References
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D.
E., & Larson, G. J. (1997). How glaciers entrain and transport basal
sediment: Physical constraints. Quaternary Science Reviews,
16 (9), 1017-1038.
doi:https://doi.org/10.1016/S0277-3791(97)00034-6
Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating
curves. Journal of Hydrology, 234 (3), 228-248.
doi:https://doi.org/10.1016/S0022-1694(00)00253-5
Baker, B. B., & Moseley, R. K. (2007). Advancing Treeline and
Retreating Glaciers: Implications for Conservation in Yunnan, P.R.
China. Arctic, Antarctic, and Alpine Research, 39 (2), 200-209.
doi:10.1657/1523-0430(2007)39[200:Atargi]2.0.Co;2
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg,
A., & Wood, E. F. (2018). Present and future Koppen-Geiger climate
classification maps at 1-km resolution. Scientific Data, 5 .
doi:10.1038/sdata.2018.214
Bennett, M. M., & Glasser, N. F. (2011). Glacial geology: ice
sheets and landforms : John Wiley & Sons.
Beylich, A. A., Laute, K., & Storms, J. E. A. (2017). Contemporary
suspended sediment dynamics within two partly glacierized mountain
drainage basins in western Norway (Erdalen and Bødalen, inner
Nordfjord). Geomorphology, 287 , 126-143.
doi:10.1016/j.geomorph.2015.12.013
Carrillo, R., & Mao, L. (2020). Coupling Sediment Transport Dynamics
with Sediment and Discharge Sources in a Glacial Andean Basin.Water, 12 (12). doi:10.3390/w12123452
Carrivick, J. L., & Tweed, F. S. (2021). Deglaciation controls on
sediment yield: Towards capturing spatio-temporal variability.Earth-Science Reviews, 221 . doi:10.1016/j.earscirev.2021.103809
Chakrapani, G. J., & Saini, R. K. (2009). Temporal and spatial
variations in water discharge and sediment load in the Alaknanda and
Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth
Sciences, 35 (6), 545-553. doi:10.1016/j.jseaes.2009.04.002.
Chua, S. D. X., Lu, X. X., Oeurng, C., Sok, T., & Grundy-Warr, C.
(2022). Drastic decline of flood pulse in the Cambodian floodplains
(Mekong River and Tonle Sap system). Hydrology and Earth System
Sciences , 26(3), 609-625.
Costa, A., Molnar, P., Stutenbecker, L., Bakker, M., Silva, T. A.,
Schlunegger, F., . . . Girardclos, S. (2018). Temperature signal in
suspended sediment export from an Alpine catchment. Hydrology and
Earth System Sciences, 22 (1), 509-528. doi:10.5194/hess-22-509-2018
Delaney, I., & Adhikari, S. (2020). Increased Subglacial Sediment
Discharge in a Warming Climate: Consideration of Ice Dynamics, Glacial
Erosion, and Fluvial Sediment Transport. Geophysical Research
Letters, 47 (7). doi:10.1029/2019gl085672
Delaney, I., Bauder, A., Werder, M. A., & Farinotti, D. (2018).
Regional and Annual Variability in Subglacial Sediment Transport by
Water for Two Glaciers in the Swiss Alps. Frontiers in Earth
Science, 6 . doi:10.3389/feart.2018.00175
Eyles, N. (2006). The role of meltwater in glacial processes.Sedimentary Geology, 190 (1-4), 257-268.
doi:10.1016/j.sedgeo.2006.05.018
Gatesman, T. A. (2017). Glacier contribution to lowland
streamflow: a multi-year, geochemical hydrograph separation study in
sub-Arctic Alaska : University of Alaska Fairbanks.
Gurnell, A., Hannah, D., & Lawler, D. (1996). Suspended sediment yield
from glacier basins. IAHS Publications-Series of Proceedings and
Reports-Intern Assoc Hydrological Sciences, 236 , 97-104.
