References
Bhuiya, M. W., Sakuraba, H., Kujo, C., Nunoura-Kominato, N.,
Kawarabayasi, Y., Kikuchi, H., & Ohshima, T. (2000). Glutamate
dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum
pernix K1: enzymatic characterization, identification of the encoding
gene, and phylogenetic implications. Extremophiles, 4 (6),
333-341.
Bombelli, P., Bradley, R. W., Scott, A. M., Philips, A. J., McCormick,
A. J., Cruz, S. M., . . . Cameron, P. J. (2011). Quantitative analysis
of the factors limiting solar power transduction by Synechocystis sp.
PCC 6803 in biological photovoltaic devices. Energy &
Environmental Science, 4 (11), 4690-4698.
Bradley, R. W., Bombelli, P., Lea-Smith, D. J., & Howe, C. J. (2013).
Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC
6803 show increased electrogenic activity in biological photo-voltaic
systems. Physical Chemistry Chemical Physics, 15 (32),
13611-13618.
Brinsmade, S. R., & Escalante-Semerena, J. C. (2007). In vivo and in
vitro analyses of single-amino acid variants of the Salmonella enterica
phosphotransacetylase enzyme provide insights into the function of its
N-terminal domain. Journal of Biological Chemistry, 282 (17),
12629-12640.
Cereda, A., Hitchcock, A., Symes, M. D., Cronin, L., Bibby, T. S., &
Jones, A. K. (2014). A bioelectrochemical approach to characterize
extracellular electron transfer by Synechocystis sp. PCC6803. PLoS
One, 9 (3).
Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of
single-chamber microbial fuel cells using an improved cathode structure.Electrochemistry communications, 8 (3), 489-494.
El-Mansi, M., Cozzone, A. J., Shiloach, J., & Eikmanns, B. J. (2006).
Control of carbon flux through enzymes of central and intermediary
metabolism during growth of Escherichia coli on acetate. Current
opinion in microbiology, 9 (2), 173-179.
Glazier, D. S. (2009). Metabolic level and size scaling of rates of
respiration and growth in unicellular organisms. Functional
Ecology, 23 (5), 963-968.
Gul, M. M., & Ahmad, K. S. (2019). Bioelectrochemical systems:
Sustainable bio-energy powerhouses. Biosensors and
Bioelectronics , 111576.
Han, S., Gao, X.-y., Ying, H.-j., & Zhou, C. C. (2016). NADH gene
manipulation for advancing bioelectricity in Clostridium ljungdahlii
microbial fuel cells. Green Chemistry, 18 (8), 2473-2478.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation
to high current using low external resistances eliminates power
overshoot in microbial fuel cells. Biosensors and Bioelectronics,
28 (1), 71-76.
Jeske, L., Placzek, S., Schomburg, I., Chang, A., & Schomburg, D.
(2019). BRENDA in 2019: a European ELIXIR core data resource.Nucleic acids research, 47 (D1), D542-D549.
Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel
cells. Nature Reviews Microbiology, 7 (5), 375-381.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J.,
Freguia, S., . . . Rabaey, K. (2006). Microbial fuel cells: methodology
and technology. Environmental science & technology, 40 (17),
5181-5192.
Madiraju, K. S., Lyew, D., Kok, R., & Raghavan, V. (2012). Carbon
neutral electricity production by Synechocystis sp. PCC6803 in a
microbial fuel cell. Bioresource technology, 110 , 214-218.
Mao, L., & Verwoerd, W. S. (2013). Genome-scale stoichiometry analysis
to elucidate the innate capability of the cyanobacterium Synechocystis
for electricity generation. Journal of industrial microbiology &
biotechnology, 40 (10), 1161-1180.
McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A.
G., Fisher, A. C., & Howe, C. J. (2011). Photosynthetic biofilms in
pure culture harness solar energy in a mediatorless bio-photovoltaic
cell (BPV) system. Energy & Environmental Science, 4 (11),
4699-4709.
Mekanik, M., Motamedian, E., Fotovat, R., & Jafarian, V. (2019).
Reconstruction of a genome-scale metabolic model for Auxenochlorella
protothecoides to study hydrogen production under anaerobiosis using
multiple optimal solutions. International Journal of Hydrogen
Energy, 44 (5), 2580-2591.
Motamedian, E., & Naeimpoor, F. (2018). LAMOS: A linear algorithm to
identify the origin of multiple optimal flux distributions in metabolic
networks. Computers & Chemical Engineering, 117 , 372-377.
Motamedian, E., Sarmadi, M., & Derakhshan, E. (2019). Development of a
regulatory defined medium using a system-oriented strategy to reduce the
intracellular constraints. Process Biochemistry, 87 , 10-16.
Naraghi, Z. G., Yaghmaei, S., Mardanpour, M. M., & Hasany, M. (2015).
Produced water treatment with simultaneous bioenergy production using
novel bioelectrochemical systems. Electrochimica Acta, 180 ,
535-544.
Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O., & Thiele,
I. (2012). Detailing the optimality of photosynthesis in cyanobacteria
through systems biology analysis. Proceedings of the National
Academy of Sciences, 109 (7), 2678-2683.
Qi, X., Ren, Y., Liang, P., & Wang, X. (2018). New insights in
photosynthetic microbial fuel cell using anoxygenic phototrophic
bacteria. Bioresource technology, 258 , 310-317.
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017).
Microbial fuel cells: from fundamentals to applications. A review.Journal of power sources, 356 , 225-244.
Sarcina, M., Bouzovitis, N., & Mullineaux, C. W. (2006). Mobilization
of photosystem II induced by intense red light in the cyanobacterium
Synechococcus sp PCC7942. The Plant Cell, 18 (2), 457-464.
Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D.,
Feist, A. M., . . . Rahmanian, S. (2011). Quantitative prediction of
cellular metabolism with constraint-based models: the COBRA Toolbox v2.
0. Nature protocols, 6 (9), 1290.
Slate, A. J., Whitehead, K. A., Brownson, D. A., & Banks, C. E. (2019).
Microbial fuel cells: An overview of current technology. Renewable
and sustainable energy reviews, 101 , 60-81.
Thiel, K., Patrikainen, P., Nagy, C., Fitzpatrick, D., Pope, N., Aro,
E.-M., & Kallio, P. (2019). Redirecting photosynthetic electron flux in
the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of
flavodiiron protein Flv3. Microbial cell factories, 18 (1), 189.
Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. (2011). Biofilm
formation and electricity generation of a microbial fuel cell started up
under different external resistances. Journal of power sources,
196 (15), 6029-6035.
Table 1. Comparison of reaction rates for generating glycerol
3-phosphate. The fluxes are presented in the unit of mmol/gDCW/h.