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Summary

In wireless networked iterative learning control systems, the controller is separated
from the plant, and additive noises, random delays and data dropouts arise in both
sensor-to-controller and controller-to-actuator channels. In order to guarantee the
convergence performance of such systems with the effect of these uncertainties, an
input filter is designed based on a proportional iterative learning controller, so that
updated inputs can be filtered at the actuator side. Specifically, two data transmission
processes are first developed to describe the mix of those uncertainties in both chan-
nels by Bernoulli and Gaussian distributed variables with known distributions. Based
on state augmentation, the two data transmission processes are further combined
with the iterative learning process of controllers to build a unified filtering model.
According to this unified model, an optimal filter is designed via the projection the-
ory and implemented at the actuator side to filter the updated inputs in iteration
domain. Moreover, the convergence performance of the filtering error covariance
matrix is proved theoretically. Finally, some numerical results are given to illustrate
the effectiveness of the proposed method.
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1 INTRODUCTION

1.1 Backgrounds
During last few years, networked control systems (NCSs) have attracted more and more attention. Compared with conventional
systems with point-to-point transmission, measurements and inputs in NCSs all need to be transmitted over networks. In partic-
ular, the introduction of wireless networks separates the controller from the plant. As a result, such systems not only have such
advantages as easy setup and reduced maintenance, but also can be used in a variety of complex environments1,2,3.

In NCSs, the controller design is a challenging work. Fortunately, iterative learning control (ILC) is an effective strategy for the
control object operating repeatedly over a fixed time interval, which was first proposed by Arimoto for the robotic manipulator
to track a desired trajectory accurately4. The basic mechanism of this strategy is to update inputs for the next operation by
adjusting current inputs with tracking errors and proper learning gains. Compared with other control strategies, ILC not only
shows better tracking performance, but also requires less system information. As surveyed in5,6, the efficacy of ILC strategies
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has been researched in a number of existing works, and the concerned topics include initial errors, stochastic noises, parameter
optimization and so on.

However, the unreliability of wireless networks also brings some new challenges in guaranteeing the convergence performance
of wireless networked ILC systems. Since measured output errors and updated inputs would be distorted during the transmission
by unexpected network uncertainties such as additive noises, random delays and data dropouts, outputs fail to track the desired
trajectory accurately if the wireless networked ILC systems operate without considering the effect of these uncertainties.

1.2 Related works
The robustness of ILC systems has been researched for several years7,8,9, and some results on analyzing and processing of ILC
systems with measurement noise and process noise have been reported10,11,12. In13, however, authors highlighted that the additive
noise is different from the process noise and the measurement noise because the former is an external disturbance and added on
measurements and inputs during the transmission, while the latter two appear inside the ILC system. According to the discovery
that additive noises in both sensor-to-controller (SC) and controller-to-actuator (CA) channels are all constrained by the learning
gain, authors proposed a learning gain selection method to suppress the effect of additive noises on the convergence performance
of wireless networked ILC systems. In14, authors further pointed out that the additive noise in SC channel is accumulated only
in iteration domain, while the additive noise in CA channel is accumulated in both iteration and time domain simultaneously.

For ILC systems with delays, there are three different types involved such as fixed delays, random delays and varying delays.
The first is assumed that the delay is a constant, the second is modeled by a set of Bernoulli distributed sequences, and the last
one is generally given the lower and upper bounds of delays. Furthermore, the time delay would be suffered by different data.
Different from the state delay that is inherent in systems such as bath processes and man-machine systems15,16, the delay suffered
by measurements and inputs occurs in network environment. In17, the input delay is assumed to be known and compensated in
the previous cycle, and the constant measurement delay is compensated in the learning process of controllers. In18,19, authors
discussed the convergence performance of networked ILC systems with random delays. In particular, the delayed measurement
or input data was replaced by the synchronous one received in previous iteration.

With regard to data dropouts, the randomness of which can be described by Bernoulli distributed sequences or Markov chains.
As to the former, the value of variables means corresponding data is dropped or not20,21. As to the latter, inspired by the work
reported in22, the update process of inputs with random dropouts is modeled as a Markov chain23,24,25. In addition, a variety of
approaches were proposed for guaranteeing the convergence performance of networked ILC systems with random data dropouts,
and can be split into two categories: Kalman-type filtering methods and compensation methods. In26,27,28, authors filtered the
effect of measured data dropped dependently or not through selecting the learning gain adaptively. In17, authors replaced the
dropped data in time domain with the one received at last time instant in the same iteration. Motivated by the method proposed
in17 and the nature that inputs of ILC systems converge in iteration domain, authors compensated the dropped data in this domain
with the one received at the same time instant in last iteration29,30,31,32.

It is worthy of our attention that most of aforementioned works were confined to a special case that only one uncertainty
in single or both channels is considered. In fact, different uncertainties may be concurrent and jointly cause the performance
degradation of ILC systems. And what’s more, most of works processed the uncertainty at the controller side, which fails to
guarantee the convergence performance of inputs received at the actuator side.

1.3 Our contribution
Motivated by these two discoveries, it is important to address ILC systems under general communication conditions, and give
methods to guarantee the convergence performance of inputs received at the actuator side. In this paper, we study the conver-
gence performance of wireless networked ILC systems with additive noises, random delays and data dropouts in both SC and
CA channels, and design an optimal filter so that updated inputs can be filtered at the actuator side with the effect of these uncer-
tainties. To the best of our knowledge, this is the first time to address the convergence performance of ILC systems with those
uncertainties simultaneously from the perspective of input filtering. Specifically, main contribution is summarized as follows:

• two data transmission processes are first developed to describe the mix of additive noises, random delays and data dropouts
in both SC and CA channels by Bernoulli and Gaussian distributed variables with known distributions;
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• Based on state augmentation, a unified filtering model is built only by using the iterative learning process of controllers as
well as the two developed data transmission processes. Consequently, three uncertainties in both channels are all embodied
in the filtering model;

• According to the unified model, an optimal filter is designed in the linear minimum variance (LMV) sense via projection
theory, so updated inputs can be filtered at the actuator side with the effect of mixed uncertainties in both channels.

The rest of this paper is organized as follows: in section 2, the researched problem is formulated by considering a proportional-
type iterative learning controller and developing two transmission processes of both measured output errors and updated inputs.
In section 3, a unified filtering model is built, and the optimal filer is designed. Convergence performance of the filtering error
covariance is analyzed in section 4. Numerical examples are given in section 5. The last section warps up this paper in the
conclusion.

Notations: The superscript ‘−1’, ‘𝑇 ’ and ‘−𝑇 ’ denote inverse, transpose and combination of inverse and transpose actions,
respectively. The symbol ‘𝐼’ and ‘0’ represent identity and zero matrices with appropriate dimensions. (⋅) denotes the same
contents as that in the previous parenthesis;𝑃𝑟𝑜𝑏 {⋅} represents the occurrence probability of event ‘⋅’; ‘⊥’ denotes orthogonality.

