rd be a set. A point x ∈ S is said to be an

outlier with respect to the parameters r and p if

#
(
B(x, r) ∩ S

)
#S

≤ p. (25)

Here B(x, r)
def
=
{

z ∈Rd : ‖x− z‖ ≤ r
}

, with ‖ · ‖ the Euclidean norm.

(iii) The number of sampled trees K, inside the random forest (or Bernoulli trials) is computed combining (21) and (20).

(iv) It is not our intention to debate the definition of an anomaly classifying threshold here. Therefore, our analysis runs

through several quantiles acting as anomaly threshold criteria, which we adopt empirically based on observations of each

case/example. That is, we state that x is an anomaly if for the IRF method (respectively the DIRF method) if HIRF(x)

(respectively HDIRF(x) ) belongs to the lowest 1%, 2%, 3% (and so forth) of the set {HIRF(y) : y ∈ S} (respectively, the

set {HDIRF(y) : y ∈ S}).

(v) In both examples we use the PCA Method (Principal Components Analysis, see [5]) because of the high dimension of

the original data. On one hand, PCA is part of the DIRF method and on the other hand the IRF method works better

when PCA is applied, hence we use for both methods in the experiments to make them comparable. A different set of

principal components is used in each example. These sets were chosen empirically according to the eigenvalues’ order of

magnitude, for better illustration of both methods (IRF and DIRF). Moreover, beyond the highest number of components

both methods severely deteriorate due to the noise introduced by the lower order components.

(vi) Our study will analyze, not only anomalies correctly detected but also the performance of the method against false positives.

In practice, both methods IRF and DIRF need a threshold under which all the values are declared anomalies by the method.

This will include a number of false positives which we also quantify in our examples.

Example 4.2 The first example uses the benchmark “Breast Cancer Wisconsin (Diagnosis) Data Set”, downloaded from

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data. Although the original data base contains 569 individuals,

213 patients (37.2%) were diagnosed with cancer. It is clear that the patients diagnosed with cancer can not be considered

anomalies if the full data base is used for the analysis. Therefore the original data set was modified: the subset of healthy patients

was left intact and 20 randomly chosen patients with cancer (3.5%) were chosen to complete the set.

Two labels were used, the diagnosis label coming from the original data set itself and a distance-based label computed

according to Definition 4.1 with parameters r = 350, p = 0.05. The number of sampled trees (Bernoulli trials) is given by

K = 2250. The original dataset contains 32 columns, therefore we combine our technique with the PCA method (Principal

Components Analysis); in this particular example we choose the 1, 2, 4, 5, 7, 8 and 11 first components. Our experiments show

that both methods severely decay their quality from 11 components on, in particular both perform really poorly with the 32

components to be considered a viable option. Finally, the anomaly detection threshold quantiles are 0.5, 1, 2, 3, 4, 5, 6 and

7; chosen from observing the behavior of this particular case. hence, we analyze the problem with its 1, 2, 4, 5, 7, 8 and 11

first components. Moreover, our experiments show that both methods severely decay their quality from 11 components on (due

to the noise introduced by the lower order components). In particular both perform really poorly with the 32 components to

be considered a viable option. Finally, the anomaly detection threshold quantiles are 0.5, 1, 2, 3, 4, 5, 6 and 7; chosen from

observing the behavior of this particular case.

The table 2 reports the difference of achievements attained by both methods when subtracting the DIRF from IRF. The

predominance of negative and positive values in the columns “A” and “F” of the table 2 respectively, shows that the DIRF

method performs better than the IRF method. Specially in the detection of false positives where DIRF performs significantly

better than IRF: the former method presents convex curves, while the latter method shows concave (or pseudo-convex) curves

(see Figure 4 (b) and (d)).

Observe that the use of the quantiles is “dual” in the following sense. It is clear that all the curves tend to shift upwards when

the quantile is amplified. This is good from the anomaly detection point of view but bad from the false positives inclusion point

of view and it is hardly surprising: the larger the threshold, the more likely we are to detect more anomalies, but also the higher

the price of including false positives. For our particular example using a quantile of 4% seems to be the “balanced choice”.
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(a) IRF Method. Number of Components vs Percentage of Anomaly

Detection. Original Labeling.

