References
(1) Andreas, S. B., Janna, K. B., & Michael, J. A. (2011) Status of protein engineering for biocatalysts: How to design an industrially useful biocatalyst. Curr Opin Chem Biol. 15(2) , 194-200. doi:10.1016/j.cbpa.2010.11.011
(2) Ali, M., Ishqi, H. M., & Husain, Q. (2020) Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng. 117(6) , 1877-1894. doi:10.1002/bit.27329
(3) Modarres, H. P., Mofrad, M. R., & Sanati-Nezhad, A. (2016) Protein thermostability engineering. RSC Adv. 6(116) , 115252-115270. doi:10.1039/C6RA16992A
(4) Song, J. K., & Rhee, J. S. (2000) Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering. Appl. Environ. Microbiol. 66 , 890-894. doi:10.1128/AEM.66.3.890-894.2000
(5) Wohlgemuth, R. (2012) Industrial biotechnology-past, present and future. New Biotechnol. 29(2) , 165-170. doi:10.1016/j.nbt.2011.11.013
(6) Huang, P. S., Boyken, S. E., & Baker, D. (2016) The coming of age of de novo protein design. Nature. 537(7620) , 320-327. doi:10.1038/nature19946
(7) Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tarn, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W., & Hughes, G. Y. (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 329(5989) , 305-309. doi:10.1126/science.1188934
(8) Damis, S. I. R., Murad, A. M. A., Bakar, F. D. A., Rashid, S. A., & Illias, R. M. (2019) Protein engineering of GH11 Xylanase fromAspergillus fumigatus RT-1 for catalytic efficiency improvement on kenaf biomass hydrolysis. Enzyme Microb Tech. 131 , 109383. doi:10.1016/j.enzmictec.2019.109383
(9) Lin, Z. L., Thorsen, T., & Thorsen, F. H. (2000) Functional expression of horseradish peroxidase in E. coli by directed evolution. Biotechnol. Prog. 15 , 467-471. doi:10.1021/bp990292b
(10) Yin, B. Q., Hui, Q. Y., Kashif, M., Yu, R., Chen, S., Ou, Q., Wu, B., & Jiang, C. J. (2019) Simultaneous enhancement of thermostability and catalytic activity of a metagenome-derived β-Glucosidase using directed evolution for the biosynthesis of butyl glucoside. Int. J. Mol. Sci. 20 , 6224. doi:10.3390/ijms20246224
(11) Sinha, S. K., Goswami, S., Das, S., & Datta, S. (2019) Exploiting non-conserved residues to improve activity and stability of halothermothrix orenii β-glucosidase. Appl Microbiol Biotechnol. 101(4) , 1455-1463. doi:10.1007/s00253-016-7904-y
(12) Delboni, L. F., Mande, S. C., Rentier-Delrue, F., Mainfroid, V., Turley, S., Vellieux, F. M., Martial, J. A., & Hol, W. G. (1995) Crystal structure of recombinant triosephosphate isomerase fromBacillus Stearothermophilus . An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions.Protein Sci. 4(12) , 2594–2604. doi:10.1002/pro.5560041217
(13) Chang, C., Park, B. C., Lee, D. S., & Suh, S. W. (1999) Crystal structures of thermostable xylose isomerases from Thermus Caldophilus and Thermus Thermophilus : Possible structural determinants of thermostability. J Mol Biol. 288 , 623–634. doi:10.1006/jmbi.1999.2696
(14) Rosato, V., Pucello, N., & Giuliano, G. (2002) Evidence for cysteine clustering in thermophilic proteomes. Trends Genet. 18 , 278–281. doi:10.1016/j.tig.2003.09.001
(15) Xiao, L., & Honig, B. (1999) Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol. 289 , 1435-1444. doi:10.1055/s-2006-925002
(16) Dominy, B. N., Minoux, H., & Brooks, C. L. (2004) An electrostatic basis for the stability of thermophilic proteins. Proteins.57 , 128-141. doi:10.1002/prot.20190
(17) Jaenicke, R. (2000) Do ultrastable proteins fromHyperthermophiles have high or low conformational rigidity?Proc Natl Acad Sci USA. 97 , 2962–2964. doi:10.1073/pnas.97.7.2962
(18) Reetz, M. T., Carballeira, J. D., & Vogel, A. (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl. 45 , 7745–7751.