2 PROBLEM FORMULATION

In this paper, we consider the plant controlled over wireless networks with the following proportional iterative learning controller:

𝑢𝑡𝑘+1(𝑡) = 𝑢𝑡𝑘(𝑡) + Γ(𝑡)𝑒𝑟𝑘(𝑡 + 1) (1)
where 𝑒𝑟𝑘(𝑡) stands for the received output error, 𝑢𝑡𝑘+1(𝑡) is the updated input and needs to be transmitted to the actuator, Γ(𝑡) is
the selected learning gain, 𝑡 ∈ [0, 1,⋯ , 𝑇 − 1] denotes the operation time, and 𝑘 indicates the iteration number.

Due to the unreliability of wireless channels, various uncertainties would arise and distort the received output error and input
data, which are denoted as 𝑒𝑟𝑘(𝑡) and 𝑢𝑟𝑘(𝑡) respectively in this situation. Taking additive noises, random one-step delays and data
dropouts into consideration, two data transmission processes can be developed to describe the mix of these uncertainties as

𝑢𝑟𝑘(𝑡) = 𝜉1,𝑘(𝑡)𝑢𝑡𝑘(𝑡) +
(
1 − 𝜉1,𝑘(𝑡 − 1)

)
𝜉2,𝑘(𝑡)𝑢𝑡𝑘(𝑡 − 1) +

(
1 − 𝜉1,𝑘(𝑡)

)
𝑢𝑟𝑘−1(𝑡) + 𝑚𝑘(𝑡) (2a)

𝑒𝑟𝑘(𝑡) = 𝜂1,𝑘(𝑡)𝑒𝑡𝑘(𝑡) +
(
1 − 𝜂1,𝑘(𝑡 − 1)

)
𝜂2,𝑘(𝑡)𝑒𝑡𝑘(𝑡 − 1) + 𝑛𝑘(𝑡) (2b)

where 𝜉1,𝑘(𝑡), 𝜉2,𝑘(𝑡), 𝜂1,𝑘(𝑡) and 𝜂2,𝑘(𝑡) are Bernoulli distributed variables taking value 0 or 1 with probabilities
Prob

{
𝜉𝑖,𝑘(𝑡) = 1

}
= 𝜉𝑖 and Prob

{
𝜂𝑖,𝑘(𝑡) = 1

}
= 𝜂̄𝑖, 𝑖 = 1, 2, in which 0 < 𝜉𝑖 ≤ 1 and 0 < 𝜂̄𝑖 ≤ 1. 𝑚𝑘(𝑡) and 𝑛𝑘(𝑡) are Gaussian

distributed variables with zero means and variance 𝑄𝑚 and 𝑄𝑛. Additionally, 𝜉1,𝑘(𝑡), 𝜉1,𝑘(𝑡), 𝜂1,𝑘(𝑡), 𝜂2,𝑘(𝑡), 𝑚𝑘(𝑡) and 𝑛𝑘(𝑡) are
independent of each other for all 𝑘, 𝑡 and 𝑖 indices.

In the transmission process of updated input data, 𝜉1,𝑘(𝑡) denotes that the input data is received on time or one-step delayed,
and 𝜉2,𝑘(𝑡) represents the one-step delayed input data is received at current moment or not. Similarly, 𝜂1,𝑘(𝑡) and 𝜂2,𝑘(𝑡) are used
to describe the effect of the same uncertainties on the transmission process of output error data. Clearly, possible one-step delays
and data dropouts in the data transmission processes can be described in four different cases as following:

Case 1 No data is received at current moment, then 𝜉1,𝑘(𝑡)=𝜂1,𝑘(𝑡)=0, and 𝜉1,𝑘(𝑡− 1)=𝜂1,𝑘(𝑡− 1)=1 or 𝜉2,𝑘(𝑡)=𝜂2,𝑘(𝑡)=0. In this
case, it is obvious that 𝑢𝑟𝑘(𝑡) = 𝑢𝑟𝑘−1(𝑡) + 𝑚𝑘(𝑡) and 𝑒𝑟𝑘(𝑡) = 𝑛𝑘(𝑡);

Case 2 Only current data is received on time, then 𝜉1,𝑘(𝑡)=𝜂1,𝑘(𝑡)=1, and 𝜉1,𝑘(𝑡 − 1)=𝜂1,𝑘(𝑡 − 1)=1 or 𝜉2,𝑘(𝑡)=𝜂2,𝑘(𝑡)=0. In this
case, we find that 𝑢𝑟𝑘(𝑡) = 𝑢𝑡𝑘(𝑡) + 𝑚𝑘(𝑡) and 𝑒𝑟𝑘(𝑡) = 𝑒𝑡𝑘(𝑡) + 𝑛𝑘(𝑡);

Case 3 Only one-step delayed data is received at present moment, then 𝜉1,𝑘(𝑡)=𝜂1,𝑘(𝑡)=0, 𝜉1,𝑘(𝑡 − 1)=𝜂1,𝑘(𝑡 − 1)=0 and
𝜉2,𝑘(𝑡)=𝜂2,𝑘(𝑡)=0. In this case, it can be easily seen that 𝑢𝑟𝑘(𝑡) = 𝑢𝑡𝑘(𝑡 − 1) + 𝑢𝑟𝑘−1(𝑡) + 𝑚𝑘(𝑡) and 𝑒𝑟𝑘(𝑡) = 𝑒𝑡𝑘(𝑡 − 1) + 𝑛𝑘(𝑡);

Case 4 The current data and the one-step delayed data are all received at present moment simultaneously, then 𝜉1,𝑘(𝑡)=𝜂1,𝑘(𝑡)=1,
𝜉1,𝑘(𝑡−1)=𝜂1,𝑘(𝑡−1)=0, and 𝜉2,𝑘(𝑡)=𝜂2,𝑘(𝑡)=1. In this case, 𝑢𝑟𝑘(𝑡) = 𝑢𝑡𝑘(𝑡)+𝑢

𝑡
𝑘(𝑡−1)+𝑚𝑘(𝑡) and 𝑒𝑟𝑘(𝑡) = 𝑒𝑡𝑘(𝑡)+𝑒

𝑡
𝑘(𝑡−1)+𝑛𝑘(𝑡).