Hallet, B., Hunter, L., & Bogen, J. (1996). Rates of erosion and
sediment evacuation by glaciers: A review of field data and their
implications. Global and Planetary Change, 12 (1), 213-235.
doi:https://doi.org/10.1016/0921-8181(95)00021-6
Heckmann, T., McColl, S., & Morche, D. (2016). Retreating ice: research
in pro-glacial areas matters. Earth Surface Processes and
Landforms, 41 (2), 271-276. doi:10.1002/esp.3858
Herman, F., De Doncker, F., Delaney, I., Prasicek, G., & Koppes, M.
(2021). The impact of glaciers on mountain erosion. Nature Reviews
Earth & Environment, 2 (6), 422-435. doi:10.1038/s43017-021-00165-9
Khanchoul, K., & Jansson, M. B. (2008). Sediment Rating Curves
Developed on Stage and Seasonal Means in Discharge Classes for the
Mellah Wadi, Algeria. Geografiska Annaler. Series A, Physical
Geography, 90 (3), 227-236.
Kirschbaum, D., Kapnick, S. B., Stanley, T., & Pascale, S. (2020).
Changes in Extreme Precipitation and Landslides Over High Mountain Asia.Geophysical Research Letters, 47 (4). doi:10.1029/2019gl085347
Kumar, K., Miral, M. S., Joshi, V., & Panda, Y. S. (2002). Discharge
and suspended sediment in the meltwater of Gangotri Glacier, Garhwal
Himalaya, India. Hydrological Sciences Journal, 47 (4), 611-619.
doi:10.1080/02626660209492963
Lane, S. N., & Nienow, P. W. (2019). Decadal‐Scale Climate Forcing of
Alpine Glacial Hydrological Systems. Water Resources Research,
55 (3), 2478-2492. doi:10.1029/2018wr024206
Lau, W. K. M., Kim, M.-K., Kim, K.-M., & Lee, W.-S. (2010). Enhanced
surface warming and accelerated snow melt in the Himalayas and Tibetan
Plateau induced by absorbing aerosols. Environmental Research
Letters, 5 (2). doi:10.1088/1748-9326/5/2/025204
Li, D., Li, Z., Zhou, Y., & Lu, X. (2020). Substantial Increases in the
Water and Sediment Fluxes in the Headwater Region of the Tibetan Plateau
in Response to Global Warming. Geophysical Research Letters,
47 (11), e2020GL087745. doi:https://doi.org/10.1029/2020GL087745
Li, D., Lu, X., Overeem, I., Walling, D. E., Syvitski, J., Kettner, A.
J., . . . Zhang, T. (2021). Exceptional increases in fluvial sediment
fluxes in a warmer and wetter High Mountain Asia. Science,
374 (6567), 599-603. doi:doi:10.1126/science.abi9649
Li, D., Overeem, I., Kettner, A. J., Zhou, Y., & Lu, X. (2021). Air
Temperature Regulates Erodible Landscape, Water, and Sediment Fluxes in
the Permafrost-Dominated Catchment on the Tibetan Plateau. Water
Resources Research, 57 (2), e2020WR028193.
doi:10.1029/2020WR028193
Li, X., Ding, Y., Liu, Q., Zhang, Y., Han, T., Jing, Z., . . . Liu, S.
(2019). Intense Chemical Weathering at Glacial Meltwater-Dominated
Hailuogou Basin in the Southeastern Tibetan Plateau. Water,
11 (6). doi:10.3390/w11061209
Li, Z., Gao, W., Zhang, M., & Gao, W. (2012). Variations in suspended
and dissolved matter fluxes from glacial and non-glacial catchments
during a melt season at Urumqi River, eastern Tianshan, central Asia.CATENA, 95 , 42-49. doi:10.1016/j.catena.2012.03.002
Lloyd, C. E. M., Freer, J. E., Johnes, P. J., & Collins, A. L. (2016).
