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Abstract:

Riverine dissolved inorganic nitrogen (DIN), when elevated by human activities (e.g., land-

use change), can accelerate the nitrogen cycle and downstream dispersal. However, estimating

DIN export coefficients for individual land-use types can be complex due to mosaic land-use

patterns  and  interactions  between  fertilizers  and  hydrological  processes.  We  propose  a

framework  that integrates an empirical model, a moving-window method with an elasticity

method to quantify seasonal DIN export coefficients for each land use in the Shixi Creek

catchment,  southeast  China.  Our  model  showed  good  agreement  with  field  observations

according to root mean square error and a normalized objective function. The  DIN  export

coefficients of farmland and forest were the highest (9.16 mg/L) and lowest (2.91 mg/L),

respectively, resulting in DIN exports for farmland and forest of 1,951 kg km -2 yr-1 and 619 kg

km-2 yr-1,  respectively.  Urbanization  was  a  dominant  factor  influencing  DIN  export

represented by the export coefficient of built-up areas with the highest elasticity and highest
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uncertainty.  This  study  can  shed  light  on  how  to  improve  riverine  N  management  in  a

catchment by considering the interactive effects of climate and land use changes.

Keywords: Dissolved inorganic nitrogen; elasticity; export coefficient; land-use change.

1. Introduction

Land-use change has increased the release of reactive nitrogen (N) in the environment

and accelerated  the  N cycle  in  recent  decades,  becoming an  issue  of  global  significance

(Galloway et al., 2008; Mclauchlan et al., 2013). Land-use patterns can predict riverine N

export  (Huang  et  al.,  2015;  Zhou  et  al.,  2016;)  and  many  watershed  models  including

SPARROW (SPAtially Referenced Regression On Watershed attributes; Zhou et al., 2018),

SWAT  (Soil  and  Water  Assessment  Tool;  Huang  et  al.,  2013a),  HSPF  (Hydrological

Simulation Program – FORTRAN; Zhang et al., 2019) and the N-runoff model (Mander et al.,

2000; Parn et  al.,  2018) account for land use in their estimates of riverine N export. The

performance of these models relies on accurate observed N export and export coefficients for

different land-use types (Huang et al., 2012; Shih et al., 2016), hence estimating the N export

coefficients of different land uses is critical for watershed modeling and subsequent watershed

management.

Riverine  N  export  is  strongly  controlled  by  land-use  patterns,  but  few studies  have

quantified the impacts of individual land-use types. Huang et al. (2012a) applied an empirical

model to inversely estimate the DIN (dissolved inorganic nitrogen, including NO2-, NO3-, and

NH4
+)  export  coefficient  of  each  land  use  from riverine  DIN  export.  Shih  et  al.  (2016)

considered  the  sources  of  DIN  (point  and  non-point)  with  runoff  variation  into  the

modification and applied their model to the Taiwan River with good predictive accuracy for
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river DIN export. 

N export from landscapes to watersheds is a complex and nonlinear process influenced

by multiple factors, including intra-annual variation in rainfall and associated biogeochemical

processes  (Lee  et  al.,  2016;  Zhou  et  al.,  2017;  Zhang  et  al.,  2019).  Although  export

coefficients can quantify N exports for each land use, the relationship between runoff and N

loads varies with time and is  often poorly accounted for (Tomer et  al.,  2003; Zhang and

Schilling, 2005; de Girolamo et al., 2019). For example, storms can increase N export due to

excessive water in the soil and decreasing biogeochemical transformation, especially during

wet years (Greaver et al., 2016; Li et al., 2019a; Ervinia et al., 2019).

Some  studies  stated  that  riverine  N  may  be  amplified  by  the  interaction  between

increasing  human-impacted  land  use  with  intensified  precipitation  (Kaushal  et  al.,  2014;

Huang et al., 2018). However, few studies reported how to quantify DIN export coefficients

for  individual  land-use  types,  which  may  be  likely  due  to  the  fact  that mosaic  land-use

patterns and interactions between fertilizers and hydrological processes exist in watersheds.