Remark 1. In the developed data transmission processes, if transmitted input data 𝑢𝑡𝑘(𝑡) is not received on time, 𝑢𝑟𝑘−1(𝑡) would
be used as a standby to drive the actuator whether one-step delayed data 𝑢𝑡𝑘(𝑡 − 1) is received or not at current moment. The
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FIGURE 1 Diagram of ILC systems over wireless networks with the input filter.

reason we compensate the input data 𝑢𝑡𝑘(𝑡) not received on time with 𝑢𝑟𝑘−1(𝑡) is that the actuator needs to be driven by inputs
all the time and the inputs converge in iteration domain. As to the controller, if transmitted output error 𝑒𝑡𝑘(𝑡) is not received on
time, no data is used as a standby to replace it, and then the learning process is suspended at this moment. The essence of this
compensation strategy is to guarantee the convergence performance of inputs by trading their convergence speed.

Obviously, uncertainties not only distort the updating of input data at the controller side but also contaminate the input data
received at the actuator side, so the convergence performance of ILC systems cannot be guaranteed. According to this discovery,
the idea behind this paper is to design an input filter, so the updated input 𝑢𝑡𝑘 (𝑡) can be filtered at the actuator side with effect of
these uncertainties in both channels. After that, the filtered input 𝑢̂𝑘|𝑘(𝑡) is used to drive the actuator. For a better understanding,
the idea is further illustrated in Figure 1. In next section, we first build a unified filtering model, and then design an optimal filter
based on this model.

3 MAIN RESULTS

3.1 Building of the unified filtering model
In order to design the input filter, the filtering model needs to be built first. Fortunately, the iterative learning process is known
when the controller is established, and can be used to describe the the state equation in filtering model. Additionally, due to
the random one-step delay occurs in time domain but the dropped input data is compensated in iteration domain, two iterative
learning processes at the neighboring time instants in the same iteration are used simultaneously. Furthermore, in order to
embrace the three uncertainties in both channels in the state equation, these two iterative learning processes are combined with
developed data transmission processes based on state augmentation. After that, the measurement equation in filtering model is
represented by the transmission process of updated inputs. With these two equations, the unified filtering model can be built.
For the sake of concise expression, we let 𝜉2,𝑘(𝑡) =

(
1 − 𝜉1,𝑘(𝑡 − 1)

)
𝜉2,𝑘(𝑡), 𝜂̃2,𝑘(𝑡) =

(
1 − 𝜂1,𝑘(𝑡 − 1)

)
𝜂2,𝑘(𝑡). Since ILC systems

converge in iteration domain, the input filtering is also designed in this domain, and the time index 𝑡 is omitted. Consequently,
the filtering model can be written in an augmented form as

𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐵1,𝑘𝑈𝑘 + 𝐵2,𝑘𝑊𝑘 (3)

𝑌𝑘 = 𝐶𝑘𝑋𝑘 + 𝑉𝑘 (4)
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where 𝑋𝑘+1 =

⎡⎢⎢⎢⎢⎣
𝑢𝑡𝑘+1(𝑡)

𝑢𝑡𝑘+1(𝑡 − 1)
𝑢𝑟𝑘(𝑡)

𝑒𝑟𝑘(𝑡 + 1)

⎤⎥⎥⎥⎥⎦
, 𝑈𝑘 =

⎡⎢⎢⎣
𝑒𝑡𝑘(𝑡 + 1)
𝑒𝑡𝑘(𝑡)

𝑒𝑡𝑘(𝑡 − 1)

⎤⎥⎥⎦, 𝑌𝑘 = 𝑢𝑟𝑘(𝑡), 𝑊𝑘 =
⎡⎢⎢⎣

𝑚𝑘(𝑡)
𝑛𝑘(𝑡)

𝑛𝑘(𝑡 + 1)

⎤⎥⎥⎦, 𝑉𝑘 = 𝑚𝑘(𝑡),

𝐴𝑘 =

⎡⎢⎢⎢⎢⎣
𝐼 0 0 0
0 𝐼 0 0

𝜉1,𝑘 (𝑡) 𝐼 𝜉2,𝑘(𝑡))𝐼
(
1 − 𝜉1,𝑘 (𝑡)

)
𝐼 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
, 𝐵1,𝑘 =

⎡⎢⎢⎢⎢⎣
𝜂1,𝑘 (𝑡 + 1) Γ(𝑡) 𝜂̃2,𝑘(𝑡 + 1)Γ(𝑡) 0

0 𝜂1,𝑘 (𝑡) Γ(𝑡 − 1) 𝜂̃2,𝑘(𝑡)Γ(𝑡 − 1)
0 0 0

𝜂1,𝑘 (𝑡 + 1) 𝐼 𝜂̃2,𝑘(𝑡 + 1)𝐼 0

⎤⎥⎥⎥⎥⎦
,

𝐵2,𝑘 =

⎡⎢⎢⎢⎢⎣
0 0 Γ(𝑡)
0 Γ(𝑡 − 1) 0
𝐼 0 0
0 0 𝐼

⎤⎥⎥⎥⎥⎦
, 𝐶𝑘 =

[
𝜉1,𝑘 (𝑡) 𝐼 𝜉2,𝑘(𝑡)𝐼

(
1 − 𝜉1,𝑘 (𝑡)

)
𝐼 0

]
.

In view of the previously mentioned assumptions about network uncertainties, it can be easily seen that 𝐸
{
𝑊𝑘𝑊 𝑇

𝑘

}
= 𝑄𝑊 =⎡⎢⎢⎣

𝑄𝑚 0 0
0 𝑄𝑛 0
0 0 𝑄𝑛

⎤⎥⎥⎦, 𝐸
{
𝑉𝑘𝑉 𝑇

𝑘

}
= 𝑄𝑉 = 𝑄𝑚, 𝐸

{
𝑊𝑘𝑉 𝑇

𝑘

}
= 𝑄𝑆 =

⎡⎢⎢⎣
𝑄𝑚 0 0
0 0 0
0 0 0

⎤⎥⎥⎦, 𝐸
{
𝜉1,𝑘(𝑡)

}
= 𝜉1 = 𝛼1, 𝐸

{
𝜉2,𝑘(𝑡)

}
=
(
1 − 𝜉1

)
𝜉2 =

𝛼2, 𝐸
{
𝜂1,𝑘(𝑡)

}
= 𝜂̄1 = 𝛽1, 𝐸

{
𝜂̃2,𝑘(𝑡)

}
=
(
1 − 𝜂̄1

)
𝜂̄2 = 𝛽2.

3.2 Design of the optimal input filter
Based on the filtering model built in last subsection, an optimal input filter is designed in the LMV sense by using the projection
theory. Before presenting the optimal input filter for augmented model (3) and (4), we first define 𝐴̄𝑘, 𝐵̄1,𝑘, 𝐵̄2,𝑘 and 𝐶̄𝑘 are
mathematical expectations of 𝐴𝑘, 𝐵1,𝑘, 𝐵2,𝑘 and 𝐶𝑘 respectively, which can be computed by replacing the stochastic parameters
with their mathematical expectations. After that, the following lemmas are introduced.