(b) IRF Method. Number of Components vs Percentage of False Positives.

Original Labeling.

(c) DIRF Method. Number of Components vs Percentage of Anomaly

Detection. Distance Based Artificial Labeling.

(d) DIRF Method. Number of Components vs Percentage of False

Positives. Original Labeling.

Figure 4. Anomaly detection percentages for Example 4.2, Breast Cancer Diagnosis. All the graphics have the number of principal components in the x-axis

and multiple curves for the quantiles to be used as a threshold. Figure (a) and (c) depict anomalies detected by both methods with the original labeling, while

figures (b) and (d) display false positives introduced by both methods with the original labeling.

quantile [%] 0.5 1 2 3 4 5 6 7

components A F A F A F A F A F A F A F A F

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 -5.0 8.3 -5.0 6.3 0.0 0.0 0.0 0.0 5.0 -3.7

4 0.0 0.0 0.0 0.0 0.0 0.0 5.0 -8.3 0.0 0.0 -5.0 5.3 -5.0 4.3 -10.0 7.4

5 0.0 0.0 0.0 0.0 -5.0 12.5 0.0 0.0 5.0 -6.3 0.0 0.0 -10.0 8.7 -15.0 11.1

7 0.0 0.0 0.0 0.0 -5.0 12.5 -10.0 16.7 0.0 0.0 5.0 -5.3 5.0 -4.3 10.0 -7.4

8 0.0 0.0 0.0 0.0 -5.0 12.5 -5.0 8.3 -10.0 12.5 -5.0 5.3 5.0 -4.3 10.0 -7.4

11 0.0 0.0 0.0 0.0 -5.0 12.5 -10.0 16.7 -5.0 6.3 -10.0 10.5 0.0 0.0 0.0 0.0

Table 2. Table of differences IRF – DIRF, Breast Cancer Diagnosis, Example 4.2. All the values are the difference of percentages.

The columns “A” and “F” stand for anomalies and false positives respectively.

It must be observed that the quality of DIRF deteriorates with respect to IRF as we move along the diagonal of the table 2,

in particular DIRF performs poorly with respect to IRF from 7 PCA components and from the 6% quantile on.

The same experiments were performed when using the artificial distance-based labeling introduced in Definition 4.1. It can

be observed that both methods perform better for the anomaly detection, which is not unexpected because the DIRF method is

Math. Meth. Appl. Sci. 2014, 00 1–18 Copyright c© 2014 John Wiley & Sons, Ltd. 15
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strongly related to a distance function for anomalies, as shown in Theorem 3.8. However, both methods perform worse form the

false positives inclusion point of view. Finally, the DIRF method performs better than the IRF method, although its superiority

in the false positives inclusion is not as remarkable as in the first case.

(a) IRF Method Number of Components vs Percentage of Anomaly

Detection. Original Labeling.

(b) IRF Method. Number of Components vs Percentage of False Positives.

Original Labeling.

(c) DIRF Method. Number of Components vs Percentage of Anomaly

Detection. Distance Based Artificial Labeling.

(d) DIRF Method. Number of Components vs Percentage of False

Positives. Original Labeling.png

Figure 5. Anomaly detection percentages for Example 4.3, Lymphoma Diagnosis. All the graphics have the number of principal components in the x-axis and

multiple curves for the quantiles to be used as a threshold. Figure (a) and (c) depict anomalies detected by both methods with the original labeling, while

figures (b) and (d) display false positives introduced by both methods with the original labeling.

Example 4.3 The second example uses a benchmark of lymphoma diagnosis, downloaded from www.kaggle.com. The dataset

consists of 148 patients, with only 6 of them diagnosed with cancer, i.e. 4%.

Two labels were used, the diagnosis label coming from the original data set itself and a distance-based label computed according

to Definition 4.1 with parameters r = 300, p = 0.05. The number of sampled trees (Bernoulli trials) is given by K = 1800. The

original dataset containes 18 columns, in contrast with Example 4.2, the application of PCA yields eigenvalues whose order of

magnitude does not change as abruptly. Hence, we work with the 1, 3, 6, 9 and 13 first components. Our experiments show

that none of the methods has a good performance for any number of components and its quality decays even more from 6

components on (due to the noise introduced by the lower order components). Finally, the anomaly detection threshold quantiles

are 0.5, 1, 2, 3, 4, 5, 6 and 7 were chosen from observing the behavior of this particular case.