Using hysteresis analysis of high-resolution water quality monitoring
data, including uncertainty, to infer controls on nutrient and sediment
transfer in catchments. Sci Total Environ, 543 (Pt A), 388-404.
doi:10.1016/j.scitotenv.2015.11.028.
Lu, X. X., & Siew, R. Y. (2006). Water discharge and sediment flux
changes over the past decades in the Lower Mekong River: possible
impacts of the Chinese dams. Hydrology and Earth System
Sciences , 10(2), 181-195.
Lu, X.X., Kummu, M., Oeurng, C. (2014). Reappraisal of sediment dynamics
in the Lower Mekong River, Cambodia. Eearth Surface Processess &
Landfomrs , 39(14): 1855-1865. DOI:10.1002/esp.3573
Lu, X. X., & Chua, S. D. X. (2021). River Discharge and Water Level
Changes in the Mekong River: Droughts in an Era of
Mega‐Dams. Hydrological Processes , 35(7), e14265.
Lugon, R., & Stoffel, M. (2010). Rock-glacier dynamics and
magnitude–frequency relations of debris flows in a high-elevation
watershed: Ritigraben, Swiss Alps. Global and Planetary Change,
73 (3-4), 202-210. doi:10.1016/j.gloplacha.2010.06.004
Mao, L., & Carrillo, R. (2017). Temporal dynamics of suspended sediment
transport in a glacierized Andean basin. Geomorphology, 287 ,
116-125. doi:10.1016/j.geomorph.2016.02.003
Mao, L., Comiti, F., Carrillo, R., & Penna, D. (2019). Sediment
Transport in Proglacial Rivers. In T. Heckmann & D. Morche (Eds.),Geomorphology of Proglacial Systems: Landform and Sediment
Dynamics in Recently Deglaciated Alpine Landscapes (pp. 199-217). Cham:
Springer International Publishing.
Micheletti, N., & Lane, S. N. (2016). Water yield and sediment export
in small, partially glaciated Alpine watersheds in a warming climate.Water Resources Research, 52 (6), 4924-4943.
doi:10.1002/2016wr018774
Miles, K. E., Hubbard, B., Irvine-Fynn, T. D. L., Miles, E. S., Quincey,
D. J., & Rowan, A. V. (2020). Hydrology of debris-covered glaciers in
High Mountain Asia. Earth-Science Reviews, 207 .
doi:10.1016/j.earscirev.2020.103212
Milliman, J. D., & Farnsworth, K. L. (2011). Runoff, erosion, and
delivery to the coastal ocean. In J. D. Milliman & K. L. Farnsworth
(Eds.), River Discharge to the Coastal Ocean: A Global Synthesis(pp. 13-69). Cambridge: Cambridge University Press.
Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B.,
Hasholt, B., van den Broeke, M. R., . . . Morlighem, M. (2017).
Substantial export of suspended sediment to the global oceans from
glacial erosion in Greenland. Nature Geoscience, 10 (11), 859-863.
doi:10.1038/ngeo3046
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B.,
Forsythe, N., . . . Mountain Research Initiative, E. D. W. W. G. (2015).
Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5 (5), 424-430. doi:10.1038/nclimate2563
Riihimaki, C. A. (2005). Sediment evacuation and glacial erosion rates
at a small alpine glacier. Journal of Geophysical Research,
110 (F3). doi:10.1029/2004jf000189
Rosser, N. J. (2010). Landslides and Rockfalls. In Sediment
Cascades (pp. 55-87).
Shi, X., Zhang, F., Lu, X., Wang, Z., Gong, T., Wang, G., & Zhang, H.