Lemma 1. For unified filtering model (3) and (4), we define Δ𝐴𝑘
Δ
= 𝐴𝑘 − 𝐴̄𝑘, Δ𝐵1,𝑘

Δ
= 𝐵1,𝑘 − 𝐵̄1,𝑘, Δ𝐵2,𝑘

Δ
= 𝐵2,𝑘 − 𝐵̄2,𝑘,

Δ𝐶𝑘
Δ
= 𝐶𝑘 − 𝐶̄𝑘, and the following results can be derived:

Δ𝐴𝑘 =
(
𝜉1,𝑘 (𝑡) − 𝛼1

)
Ψ1 +

(
𝜉2,𝑘 (𝑡) − 𝛼2

)
Ψ2

Δ𝐵1,𝑘 =
(
𝜂1,𝑘 (𝑡 + 1) − 𝛽1

)
Ψ3 +

(
𝜂̃2,𝑘 (𝑡 + 1) − 𝛽2

)
Ψ4 +

(
𝜂1,𝑘 (𝑡) − 𝛽1

)
Ψ5 +

(
𝜂̃2,𝑘 (𝑡) − 𝛽2

)
Ψ6

Δ𝐵2,𝑘 = 0
Δ𝐶𝑘=

(
𝜉1,𝑘 (𝑡) − 𝛼1

)
Ψ7 +

(
𝜉2,𝑘 (𝑡) − 𝛼2

)
Ψ8 (5)

with

Ψ1 =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
𝐼 0 −𝐼 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
, Ψ2 =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 𝐼 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
, Ψ3 =

⎡⎢⎢⎢⎢⎣
Γ(𝑡) 0 0
0 0 0
0 0 0
I 0 0

⎤⎥⎥⎥⎥⎦
, Ψ4 =

⎡⎢⎢⎢⎢⎣
0 Γ(𝑡) 0
0 0 0
0 0 0
0 I 0

⎤⎥⎥⎥⎥⎦
, Ψ5 =

⎡⎢⎢⎢⎢⎣
0 0 0
0 Γ(𝑡 − 1) 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
, Ψ6 =

⎡⎢⎢⎢⎢⎣
0 0 0
0 0 Γ(𝑡 − 1)
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
,

Ψ7 =
[
𝐼 0 −𝐼 0

]
, Ψ8 =

[
0 −𝐼 0 0

]
.

Proof. Equation (5) follows directly from (3).

Lemma 2. For unified filtering model (3) and (4), we define the mean of 𝑋𝑘 and 𝑈𝑘 as 𝑋̄𝑘 = 𝐸
{
𝑋𝑘

}
and 𝑈̄𝑘 = 𝐸

{
𝑈𝑘

}
, and

the second-order moment matrix of 𝑋𝑘 as 𝑞𝑘+1 = 𝐸
{
𝑋𝑘+1𝑋𝑇

𝑘+1

}
, which satisfies the following recursion:

𝑞𝑘+1 = 𝐴̄𝑘𝑞𝑘𝐴̄
𝑇
𝑘 + 𝐴̄𝑘𝑋̄𝑘𝑈̄

𝑇
𝑘 𝐵̄

𝑇
1,𝑘 + 𝐵̄1,𝑘𝑈̄𝑘𝑋̄

𝑇
𝑘 𝐴̄

𝑇
𝑘 + 𝐵̄1,𝑘𝑈̄𝑘𝑈̄

𝑇
𝑘 𝐵̄

𝑇
1,𝑘 + 𝐵̄2,𝑘𝑄𝑊 𝐵̄𝑇

2,𝑘

+
(
𝛼1 − 𝛼2

1
)
Ψ1𝑞𝑘Ψ𝑇

1 +
(
𝛼2 − 𝛼2

2
)
Ψ2𝑞𝑘Ψ𝑇

2 +
(
𝛽1 − 𝛽21

)
Ψ3𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
3

+
(
𝛽2 − 𝛽22

)
Ψ4𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
4 +

(
𝛽1 − 𝛽21

)
Ψ5𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
5 +

(
𝛽2 − 𝛽22

)
Ψ6𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
6

(6)

Proof. Equation (3) can be rewritten as

𝑋𝑘+1 =
(
𝐴̄𝑘 + Δ𝐴𝑘

)
𝑋𝑘 +

(
𝐵̄1,𝑘 + Δ𝐵1,𝑘

)
𝑈𝑘 + 𝐵2,𝑘𝑊𝑘 (7)
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Substituting (7) into 𝑞𝑘+1 = 𝐸
{
𝑋𝑘+1𝑋𝑇

𝑘+1

}
, and noting that 𝑋𝑘⊥𝑊𝑘 and 𝑈𝑘⊥𝑊𝑘, then 𝑞𝑘+1 can be computed by

𝑞𝑘+1 = 𝐴̄𝑘𝑞𝑘𝐴̄
𝑇
𝑘 + 𝐴̄𝑘𝑋̄𝑘𝑈̄

𝑇
𝑘 𝐵̄

𝑇
1,𝑘 + 𝐵̄1,𝑘𝑈̄𝑘𝑋̄

𝑇
𝑘 𝐴̄

𝑇
𝑘 + 𝐵̄1,𝑘𝑈̄𝑘𝑈̄

𝑇
𝑘 𝐵̄

𝑇
1,𝑘

+ 𝐸
{
Δ𝐴𝑘𝑞𝑘Δ𝐴𝑇

𝑘

}
+ 𝐸

{(
Δ𝐵1,𝑘𝑈̄𝑘

)
(⋅)𝑇

}
+ 𝐸

{
𝐵2,𝑘𝑊𝑘𝑊

𝑇
𝑘 𝐵𝑇

2,𝑘

} (8)

𝐸
{
Δ𝐴𝑘𝑞𝑘Δ𝐴𝑇

𝑘

}
=
(
𝛼1 − 𝛼2

1
)
Ψ1𝑞𝑘Ψ𝑇

1 +
(
𝛼2 − 𝛼2

2
)
Ψ2𝑞𝑘Ψ𝑇

2 (9)

𝐸
{(

Δ𝐵1,𝑘𝑈𝑘
)
(⋅)𝑇

}
=
(
𝛽1 − 𝛽21

)
Ψ3𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
3 +

(
𝛽2 − 𝛽22

)
Ψ4𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
4

+
(
𝛽1 − 𝛽21

)
Ψ5𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
5 +

(
𝛽2 − 𝛽22

)
Ψ6𝑈̄𝑘𝑈̄

𝑇
𝑘 Ψ

𝑇
6

(10)

𝐸
{
𝐵2,𝑘𝑊𝑘𝑊

𝑇
𝑘 𝐵𝑇

2,𝑘

}
= 𝐵̄2,𝑘𝑄𝑊 𝐵̄𝑇

2,𝑘 (11)

Substituting (9)-(11) into (8), (6) is derived.