More attempts need to be made to estimating seasonal DIN export coefficients for each land

use in  Southeast  Asia,  Southeast  China, particularly  Southeast  China,  since this  area is  a

hotspot  of  global  DIN  export  associated  with rapid  urbanization and  changing  climate

variability (Chen et al., 2015; Shih et al., 2016; Huang et al., 2018). The emissions of N and

export of DIN in Southeast China is expected to be very high which may be controlled by

intensive land use change and rich precipitation. Besides, it remains challenging to evaluate N

export within a small creek with sparse data, which is a common situation in China (Zhang et

al., 2020). 

In this study, we developed a framework to quantify riverine dissolved inorganic nitrogen
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exports under changing land use pattern and hydrologic regime in a small creek  watershed,

Southeast China. The specific objectives of this study are: to (1) quantify riverine DIN export

according to  land-use patterns;  (2)  to  assess the impact  of  hydrological  regimes on those

export coefficients; and (3)  to  conduct scenario analysis to test different land management

strategies. This  study  can  shed  light  on  how  to  improve  riverine  N  management  in  a

catchment by considering the interactive effects of climate and land use changes.

2. Material and methods

2.1. Study area

The Shixi Creek catchment is located in the subtropical Asian monsoon climate and has a

drainage area of 38.17 km2 with four tributaries (Fig. 1). Approximately half of the catchment

is covered with forest and another third is used as orchards and farmland. Most built-up areas,

accounting for ~10% of the drainage area, are located close to the riparian zone of the Shixi

(Fig 1). Streamflow from the Shixi is the main water source for domestic, industrial,  and

agricultural activities for more than 20,000 local residents.

[Insert Fig. 1 here]

2.2. Analytical framework 

We  devised  a  framework  integrating  an  empirical  model  with  moving-window  and

elasticity  methods  to  apportion  riverine  DIN export  to  land-use  patterns  and  streamflow

regimes  using  three  steps:  (1)  data  processing;  (2)  model  evaluation;  and  (3)  model

application (Fig. 2). 

[Insert Fig. 2 here]

2.2.1. Data processing

Water samples were collected from 16 sites from March 2017 to February 2019 (Fig. 1).
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The samples were kept at 4°C and amounts of nitrate, nitrite, and ammonium were measured

using standard methods (SEPAC, 2002; Huang et al., 2018a) within 24 h of collection. To

minimize the influence of sediments, we filtered the water immediately. To quantify land use

and streamflow for ungauged sampling sites, we used Landsat-8 images from 2017. Land use

was classified into six categories: forest, built-up areas, orchards, farmland, bare lands, and

water. Four land-use categories were selected for model development (Table 1).

[Insert Table 1 here]

Discharge was simulated for each sampling site using a simplified conception model,

which was proposed by Jackson-Blake et  al.  (2017).  Streamflow measures were taken for

each sampling site with doppler flow meters (Greyline MantaRay 71915) in February and July

2017  to  calibrate  and  validate  the  model.  Meteorological  data  (i.e.,  precipitation  and

temperature)  were  obtained  from  the  China  Meteorological  Administration

(http://data.cma.cn/) to simulate the discharge of the Shixi Creek in 2017–2019.

2.2.2. Model evaluation

Riverine  DIN  load  or  yield  estimation  varies  with  sampling  frequency,  estimation

method,  substance  characteristics,  flow regimes,  and  watershed  characteristics  (Ferguson,

1987; Preston et al., 1989; Shih et al., 2016). Previous studies conclude that many methods

(e.g., linear interpolation, global mean, and flow weighted) can be used to estimate riverine

DIN export, with no single method clearly outperforming others (Huang et al., 2012; Shih et

al.,  2016).  Both  the  global  mean  and  flow-weighted  methods  could  be  applied  with  our

sample size. The global mean method multiplies the average concentration of all samples by

the total discharge within the period, hence this method does not account for hydrological
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responses (Huang et al., 2019). The flow-weighted method was therefore selected to estimate

annual riverine DIN export (Eq. 1). This method weighs concentration by discharge, so flux

equals annual discharge volume multiplied by flow-weighted DIN concentrations:

                          
(1)

where L is the river DIN load; Ci is the sample concentrations; Qi is the discharge at sampling 

time; k is the constant unit conversion factor; and Qt is the total discharge.