(19) Liang, H. K., Huang, C. M., Ko, M. T., & Hwang, J. K. (2010) Amino acid coupling patterns in thermophilic proteins. Proteins.59 , 58–63. doi:10.1002/prot.20386
(20) Chan, C. H., Liang, H. K., Hsiao, N. W., Ko, M. T., & Lyu, P. C. (2004) Relationship between local structural entropy and protein thermostability. Proteins. 57 , 684–691. doi:10.1002/prot.20263
(21) Chinea, G., Padron, G., Hooft, R.W., Sander, C., & Vriend, G. (1995) The use of position-specific rotamers in model building by homology. Proteins. 23 , 415–421. doi:10.1002/prot.340230315
(22) Kellogg, E. H., Leaver-Fay, A., & Baker, D. (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins. 79 , 830–838. doi:10.1002/prot.22921
(23) Zeiske, T., Stafford, K. A., & Palmer, A. G. (2016) Thermostability of enzymes from molecular dynamics simulations. J Chem Theory Comput. 12 , 2489–2492. doi:10.1021/acs.jctc.6b00120
(24) Dombkowski, A. A. (2003) Disulfide by design: A computational method for the rational design of disulfide bonds in proteins.Bioinformatics. 19 , 1852–1853. doi:10.1093/bioinformatics/btg231
(25) Humer, D., & Spadiut, O. (2019) Improving the performance of horseradish peroxidase by site-directed mutagenesis. Int J Mol Sci. 20(4) . doi:10.3390/ijms20040916
(26) Ashraf, N. M., Krishnagopal, A., Hussain, A., Kastner, D., Mahmoud, A., Sayed, M., Mok, Y. K., Swaminathan, K., & Zeeshan, N. (2019) Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macromol. 126 , 229-237. doi:10.1016/j.ijbiomac.2018.12.218
(27) Ren, L. Q., Chang, T. T., Ren, D. P., Zhou, Y., & Ye, B. C. (2019) Rational design to improve activity of the Est3563 esterase fromAcinetobacter sp. LMB-5. Enzyme Microb Tech. doi: 10.1016/j.enzmictec.2019.04.005
(28) Azouz, R. A. M., Hegazy, U. M., Said, M. M., Bassuiny, R. I., Salem, A. M., & Fahmy, A. S. (2019) Improving the catalytic efficiency of thermostable Geobacillus Stearothermophilus xylanase XT6 by single-amino acid substitution. J. Biochem. 167(2) . doi: 10.1093/jb/mvz086
(29) Su, L. Q., Yao, K. L., & Wu, J. (2020) Improved activity of sulfolobus acidocaldarius maltooligosyltrehalose synthase through directed evolution. J. Agric. Food Chem. 68 , 4456-4463.
(30) Kryukova, M. V., Petrovskaya, L. E., Kryukova, E. A., Lomakina, G. Y., Yakimov, S. A., Maksimov, E. G., Boyko, K. M., Popov, V. O., Dolgikh, D. A., & Kirpichnikov, M. P. (2019) Thermal inactivation of a cold-active esterase PMGL3 isolated from the permafrost metagenomic library. Biomolecules. 9 , 880. doi: 10.3390/biom9120880
(31) Yang, G., Yao, H., Mozzicafreddo, M., Ballarini, P., Pucciarelli, S., & Miceli, C. (2017) Rational engineering of a cold-adapted α-amylase from the Antarctic Ciliate Euplotes Focardii  for simultaneous improvement of thermostability and catalytic activity.Appl Environ Microb. 83(13) , e00449-17. doi: 10.1128/AEM.00449-17
(32) Yadav, S., & Yadav, K. D. S. (2000) Secretion of a-l-rhamnosidases by Aspergillus terreus and its role debittering of orange juice.J Sci Ind Res. 59 , 1032-1037.