In the following, we design the optimal filter according to the projection theory33. For the sake of easy manipulation, we
first define 𝜀𝑘 as the innovation sequence with covariance 𝜃𝑘 = 𝐸

{
𝜀𝑘𝜀𝑇𝑘

}
, 𝐾𝑘 = 𝐸

{
𝑋𝑘𝜀𝑇𝑘

}
𝜃−1𝑘 and 𝐿𝑘 = 𝐸

{
𝑋𝑘+1𝜀𝑇𝑘

}
𝜃−1𝑘

as the filtering and prediction gain matrices, 𝑃𝑘+1|𝑘 and 𝑃𝑘|𝑘 are one-step prediction and filtering error covariance matrices,
𝑋̂𝑘|𝑘−1 = min

𝜃1,𝑘
𝐸
{(

𝜃1,𝑘 −𝑋𝑘
)
(⋅)𝑇

}
, 𝑋̂𝑘+1|𝑘−1 = min

𝜃2,𝑘
𝐸
{(

𝜃2,𝑘 −𝑋𝑘+1
)
(⋅)𝑇

}
, 𝑌𝑘|𝑘−1 = min

𝜃3,𝑘
𝐸
{(

𝜃3,𝑘 − 𝑌𝑘
)
(⋅)𝑇

}
, where 𝜃1,𝑘,

𝜃2,𝑘 and 𝜃3,𝑘 are linear functions of 𝑌1, 𝑌2, …, and 𝑌𝑘−1.

Theorem 1. For the unified model (3) and (4), the recursive optimal filter is given by

𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 +𝐾𝑘𝜀𝑘 (12)

𝑋̂𝑘+1|𝑘 = 𝑋̂𝑘+1|𝑘−1 + 𝐿𝑘𝜀𝑘 (13)

𝜀𝑘 = 𝑌𝑘 − 𝑌𝑘|𝑘−1 (14)

𝑋̂𝑘+1|𝑘−1 = 𝐴𝑘𝑋𝑘|𝑘−1 + 𝐵1,𝑘𝑈𝑘 (15)

𝑌𝑘|𝑘−1 = 𝐶𝑘𝑋̂𝑘|𝑘−1 (16)

𝜃𝑘 = 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑇
𝑘 + 𝐽𝑘 (17)

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑇
𝑘 𝜃

−1
𝑘 (18)

𝐿𝑘 =
(
𝐴𝑘𝑃𝑘|𝑘−1𝐶𝑇

𝑘 +𝐻𝑘

)
𝜃−1𝑘 (19)

𝑃𝑘+1|𝑘 = (
𝐴𝑘 − 𝐿𝑘𝐶𝑘

)
𝑃𝑘|𝑘−1(𝐴𝑘 − 𝐿𝑘𝐶𝑘

)𝑇

+ 𝐿𝑘𝑄𝑉𝐿
𝑇
𝑘 + Ω1,𝑘 + Ω2,𝑘 + Ω3,𝑘 − Ω4,𝑘 − Ω𝑇

4,𝑘

(20)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑘𝜃𝑘𝐾
𝑇
𝑘 (21)

where

𝐻𝑘 =
(
𝛼1 − 𝛼2

1
)
Ψ1𝑞𝑘Ψ𝑇

7 +
(
𝛼2 − 𝛼2

2
)
Ψ2𝑞𝑘Ψ𝑇

8 + 𝐵2,𝑘𝑄𝑆

𝐽𝑘 =
(
𝛼1 − 𝛼2

1
)
Ψ7𝑞𝑘Ψ𝑇

7 +
(
𝛼2 − 𝛼2

2
)
Ψ8𝑞𝑘Ψ𝑇

8 +𝑄𝑉

Ω1,𝑘 =
(
𝛼1 − 𝛼2

1
) (

Ψ1 − 𝐿𝑘Ψ7
)
𝑞𝑘
(
Ψ1 − 𝐿𝑘Ψ7

)𝑇 +
(
𝛼2 − 𝛼2

2
) (

Ψ2 − 𝐿𝑘Ψ8
)
𝑞𝑘
(
Ψ2 − 𝐿𝑘Ψ8

)𝑇
Ω2,𝑘 =

(
𝛽1 − 𝛽21

)
Ψ3𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
3 +

(
𝛽1 − 𝛽21

)
Ψ4𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
4 +

(
𝛽2 − 𝛽22

)
Ψ5𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
5 +

(
𝛽2 − 𝛽22

)
Ψ6𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
6

Ω3,𝑘 = 𝐵̄2,𝑘𝑄𝑊 𝐵̄𝑇
2,𝑘
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Ω4,𝑘 = 𝐵̄2,𝑘𝑄𝑆𝐿
𝑇
𝑘

Proof. By projection, we have (12)-(14) naturally. Taking projection of both sides of (3) onto the linear space spanned by(
𝑌1, 𝑌2,… , 𝑌𝑘−1

)
and noting 𝐸

{
𝑊𝑘

}
= 0, (15) can be given by

𝑋̂𝑘+1|𝑘−1 = 𝐴𝑘𝑋𝑘|𝑘−1 + 𝐵1,𝑘𝑈𝑘

Taking projection of both sides of (4) onto the linear space spanned by
(
𝑌1, 𝑌2,… , 𝑌𝑘−1

)
and noting 𝐸

{
𝑉𝑘

}
= 0, (16) can be

shown as

𝑌𝑘|𝑘−1 = 𝐶𝑘𝑋̂𝑘|𝑘−1
Substituting (4) and (16) into (14), the innovation 𝜀𝑘 can be represented as

𝜀𝑘 = Δ𝐶𝑘𝑋𝑘 + 𝐶𝑘𝑋̃𝑘|𝑘−1 + 𝑉𝑘 (22)

where 𝑋̃𝑘|𝑘−1 = 𝑋𝑘−𝑋̂𝑘|𝑘−1. Because 𝑋̃𝑘|𝑘−1⊥𝑉𝑘,𝑋𝑘⊥𝑉𝑘, andΔ𝐶𝑘, 𝑋̃𝑘|𝑘−1 and𝑉𝑘 are zero-mean, thus the innovation covariance
matrix in (17) can be obtained from (22) as