Empirical models, in contrast to physical models, usually require fewer data points for

calibration  (Delkash  et  al.,  2018).  For  riverine  N  export,  land-use  patterns  and  relative

proportions  are  important  factors.  The  Pollutant  Load  Application  (PLOAD)  model  was

developed by the US Environmental Protection Agency (EPA) and uses the empirical N yield

of each land-use type to estimate N load at the outlet (US EPA, 2001). However, this model

may not be applicable to different regional settings. Huang et al. (2012) and Shih et al. (2016)

inversed the PLOAD model, where riverine DIN export at the outlet was calculated as the

superimposition of different land uses:

                             (2)

where LA is the riverine DIN export normalized by drainage area; Fi is the proportion of land 

use in the catchment; R is runoff depth; and Ci is the concentration of DIN export for different

land uses. This model does not account for complex in-stream processes but can be applied 

when stream length is short and flow velocity is high (Huang et al., 2012), as was the case in 

our mountainous catchment.

Both the root mean square error (RMSE) and the normalized objective function (NOF)
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were used to evaluate model performance by matching the simulation results with field data

measured in 2017 (calibration) and 2018 (validation):

                     (3)

                             (4)

where Qobs, Qsim, Qave, and n are observed values, simulated values, the average of observed 

values, and the number of measurements, respectively. Model predictions are acceptable for 

NOF values from 0.0 to 1.0 (Gikas, 2014). We used Spearman’s correlation coefficient (ρ) to 

characterize relationships between land use and DIN export.

2.2.3. Model application

To identify inter-annual patterns in riverine DIN exports, a moving-window approach

was used to account for changing hydrological regimes. The moving-window method requires

the specification of a window length and overlap size between sequential windows (Gall et

al., 2001; Choi and Beven, 2007). A moving one-year window with a one-month overlap was

used to normalize data from March 2017 to February 2019.

Elasticity analysis was used to quantify the impacts of streamflow regimes on DIN 

export coefficients. Based on previous studies (Sankarasubramanian et al., 2001; Jiang et al., 

2014; Ervinia et al., 2019), the annual runoff elasticity of riverine DIN export for each land-

use pattern was described as:

                               (5)

where and  are the means of the DIN export coefficients and runoff depths, respectively,

and C and R are the DIN export coefficients and runoff depths at any given time. The median
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of the value was used to estimate overall elasticity (Jiang et al., 2014). After setting up the

model, the baseline riverine DIN export for the catchment was estimated using 2017 land use

with different streamflow regimes. These baseline output values were compared to outputs

from  land-use  policy  scenarios.  We  used  two  land-use  policy  scenarios:  (1) a  certain

proportion of forest is converted to agricultural land, and (2) a certain proportion of forest is

converted to built-up land. We assumed that the proportions of agricultural sub-classes would

remain unchanged, with a farmland to orchard ratio of 1:2.5.

3. Results

3.1 Linkage between land use and DIN export using empirical model

The distinct linkage between DIN concentration and land use pattern in this catchment

show necessity  of  determination  of  export  coefficient  for  individual  land.  Observed DIN

concentrations were positively correlated with the prevalence of orchards (ρ = 0.62; Fig. S1d)

and negatively correlated with the prevalence of forests (ρ = −0.63; Fig. S1a). DIN export

coefficients for each land use were estimated with Eq. 2. based on 2017 riverine DIN export

and runoff depth data, with 2018 data used for validation. DIN export coefficients for forests,

built-up areas, orchards, and farmland were 2.91 mg/L, 3.91 mg/L, 3.7 mg/L, and 9.16 mg/L,

respectively (Table 2). 

[Insert Table 2 here]

The  RMSE  and  NOF  calculated  for  the  calibration  period  were  399  and  0.15,

respectively. The RMSE and NOF calculated for the validation period were 600 and 0.44,

respectively (Table 3).

