\(f_{1}\left(x\right)=\sum_{i=1}^{n}x_{i}^{2}\) |
50,100 |
[-100,100] |
0 |
\(f_{2}\left(x\right)=\sum_{i=1}^{n}{\left|x_{i}\right|+\prod_{i=1}^{n}\left|x_{i}\right|}\) |
50,100 |
[-10,10] |
0 |
\(f_{3}\left(x\right)=\sum_{i=1}^{n}{(\sum_{j-1}^{i}x_{j})}^{2}\) |
50,100 |
[-100,100] |
0 |
\({f_{4}\left(x\right)=\max}_{i}\left\{\left|x_{i}\right|,1\leq i\leq n\right\}\) |
50,100 |
[-100,100] |
0 |
\(f_{5}\left(x\right)=\sum_{i=1}^{n-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(x_{i}-1\right)^{2}\right]\) |
50,100 |
[-30,30] |
0 |
\(f_{6}\left(x\right)=\sum_{i=1}^{n}\left(\left[x_{i}+0.5\right]\right)^{2}\) |
50,100 |
[-100,100] |
0 |
\(f_{7}\left(x\right)=\sum_{i=1}^{n}{\text{ix}_{i}^{4}+\text{random}\left(0,1\right)}\) |
50,100 |
[-1.28,1.28] |
0 |