𝜃𝑘 = 𝐸
{
𝜀𝑘𝜀

𝑇
𝑘

}
= 𝐸

{
Δ𝐶𝑘𝑞𝑘Δ𝐶𝑇

𝑘

}
+ 𝐶̄𝑘𝑃𝑘|𝑘−1𝐶̄𝑇

𝑘 +𝑄𝑉

=
(
𝛼1 − 𝛼2

1
)
Ψ7𝑞𝑘Ψ𝑇

7 +
(
𝛼2 − 𝛼2

2
)
Ψ8𝑞𝑘Ψ𝑇

8 + 𝐶̄𝑘𝑃𝑘|𝑘−1𝐶̄𝑇
𝑘 +𝑄𝑉

Using 𝑋̃𝑘|𝑘−1⊥𝑋̂𝑘|𝑘−1 and 𝐸
{
𝑉𝑘

}
= 0, we have

𝐸
{
𝑋𝑘𝜀

𝑇
𝑘

}
= 𝐸

{
𝑋𝑘𝑋̃

𝑇
𝑘|𝑘−1

}
𝐶̄𝑇
𝑘

= 𝐸
{
𝑋̃𝑘|𝑘−1𝑋̃𝑇

𝑘|𝑘−1
}
𝐶̄𝑇
𝑘

= 𝑃𝑘|𝑘−1𝐶̄𝑇
𝑘

(23)

Substituting (23) and the covariance matrix of innovation into the definition of 𝐾𝑘, we have (18). The prediction gain 𝐿𝑘 can be
computed by

𝐿𝑘 = 𝐸
{
𝑋𝑘+1𝜀

𝑇
𝑘

}
𝜃−1𝑘

= 𝐸
{
𝐴𝑘𝑋𝑘𝜀

𝑇
𝑘 + 𝐵1,𝑘𝑈𝑘𝜀

𝑇
𝑘 + 𝐵2,𝑘𝑊𝑘𝜀

𝑇
𝑘

}
𝜃−1𝑘

(24)

Substituting (22) into 𝐸
{
𝐴𝑘𝑋𝑘𝜀𝑇𝑘

}
, we have

𝐸
{
𝐴𝑘𝑋𝑘𝜀

𝑇
𝑘

}
= 𝐸

{
𝐴𝑘𝑞𝑘Δ𝐶𝑇

𝑘

}
+ 𝐸

{
𝐴𝑘𝑋𝑘𝑋̃

𝑇
𝑘|𝑘−1𝐶𝑇

𝑘

}
(25)

with

𝐸
{
𝐴𝑘𝑞𝑘Δ𝐶𝑇

𝑘

}
= 𝐸

{
Δ𝐴𝑘𝑞𝑘Δ𝐶𝑇

𝑘

}
=
(
𝛼1 − 𝛼2

1
)
Ψ1𝑞𝑘Ψ𝑇

7 +
(
𝛼2 − 𝛼2

2
)
Ψ2𝑞𝑘Ψ𝑇

8

𝐸
{
𝐴𝑘𝑋𝑘𝑋̃

𝑇
𝑘|𝑘−1𝐶𝑇

𝑘

}
= 𝐴𝑘𝐸

{
𝑋̃𝑘|𝑘−1𝑋̃𝑇

𝑘|𝑘−1
}
𝐶

𝑇
𝑘

= 𝐴𝑘𝑃𝑘|𝑘−1𝐶𝑇
𝑘

Substituting (22) into 𝐸
{
𝐵1,𝑘𝑈𝑘𝜀𝑇𝑘

}
and 𝐸

{
𝐵2,𝑘𝑊𝑘𝜀𝑇𝑘

}
, we have

𝐸
{
𝐵1,𝑘𝑈𝑘𝜀

𝑇
𝑘

}
= 𝐸

{
𝐵1,𝑘𝑈𝑘𝑋

𝑇
𝑘 Δ𝐶

𝑇
𝑘

}
+ 𝐸

{
𝐵1,𝑘𝑈𝑘𝑋̃

𝑇
𝑘|𝑘−1𝐶̄𝑇

𝑘

}
+ 𝐸

{
𝐵1,𝑘𝑈𝑘𝑉

𝑇
𝑘

}
= 0

(26)

𝐸
{
𝐵2,𝑘𝑊𝑘𝜀

𝑇
𝑘

}
= 𝐸

{
𝐵2,𝑘𝑊𝑘𝑋

𝑇
𝑘 Δ𝐶

𝑇
𝑘

}
+ 𝐸

{
𝐵2,𝑘𝑊𝑘𝑋̃

𝑇
𝑘|𝑘−1𝐶̄𝑇

𝑘

}
+ 𝐸

{
𝐵2,𝑘𝑊𝑘𝑉

𝑇
𝑘

}
= 𝐵2,𝑘𝑄𝑆

(27)
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where the fact Δ𝐶𝑘, 𝑋̃𝑘|𝑘−1 and 𝑉𝑘 are zero-mean has been applied. Putting (25)-(27) into (24), (19) is obtained. Subtracting
𝑋̂𝑘+1|𝑘 in (13) from 𝑋𝑘+1 in (3), we have the one-step prediction error equation

𝑋̃𝑘+1|𝑘 = (
𝐴̄𝑘 − 𝐿𝑘𝐶̄𝑘

)
𝑋̃𝑘|𝑘−1 + (

Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘
)
𝑋𝑘 + Δ𝐵1,𝑘𝑈𝑘 + 𝐵2,𝑘𝑊𝑘 − 𝐿𝑘𝑉𝑘

𝑃𝑘+1|𝑘 = (
𝐴̄𝑘 − 𝐿𝑘𝐶̄𝑘

)
𝑃𝑘|𝑘−1(𝐴̄𝑘 − 𝐿𝑘𝐶̄𝑘

)𝑇 + 𝐸
{(

Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘
)
𝑞𝑘(⋅)

𝑇} + 𝐸
{
Δ𝐵1,𝑘𝑈

𝑇
𝑘 Δ𝐵

𝑇
1,𝑘

}
+ 𝐸

{
𝐵2,𝑘𝑊𝑘𝑊

𝑇
𝑘 𝐵𝑇

2,𝑘

}
+ 𝐿𝑘𝑄𝑉𝐿

𝑇
𝑘 + 𝐸

{(
Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘

)
𝑋𝑘𝑈

𝑇
𝑘 Δ𝐵

𝑇
1,𝑘

}
+ 𝐸

{(
Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘

)
𝑋𝑘𝑈

𝑇
𝑘 Δ𝐵

𝑇
1,𝑘

}𝑇
− 𝐸

{
𝐵2,𝑘𝑊𝑘𝑉

𝑇
𝑘 𝐿𝑇

𝑘

}
− 𝐸

{
𝐵2,𝑘𝑊𝑘𝑉

𝑇
𝑘 𝐿𝑇

𝑘

}𝑇

(28)

Using Lemma 1 and statistic characteristics of uncertainty, we further have

𝐸
{(

Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘
)
𝑞𝑘
(
Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘

)𝑇} =
(
𝛼1 − 𝛼2

1
) (

Ψ1 − 𝐿𝑘Ψ7
)
𝑞𝑘
(
Ψ1 − 𝐿𝑘Ψ7

)𝑇
+
(
𝛼2 − 𝛼2

2
) (

Ψ2 − 𝐿𝑘Ψ8
)
𝑞𝑘
(
Ψ2 − 𝐿𝑘Ψ8

)𝑇 (29)