(2018). Spatiotemporal variations of suspended sediment transport in the
upstream and midstream of the Yarlung Tsangpo River (the upper
Brahmaputra), China. Earth Surface Processes and Landforms,
43 (2), 432-443. doi:10.1002/esp.4258
Singh, A. T., Sharma, P., Sharma, C., Laluraj, C. M., Patel, L., Pratap,
B., . . . Thamban, M. (2020). Water discharge and suspended sediment
dynamics in the Chandra River, Western Himalaya. Journal of Earth
System Science, 129 (1). doi:10.1007/s12040-020-01455-4
Smith, H. G., & Dragovich, D. (2009). Interpreting sediment delivery
processes using suspended sediment-discharge hysteresis patterns from
nested upland catchments, south-eastern Australia. Hydrological
Processes, 23 (17), 2415-2426. doi:10.1002/hyp.7357
Srivastava, D., Kumar, A., Verma, A., & Swaroop, S. (2014).
Characterization of suspended sediment in Meltwater from Glaciers of
Garhwal Himalaya. Hydrological Processes, 28 (3), 969-979.
doi:10.1002/hyp.9631
Stott, T., & Mount, N. (2007). Alpine proglacial suspended sediment
dynamics in warm and cool ablation seasons: Implications for global
warming. Journal of Hydrology, 332 (3-4), 259-270.
doi:10.1016/j.jhydrol.2006.07.001
Sun, L., Sun, Z., Li, Z., Zheng, H., Li, C., & Xiong, W. (2022).
Response of runoff and suspended load to climate change and reservoir
construction in the Lancang River. Journal of Water and Climate Change.
Wang, J. J., Lu, X. X., & Kummu, M. (2011). Sediment load estimates and
variations in the Lower Mekong River. River Research and
Applications, 27(1), 33-46.
Walling, D.E., 1983. The sediment delivery problem. Journal of
Hydrology, 65(1): 209-237.
DOI:https://doi.org/10.1016/0022-1694(83)90217-2
Walling, D. E. (2006). Human impact on land–ocean sediment transfer by
the world’s rivers. Geomorphology, 79 (3-4), 192-216.
doi:10.1016/j.geomorph.2006.06.019
Walling, D. E. (2008). The changing sediment load of the Mekong
River. Ambio , 150-157.
Williams, G. P. (1989). Sediment concentration versus water discharge
during single hydrologic events in rivers. Journal of Hydrology,
111 (1), 89-106. doi:https://doi.org/10.1016/0022-1694(89)90254-0
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs,
K. A., . . . Sklar, L. S. (2019). Connectivity as an emergent property
of geomorphic systems. Earth Surface Processes and Landforms,
44 (1), 4-26. doi:10.1002/esp.4434
Wulf, H., Bookhagen, B., & Scherler, D. (2010). Seasonal precipitation
gradients and their impact on fluvial sediment flux in the Northwest
Himalaya. Geomorphology, 118 (1-2), 13-21.
doi:10.1016/j.geomorph.2009.12.003
Wulf, H., Bookhagen, B., & Scherler, D. (2012). Climatic and geologic
controls on suspended sediment flux in the Sutlej River Valley, western
Himalaya. Hydrology and Earth System Sciences, 16 (7), 2193-2217.
doi:10.5194/hess-16-2193-2012
Yaksich, S. M., & Verhoff, F. H. (1983). Sampling Strategy for River
Pollutant Transport. Journal of Environmental Engineering,
109 (1), 219-231. doi:doi:10.1061/(ASCE)0733-9372(1983)109:1(219)
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., . . .
Joswiak, D. (2012). Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings. Nature Climate
Change, 2 (9), 663-667. doi:10.1038/nclimate1580
Zhang, T., Li, D., Kettner, A. J., Zhou, Y., & Lu, X. (2021).
Constraining Dynamic Sediment‐Discharge Relationships in Cold
Environments: the Sediment‐Availability‐Transport (SAT) Model.Water Resources Research . doi:10.1029/2021wr030690
Zhao, Y., Ma, W., Han, H., Zhuang, S., Shi, H., Ding, Y., . . . Lu, X.
(2021). Suspended Sediment Transport Characteristics of Glacial Rivers
in Alpine Mountainous Areas. Bulletin of Soil and Water
Conservation, 41 (3), 94-102 (in Chinese).