(33) Prakash, S., Singhal, R. S., & Kulkarni, P. R. (2002) Enzymic debittering of indian grapefruit (citrus paradisi) juice. J Sci Food Agr. 82 , 394-397. doi: 10.1002/jsfa.1059
(34) Caldini, C., Bonomi, F., Pifferi, P. G., Lanzarini, G., & Galante, Y. M. (1994) Kinetic and immobilization studies on the fungal glycosidases for the aroma enhancement in wine. Enzyme Microb Tech. 16 , 286-291. doi: 10.1016/0141-0229(94)90168-6
(35) Spagma, G., Barbagallo, R. N., & Martino, A. (2000) A simple method of purifying glycosidase: a-l-rhamnopyranosidases fromAspergillus niger to increase the aroma of moscato wine.Enzyme Microb Tech. 27 , 522-530. doi: 10.1016/S0141-0229(00)00236-2
(36) Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W., & Murata, K. (2007) Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. J. Mol. Biol. 374 , 384-398. doi: 10.1016/j.jmb.2007.09.003
(37) Fujimoto, Z., Jackson, A., Michikawa, M., Maehara, T., Momma, M., Henrissat, B., Gilbert, H. J., & Kaneko, S. (2013) The structure of a streptomyces avermitilis alpha-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement.J. Biol. Chem. 288 , 12376-12385. doi: 10.1074/jbc.M113.460097
(38) O’Neill, E. C., Stevenson, C. E., Paterson, M. J., Rejzek, M., Chauvin, A. L., Lawson, D. M. , & Field, R. A. (2015) Crystal structure of a novel two domain GH78 family alpha-rhamnosidase fromKlebsiella Oxytoca with rhamnose bound. Proteins.83 , 1742-1749.
(39) Pachl, P., Škerlová, J., Šimčíková, D., Kotik, M., Křenková, A., Mader, P., Brynda, J., Kapešová, J., Křen, V., Otwinowski, Z., & Řezáčová, P. (2018) Crystal structure of native α-l-rhamnosidase fromAspergillus Terreus . Acta. Crystallogr. D. 74 , 1078-1084. doi: 10.1107/S2059798318013049
(40) Guillotin, L., Kim, H., Traore, Y., Moreau, P., Lafite, P., Coquoin, V., Nuccio, S., de Vaumas, R., & Daniellou, R. (2019) Biochemical characterization of the α-l-Rhamnosidase Dt Rha fromDictyoglomus Thermophilum : Application to the selective derhamnosylation of natural flavonoids. ACS. Omega. 4 , 1916-1922. doi: 10.1021/acsomega.8b03186
(41) Li, L. J., Yu, Y., Zhang, X., Jiang, Z. D., & Chen, F. (2016) Expression and biochemical characterization of recombinant α-L-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528.Int J Biol Macromol. 85 , 391-399. doi: 10.1016/j.ijbiomac.2015.12.093
(42) Li, L. J., Gong, J. Y., Li, W. J., Wu, Z. Y., & Li, Q. B. (2020) Enhancement in affinity of Aspergillus niger MU-TS528 α-L-rhamnosidase (r-Rha1) by semiconservative site-directed mutagenesis of (α/α)6 catalytic domain. Int J Biol Macromol. 151 , 845-854. doi: 10.1016/j.ijbiomac.2020.02.157
(43) Liao, H., Gong, J. Y., Yang, Y., Jiang, Z. D. & Li, Q. B. (2019) Enhancement of the thermostability of Aspergillus nigerα-L-rhamnosidase based on PoPMuSiC algorithm. J Food Biochem.43(6) . doi: 10.1111/jfbc.12945
(44) Li, L. J., Liao, H., Yang, Y., Gong, J. Y., Liu, J. N., Jiang, Z. D., Zhu, Y. B., Xiao, A. F., & Ni, H. (2018) Improving the thermostability by introduction of arginines on the surface of alpha-L-rhamnosidase (r-Rha1) from Aspergillus niger . Int J Biol Macromol. 112 , 14-21.