𝐸
{
Δ𝐵1,𝑘𝑈𝑘𝑈

𝑇
𝑘 Δ𝐵

𝑇
1,𝑘

}
=
(
𝛽1 − 𝛽21

)
Ψ3𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
3 +

(
𝛽2 − 𝛽22

)
Ψ4𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
4

+
(
𝛽1 − 𝛽21

)
Ψ5𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
5 +

(
𝛽2 − 𝛽22

)
Ψ6𝑈𝑘𝑈

𝑇
𝑘 Ψ

𝑇
6

(30)

𝐸
{
𝐵2,𝑘𝑊𝑘𝑊

𝑇
𝑘 𝐵𝑇

2,𝑘

}
= 𝐵̄2,𝑘𝑄𝑊 𝐵̄𝑇

2,𝑘 (31)

𝐸
{(

Δ𝐴𝑘 − 𝐿𝑘Δ𝐶𝑘
)
𝑋𝑘𝑈

𝑇
𝑘 Δ𝐵

𝑇
1,𝑘

}
= 0 (32)

𝐸
{
𝐵2,𝑘𝑊𝑘𝑉

𝑇
𝑘 𝐿𝑇

𝑘

}
= 𝐵̄2,𝑘𝑄𝑆𝐿

𝑇
𝑘 (33)

Putting (29)-(33) into (28), we obtain (20). According to (12), the filtering error can be written as

𝑋̃𝑘|𝑘 = 𝑋̃𝑘|𝑘−1 −𝐾𝑘𝜀𝑘
So the filtering error covariance matrix can be represented as

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 +𝐾𝑘𝜃𝑘𝐾
𝑇
𝑘 −𝐾𝑘𝐸

{
𝜀𝑘𝑋̃

𝑇
𝑘|𝑘−1

}
− 𝐸

{
𝑋̃𝑘|𝑘−1𝜀𝑇𝑘}𝐾𝑇

𝑘 (34)

From the definition of 𝐾𝑘, we have

𝐸
{
𝑋̃𝑘|𝑘−1𝜀𝑇𝑘} = 𝐸

{
𝑋𝑘𝜀

𝑇
𝑘

}
= 𝐾𝑘𝜃𝑘

(35)

Substituting (35) into (34), we have (21).

The optimal filter for the unified model given in (3) and (4) has been designed. In next section, we would analyze the
convergence performance of the filtering error covariance matrix.

4 CONVERGENCE ANALYSIS

In this section, the convergence performance of the filtering error covariance matrix is analyzed and described in the following
theorem.

Theorem 1. With the given filtering matrix 𝐾𝑘, the one-step filtering error covariance matrix satisfies lim
𝑘→∞

‖‖‖𝑃𝑘|𝑘‖‖‖ = 0,∀𝑘.

Proof. Substituting (18) into (21), the relation between 𝑃𝑘|𝑘 and 𝑃𝑘|𝑘−1 can be represented as

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑘𝜃𝑘
(
𝑃𝑘|𝑘−1𝐶𝑇

𝑘 𝜃
−1
𝑘

)𝑇

= 𝑃𝑘|𝑘−1 −𝐾𝑘𝜃𝑘𝜃
−1
𝑘 𝐶𝑘𝑃𝑘|𝑘−1

=
(
𝐼 −𝐾𝑘𝐶𝑘

)
𝑃𝑘|𝑘−1

(36)
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Meanwhile, the one-step prediction error 𝑋̃𝑘|𝑘−1 can be expressed as

𝑋̃𝑘|𝑘−1 = 𝐴𝑘 − 𝑋̂𝑘|𝑘−1
= 𝐴𝑘−1𝑋𝑘−1 + 𝐵1,𝑘−1𝑈𝑘−1 + 𝐵2,𝑘−1𝑊𝑘−1

− 𝐴𝑘−1𝑋̂𝑘−1 − 𝐵1,𝑘−1𝑈𝑘−1

= 𝐴𝑘−1𝑋̃𝑘−1 + 𝐵2,𝑘−1𝑊𝑘−1

(37)

According to (37), the relation between 𝑃𝑘|𝑘−1 and 𝑃𝑘−1 is obtained as

𝑃𝑘|𝑘−1 = 𝐸
{
𝑋̃𝑘|𝑘−1𝑋̃𝑇

𝑘|𝑘−1
}

=
{
𝐴𝑘−1𝑋̃𝑘−1 + 𝐵2,𝑘−1𝑊𝑘−1

}
{⋅}𝑇

= 𝐴𝑘−1𝑃𝑘−1𝐴
𝑇
𝑘−1 + 𝐵2,𝑘−1𝑄𝑊𝐵𝑇

2,𝑘−1

(38)

The recursive relation of one-step filtering error covariance matrices in iteration domain is derived. It can be readily found that
the convergence of ‖‖‖𝑃𝑘|𝑘‖‖‖ is determined by 𝐼 −𝐾𝑘𝐶𝑘. Next, we prove the convergence of ‖‖‖𝑃𝑘|𝑘‖‖‖ through analyzing eigenvalues
of 𝐼 −𝐾𝑘𝐶𝑘. Substituting (17) into (18), the filtering gain matrix 𝐾𝑘 can be rewritten as

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑇
𝑘

(
𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑇

𝑘 + 𝐽𝑘
)−1

(39)

According to a well-known matrix inversion method
(
𝐴 − 𝑈𝐷−1𝑉

)−1 = 𝐴−1+𝐴−1𝑈
(
𝐷 − 𝑉 𝐴−1𝑈

)−1𝑉 𝐴−1 34 and (39), it can
be readily seen that

𝐼 −𝐾𝑘𝐶𝑘

=
(
𝐼 − 𝑃𝑘|𝑘−1𝐶𝑇

𝑘

(
𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑇

𝑘 + 𝐽𝑘
)−1

𝐶𝑘

)−1

=
(
𝐼−1 + 𝐼−1𝑃𝑘|𝑘−1𝐶𝑇

𝑘

(
𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑇

𝑘 + 𝐽𝑘 − 𝐶
𝑇
𝑘 𝐼

−1𝑃𝑘|𝑘−1𝐶𝑇
𝑘

)−1
𝐶

𝑇
𝑘 𝐼

−1
)−1

=
(
𝐼 + 𝑃𝑘|𝑘−1𝐶𝑇

𝑘 𝐽
−1
𝑘 𝐶

𝑇
𝑘

)−1

(40)