[Insert Table 3 here]
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3.2 Impact of hydrologic regime on DIN export

The variation in N exports from upstream to downstream in different land-use categories

is shown in Fig. S2. N exports in the mainstream decreased under low streamflow conditions

and increased under high flow conditions, indicating that DIN export was mainly controlled

by hydrological regime. We used the moving-window method to evaluate the annual DIN

export coefficients of various land-use patterns (Fig. 3). Farmland DIN export coefficients

were higher under all runoff conditions. The DIN export coefficients of forests and orchards

changed  slightly and  shared  the  same trend  under  the  same conditions.  The  DIN export

coefficients of built-up areas were high during wet years (i.e., with a runoff depth of more

than 600 mm) and low during dry years (i.e., with a runoff depth of less than 400 mm). 

[Insert Fig. 3 here]

The DIN export  coefficients  for forests,  built-up areas,  and orchards  were positively

elastic to runoff (Fig. 4). Though the DIN export coefficients of farmland were always high

(Fig. 3), the annual runoff elasticity of farmland was low (Fig. 4), with a median value close

to zero. The elasticity of built-up areas was the highest among the four land uses.

[Insert Fig. 4 here]

3.3 Pollution control scenario analysis

Based on the DIN export coefficients shown above, riverine DIN exports were estimated

under  different  land-use  policies  with  changing  streamflow  regimes.  Increases  in

anthropogenic land use were predicted to increase riverine DIN export (Fig. 5). DIN exports

in built-up areas were sensitive to changes in climatic conditions (i.e., dry and wet years; Fig.

5a).

[Insert Fig. 5 here]
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4. Discussion

4.1  DIN export associated with mosaic land-use patterns

Relationships between land use and water quality have been proposed in a number of

studies, with anthropogenic land use being negatively correlated to water quality and natural

land use being positively correlated to water quality (Huang et al., 2012; Huang et al., 2016;

Shih et al., 2016; Zhou et al., 2016; Liu et al., 2018). Our study confirmed these previously

noted  relationships  and  highlighted  the  capacity  of  export  coefficient  models  to  reliably

evaluate N export in a catchment (Huang et al., 2012; Shih et al., 2016; Lian et al., 2018). The

distinct  linkage  between  DIN concentration  and land use  pattern  in  this  catchment  show

necessity of determination of export coefficient for individual land (Fig. S1a). Agricultural

activities, which are often associated with fertilizer application, are regarded as the major non-

point source of riverine N exports,  coupled with reductions in riparian and wetland areas

(Huang et al., 2016; Li et al., 2019a). We observed the highest DIN export coefficients for

agricultural land use (e.g.,  farmland: 9.16 mg/L), indicating that riverine DIN export from

farmland (1,951 kg km-2 yr-1, derived from an annual discharge of 213 mm) accounted for

about half of the riverine DIN export in the catchment. To put this number in context, the

highest recorded riverine N exports from farmlands ranged from 400 to 3,265 kg km -2  yr-1

globally (Shields, 2008; Shih et al., 2016; Lian et al., 2018).

Although orchards are also a type of agricultural  land use,  their  riverine DIN export

coefficients were low compared to farmland and showed similar trends to those for forests

(Fig. 3). Leaching and runoff are two major N export routes in catchments  which may be

controlled by the different land cover  (Billy et al., 2013; de Girolamo et al., 2019).  Indeed,

although fertilizer was applied intensively to farmlands and orchards, trees grown in orchards
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tended to better retain N in the soil under the same hydrological regime(Fig. 3). 

The lowest riverine DIN export was found for forests (619 kg km -2 yr-1), though forests

can remove or retain N efficiently (Fig. S1). The similar observations were conducted across

China with annual deposition values of DIN as high as 1,318–1,521 kg km-2 yr-1 (Zhu et al.,

2015;  Zhang  et  al.,  2018)  and  the  natural  processes  in  N  cycle  in  wet  subtropical

environments(Shih et al., 2016).

4.2 Interactive impact from land use and hydrologic regime on riverine DIN export

It is difficult to evaluate the impacts of land use on riverine DIN export alone, since the

coupled  impacts  of  climate  and  associated  hydrological  variables  should  be  considered,

especially for long-term evaluations (Huang et al.,  2013b; Zhou et al.,  2017; Huang et al,

2018a; Ervinia et al., 2019). Hydrological regime is a holistic driver regulating material and

energy flows in a catchment (Billy et al., 2013; de Girolamo et al., 2019), and storm events

play an important role in N export. Increased discharge can drive N surplus in the soil, thus,

an increase in  N export  is  usually  observed in  wet  years,  especially  during storm events

(Kaushal et al., 2014; Huang et al., 2018).