(45) Lu, Z., Wang, Q., Jiang, S., Zhang, G., & Ma, Y. (2016) Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline alpha-amylase Amy703. Sci Rep-UK. 6 , 22465. doi: 10.1038/srep22465
(46) Bernardi, R.C., Cann, I., & Schulten, K. (2014) Molecular Dynamics Study of Enhanced Man5B Enzymatic Activity. Biotechnol Biofuels. 7 , 83. doi: 10.1186/1754-6834-7-83
(47) Xu, L., Liu, X., Yin, Z., Liu, Q., Lu, L., & Xiao, M. (2016) Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design. Appl Microbiol Biot. 100 , 1-10. doi: 10.1007/s00253-016-7676-4
(48) Mohd, K. H., Mohd, A., & Rosli, M. I. (2016) Thermostability enhancement of xylanase Aspergillus Fumigatus RT-1. J Mol Catal B-Enzym. 134 , 154-163. doi: 10.1016/j.molcatb.2016.09.020
(49) Li, J. H., Bewley, J. D., Hua, Z., Zheng, W. J., & Wang, A. X. (2008) Model and molecular dynamic simulations of active and inactive endo-β-1,4-Mannanase in tomato fruit. Protn Journal. 27(6) , 363-370. doi: 10.1007/s10930-008-9145-0
(50) Noorbatcha, I. A, Salleh, H. M., & Hadi, M. A. (2011) Molecular dynamics approach in designing thermostable Bacillus CirculansXylanase. ICEBE. 11 , 17-19
(51) Awasthi, M., Jaiswal, N., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2014) Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. J Biomol Struct Dyn. 33(9) ,1835-1849. doi: 10.1080/07391102.2014.975282
(52) Christensen, N. J., Kepp, K. P., & Jie, Z. (2013) Stability mechanisms of a thermophilic laccase probed by molecular dynamics.Plos One, 8(4) :e61985-. doi: 10.1371/journal.pone.0061985
(53) Yu, M., Li, Y. Z., Wang, L. F., Huang, H. P., & Yu, S. Y. (2006) Crystal structure and pi-pi stacking of a coplanar mu-S Bridged 1,10-phenanthrolinepalladium(II) Dinuclear complex. Chinese J Inorg Chem. 22(5) , 963-966. doi: 10.3321/j.issn:1001-4861.2006.05.037
(54) Naito, A., Kawamura, I., & Javkhlantugs, N. (2015) Recent solid-state NMR studies of membrane-bound peptides and proteins.Annu Rep NMR Spectro. 86 , 333-411. doi: 10.1016/bs.arnmr.2015.06.001
(55) Ren, L. Q., Chang, T. T., Ren, D. P., Zhou, Y., & Ye, B. C. (2019) Rational design to improve activity of the Est3563 Esterase fromAcinetobacter sp. LMB-5. Enzyme Microb Tech. 131 . doi: 10.1016/j.enzmictec.2019.04.005
(56) Li, L. J., Wu, Z. Y., Yu, Y., Zhang, L. Z., Zhu, Y. B., Ni, H., & Chen, F. (2018) Development and characterization of an α-L-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chem. 245 , 1070-1078. doi: 10.1016/j.foodchem.2017.11.064
(57) Zorn, H., & Li, Q. (2016) Trends in Food Enzymology. ACS Publications. doi: 10.1021/acs.jafc.6b05483
(58) De. Van Der Spoel, Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005) GROMACS: Fast, flexible, and free.J. Comput. Chem. 26 , 1701-1718. doi: 10.1002/jcc.20291
(59) Hou, T., Wang, J., Li, Y., & Wang, W. (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51 , 69-82. doi: 10.1021/ci100275a