\(f_{8}\left(x\right)=\sum_{i=1}^{n}{-x_{i}\sin\left(\sqrt{\left|x_{i}\right|}\right)}\) |
30,100 |
[-500,500] |
-418.9829\(\times\)5 |
\(f_{9}\left(x\right)=\sum_{i=1}^{n}\left[x_{i}^{2}-10\cos\left(2\pi x_{i}\right)+10\right]\) |
30,100 |
[-5.12,5.12] |
0 |
\(f_{10}\left(x\right)=-20\exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}\right)-\exp\left(\frac{1}{n}\sum_{i=1}^{n}{\cos\left(2\pi x_{i}\right)}\right)+20+e\) |
30,100 |
[-32,32] |
0 |
\(f_{11}\left(x\right)=\frac{1}{4000}\sum_{i=1}^{n}{\cos\left(\frac{x_{i}}{\sqrt{i}}\right)+1}\) |
30,100 |
[-600,600] |
0 |
\[f_{12}\left(x\right)=\frac{\pi}{n}\left\{10\sin\left(\pi y_{1}\right)+\sum_{i=1}^{n-1}{\left(y_{i}-1\right)^{2}\left[1+10\sin^{2}\left(\pi y_{i+1}\right)\right]+\left(y_{n}-1\right)^{2}}\right\}+\sum_{i=1}^{n}{u\left(x_{i},10,100,4\right)}\]
\(y_{i}\)=1+\(\frac{x_{i}+1}{4}\)
|
30,100
|
[-50,50]
|
0
|
\(f_{13}\left(x\right)\)=0.1\(\left\{\sin^{2}\left(3\pi x_{1}\right)+\sum_{i=1}^{n}{\left(x_{i}-1\right)^{2}\left[1+\sin^{2}\left(3\pi x_{i}+1\right)\right]+\left(x_{n}-1\right)^{2}\left[1+\sin^{2}\left(2\pi x_{n}\right)\right]}\right\}+\sum_{i=1}^{n}{u\left(x_{i},5,100,4\right)}\)
|
30,100 |
[-50,50] |
0 |
\(f_{14}\left(x\right)=\left[e^{{-\sum_{i=1}^{n}\left(\frac{x_{i}}{\beta}\right)}^{2m}}-2e^{-\sum_{i=1}^{n}x_{i}^{2}}\right].\prod_{i}^{n}\cos^{2}x_{i},\ m=5\) |
30,100 |
[-20,20] |
-1 |
\(f_{15}\left(x\right)\)=\(\left\{\left[\sum_{i=1}^{n}\sin^{2}\left(x_{i}\right)\right]-\exp\left(-\sum_{i=1}^{n}x^{2}\right)\right\}.\exp\left[-\sum_{i=1}^{n}{\sin^{2}\sqrt{\left|x_{i}\right|}}\right]\)
|
30,100 |
[-10,10] |
-1 |