The DIN export coefficient of built-up areas was linked to streamflow regime (Fig. 3),

indicating  it  is  necessary  to  evaluate  coefficients  under  changing  streamflow  regimes.

Compared with dry years, increased runoff in wet years can drive more DIN to the watershed

(Fig. 5). Biogeochemical transformation may also decrease with increased runoff (Gallo et al,

2015; Greaver et al.,  2016). Decreased N export can be observed mainstream in the Shixi

catchment  under  the low flow condition.  This  trend was less  visible  under  the high flow

condition (Fig. S2). The major components of riverine DIN found in this study were ammonia

nitrogen and nitrate nitrogen. The decreasing trend in ammonia nitrogen was more significant
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than that of nitrate nitrogen, since ammonia uptake is more preferential than nitrate. Thus,

ammonia nitrogen’s  fraction of  DIN declines  from the upstream to the downstream area.

Nitrate nitrogen could accumulate in the catchment to promote greater microbial ammonia

oxidation, as the ammonia oxidation rate is higher than the nitrite oxidation rate (Hong et al.,

2018). Compared with the effect from biogeochemical transformation, land use was the major

factor  driving  N  export  during  storm events  through  changing  headwater  variability  and

hydrological connectivity (Kaushal et al., 2014).

It has been suggested that external ammonia nitrogen could be exported in a catchment

when a river passes through an urban area as a result of sewage discharge (Simsek et al.,

2012). The mainstream of the Shixi catchment also passes through an urban area, but elevated

ammonia nitrogen was only observed in sites with high flow conditions (Fig. S2). In addition

to sewage discharge, N from impervious surfaces in the urban area could be a source of N.

Large amounts of N could be stored in impervious surfaces during the dry season or under

low flow condition and be flushed out during the wet season or under high flow conditions

(Kaushal  et  al.,  2008;  Kaushal  et  al.,  2014;  Huang  et  al.,  2019).  Our  elasticity  analysis

revealed that DIN export coefficients from urban areas were high during wet years and low

during dry years (Fig. 3).

Human-impacted areas tend to be more sensitive to inter-annual variability (including

climate  variability)  than  natural  land-use  types  (Jiang  et  al.,  2014;  Ervinia  et  al.,  2019).

Riverine DIN exports for built-up areas and farmland were more sensitive to streamflow than

those  for  forests.  However,  riverine  DIN  export  found  in  orchards  was  less  sensitive  to

streamflow change than that of forests (Fig. 4).  The slope of catchment could be a critical

factor inducing this phenomenon as poor water quality was observed in the high slope area (Li
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et al., 2019b).

4.3 Implications for watershed management

Our results can shed light on how to improve riverine N management in a catchment by

considering the interactive effects of climate and land use. Our results can also be used to

illustrate  the  evolution  of  biogeochemical  cycles  in  response  to  changes  in  land  use,

management, and policy (Kaushal et al., 2014; Huang et al., 2018). Higher levels of riverine

DIN  exports  were  observed  with  increased  runoff.  Such  amplification  is  proportional  to

anthropogenic N inputs associated with fertilizer applications and point-source pollution and

should be emphasized for nitrogen reduction strategies during wet years. Built-up land was

also a predominant factor in riverine DIN load (Shih et al., 2016). Built-up land can change

the apportionment of inter-annual N export,  which was negatively related to riverine DIN

export during dry years and positively related to riverine DIN exports during wet years. In

other words, changes in built-up area have the capacity to influence patterns of riverine DIN

exports in this catchment.

5. Conclusion

This  study  proposed  a  framework  to  assess  riverine  DIN  exports  associated  with

changing land-use patterns and hydrological regimes. The proportion of human-impacted land

use was negatively related to water quality. Though the DIN export coefficient of farmland

was the highest among the four types of land use investigated, urbanization contributed to

high runoff elasticity and high uncertainty. However, urbanized areas can rarely be converted

to  other  uses,  hence  more  attention  may  be  paid  to  agricultural  land  management.  The

framework devised in this study can be used as an effective tool for water management.
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