According to (40), it can be easily derived that 𝐼 −𝐾0𝐶0 =
(
𝐼 + 𝑃0|−1𝐶𝑇

0 𝐽
−1
0 𝐶0

)−1
. Because 𝐽0 is a positive-definite and

symmetric matrix, and 𝐶0 is a full rank matrix, 𝐶
𝑇
0 𝐽

−1
0 𝐶0 is also a positive-definite and symmetric matrix. If the initial one-step

prediction error covariance matrix 𝑃0|−1 is positive-definite and symmetric, eigenvalues of 𝑃0|−1𝐶𝑇
0 𝐽

−1
0 𝐶0 are all greater than

zero. As a result, eigenvalues of 𝐼 − 𝐾0𝐶0 are all greater than zero and less than one. Equation (35) and (37) indicate 𝑃0|0 and
𝑃1|0 are also positive-definite and symmetric matrices, thus eigenvalues of 𝐼 −𝐾1𝐶1 are all greater than zero and less than one.
Followed by analogy, it can be derived that ‖‖‖𝐼 −𝐾𝑘𝐶𝑘

‖‖‖ < 1,∀𝑘 (41)

From (36) and (38), it can be easily seen that

lim
𝑘→∞

‖‖‖𝑃𝑘|𝑘‖‖‖ = 0,∀𝑘 (42)

So far, we have proved the convergence performance of the norm of filtering error covariance matrix. In other words, when
the filtered input 𝑢̂𝑘|𝑘(𝑡), which is the first component in the filtered state 𝑋̂𝑘|𝑘, is used to drive the actuator, the conver-
gence performance of wireless networked ILC systems with additive noises, random delays and data dropouts can be improved
significantly.
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5 SIMULATION RESULTS

In this section, the following linear system given in35 is used, so the desired inputs without the effect of uncertainties can be
easily calculated and shown as a reference to illustrate the effectiveness of the proposed filtering method.⎧⎪⎪⎨⎪⎪⎩

𝑥𝑘(𝑡 + 1) =
⎡⎢⎢⎣
−0.5 0 0
1 1.24 −0.87
0 0.87 0

⎤⎥⎥⎦ 𝑥𝑘(𝑡) +
⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ 𝑢𝑘(𝑡)
𝑦𝑘(𝑡) =

[
2 2.6 −2.8

]
𝑥𝑘(𝑡)

where 𝑥𝑘(𝑡) is the state, 𝑢𝑘(𝑡) represents the received or filtered input, and 𝑦𝑘(𝑡) is the measured output. 𝑡 ∈ [0, 1,⋯ , 𝑇 − 1] is
the discrete time for periodic trials, and 𝑘 = 0, 1,⋯ denotes the iteration number of the system.

The desired output is given by

𝑦𝑑 (𝑡) = 10 ∗ (1 + sin (2𝜋𝑡∕𝑇 ) − 𝜋∕2)

The proportional controller given in (1) is used. We set initial state 𝑥𝑘(0) as [0, 0, 0]𝑇 , initial input 𝑢0(𝑡) as 0, Γ(𝑡) = 0.2, and
𝑇 = 100. The additive noise 𝑚𝑘(𝑡) and 𝑛𝑘(𝑡) are Gaussian distributed with zero mean and covariance 0.05. The probabilities
of data dropouts and one-step delays are given as 𝜉𝑖 = 𝜂̄𝑖 = 0.95, 𝑖 = 1, 2. In the filtering, the initial prediction state 𝑋̂0|−1 =[
1 1 1 1

]𝑇 and initial prediction error covariance matrix 𝑃0|−1 = 1𝐼4, where 𝐼4 is the identify matrix.
Figure 2 shows the profiles of inputs received at the actuator side at different iterations as well as the desired inputs. It can

be readily seen that the inputs are sensitive to the effect of uncertainties in both channels. As a result, the outputs fail to track
the desired trajectory, which are shown in Figure 3. With the proposed method, however, the inputs filtered at the actuator side
converge to the desired inputs, so the outputs track the desired trajectory accurately under the effect of uncertainties in both
channels, which are shown in Figure 4 and 5 respectively.

The effectiveness of the proposed filtering method is also illustrated from the perspective of averaged error profiles. Figure
6 compares the absolute mean of input errors without or with filtering along iteration axis. As shown in Figure 6, the conver-
gence performance of absolute mean of input errors with filtering is improved significantly. Correspondingly, the convergence
performance of absolute mean of output errors with filtering is also improved, which is shown in Figure 7. In the comparison,

two absolute means of input errors are defined as 1
𝑇

𝑇−1∑
𝑡=0

|||𝑢𝑑 (𝑡) − 𝑢𝑟𝑘 (𝑡)
||| and 1

𝑇

𝑇−1∑
𝑡=0

|||𝑢𝑑 (𝑡) − 𝑢̂𝑘|𝑘 (𝑡)|||, and two absolute means of

output errors are defined as 1
𝑇

𝑇−1∑
𝑡=0

||𝑦𝑑 (𝑡) − 𝑦𝑘 (𝑡)|| and 1
𝑇

𝑇−1∑
𝑡=0

|||𝑦𝑑 (𝑡) − 𝑦̂𝑘|𝑘 (𝑡)||| respectively, in which 𝑦̂𝑘|𝑘(𝑡) means the output with

the filtered input 𝑢̂𝑘|𝑘(𝑡).
In addition, in order to demonstrate the effect of random probability of data dropouts and one-step delays on the convergence

speed of ILC systems with the proposed method, the absolute mean of both input errors and output errors with filtering are
compared for 𝜉𝑖 = 𝜂̄𝑖 = 0.95, 0.8 and 0.7, 𝑖 = 1, 2, which are shown in Figure 8 and 9 respectively. Two facts are observed.
First, it can be easily seen that the convergence speed of all absolute means decreases with the increase of random probability.
This observation coincides with intuitive judgment about the effect of iteration domain compensation on the convergence speed
of inputs, which is pointed out in Remark 1. Second, all the absolute means of input errors and output errors converge to zero,
which also show the effectiveness of the proposed input filtering method.

6 CONCLUSION

In this paper, we addressed the convergence performance of wireless networked ILC systems in presence of additive noises,
random delays and data dropouts. In order to deal with the effect of these uncertainties, a proportional-type iterative learning
controller was considered, and two data transmission processes were developed to describe the mix of these uncertainties in
both SC and CA channels. After that, a filter model was built taking full advantage of the iterative learning process and the two
data transmission processes. Based on this model, an optimal input filter was designed based on the projection theory so updated
inputs can be filtered at the actuator side with the effect of uncertainties. Moreover, the convergence performance of filtering
error covariance was proved. The simulation on a linear system was given to verify the theoretical results.
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FIGURE 2 Inputs received at the actuator side
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FIGURE 3 Outputs with received inputs

It deserves attention that although the input filtering method was proposed based on a proportional iterative learning controller,
similar input filtering methods can be easily derived for other types of controllers. Additionally, since the method design does
not use any plant information, the proposed input filtering method can also be applied to other ILC systems.
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