The table 3 reports the difference of achievements attained by both methods when subtracting the DIRF from IRF. Contrary

to the previous example, there is a predominance of positive and negative values in the columns “A” and “F” of the table

3 respectively, showing that the IRF method performs better than the DIRF method with some few exceptions, as Figure 5

displays, although the difference is marginal.
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quantile [%] 0.5 1 2 3 4 5 6 7

components A F A F A F A F A F A F A F A F

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 -20.0 16.7 -16.7 16.7 -12.5 16.7 -11.1 16.7 -9.1

6.0 16.7 -100.0 0.0 0.0 0.0 0.0 0.0 0.0 -16.7 16.7 0.0 0.0 16.7 -11.1 0.0 0.0

9.0 0.0 0.0 0.0 0.0 16.7 -33.3 16.7 -20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13.0 -16.7 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Table of differences IRF – DIRF Lymphoma Diagnosis, Example 4.3. All the values are the difference of percentages.

The columns “A” and “F” stand for anomalies and false positives respectively.

As in the previous example, the 4% quantile seems to be the “balanced choice”. In particular DIRF and IRF perform identically

from 9 PCA components on and from the 6% quantile on.

The same experiments were performed but using the artificial distance-based labeling introduced in Definition 4.1. In this

case, both methods perform almost identically and worse than in the case of the original labeling.

5. Conclusions and Final Discussion.

The present work yields several conclusions listed below.

(i) The IRF anomaly detectiom method introduced in [9, 10] has been mathematically analyzed. The well-posedness

(Proposition 1.2) and the convergence of the method (Corollary 2.5) have been established as well as the cardinality

(size) of the probabilistic space (Theorem 2.6).

(ii) Under mild assumptions, it has been proved (see Theorem 3.15) that the IRF method has a computational cost of the

order O(n log n), as claimed in [9, 10].

(iii) It has been shown that although the IRF method is well-defined and convergent, its target values {E(Hx) : x ∈ S} are

inconclusive when used as paramenters for anomaly detection (see Lemma 2.8 and Theorem 2.10) Moreover, the IRF

method can be analyzed deeply in the 1D case (Theorem 3.13) and it has been shown from the theoretical point of view

that its relationship with a notion of topological distance is not certain (see Theorem 3.8).

(iv) Taking advantage of the tractability of IRF for the 1D case, we have given theoretical estimates of the variance (Equation

(20)) and derived the size of the sampling space (Equation (21)), needed to guarantee confidence intervals for the empirical

values of the expected heights. We have suggested a modification of the method in Section 3.4, named DIRF method

(Directional Isolation Random Forest).

From the numerical examples in Section 4

(v) There is definitely correlation bewteen the heights computed by the methods (IRF and DIRF), but it could be strong as

in Example 4.2 or weak as in Example 4.3.

(vi) It is clear that the DIRF method is fully justified from the mathematical point of view which is desirable, however its

relationship with a notion of distance is not certain (see the extent of Theorem 3.8) for multiple dimensions. In the

examples we have seen IRF can perform better than DIRF, with a marginal difference. This is to be subject of extensive

empirical evaluation in future work.

(vii) Both numerical examples may suggest that the adequate number of PCA components to introduce in the IRF and DIRF

methods is one third of its total number of dimensions. Yet again, two experiments do not furnish enough numerical

evidence to support such a conjecture, ergo this aspect needs to be further studied.

Finally,

(vii) Although we have proved that the IRF method is inconclusive as a means to classify anomalies, experience shows that it

can provide satisfactory results in practice, it follows that the method is correlated with anomalies. There are two possible

approaches for enhancing the method:

a. Find sufficient conditions for the data combinatorial configuration, to assure a quality certificate of IRF.

b. Look for additional statistical parameters for anomaly detection (with computational cost no bigger than O(n log n))

to complement/contrast the information furnished by IRF.

Both research lines will be explored in future work.
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