References
Abogadallah, G. M. (2010). Insights into the significance of
antioxidative defense under salt stress. Plant Signaling and
Behavior, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873.
Alfreider, A., Vogt, C., Hoffmann, D., & Babel, W. (2003). Diversity of
ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from
groundwater and aquifer microorganisms. Microbial Ecology, 45 ,
317-328. https://doi.org/10.1007/s00248-003-2004-9.
Ankati, S., & Podile, A. R. (2019). Metabolites in the rhizosphere
exudates of groundnut change during interaction with plant growth
promoting rhizobacteria in a strain-specific manner. Journal of
plant physiology, 243 , 153057.
https://doi.org/10.1016/j.jplph.2019.153057.
Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial
contributions to climate change through carbon cycle feedbacks.ISME Journal, 2(8), 805-814.
https://doi.org/10.1038/ismej.2008.58.
Bardgett, R. D., & van der Putten, W. (2014). Belowground biodiversity
and ecosystem functioning. Nature, 515(7528), 505-511.
https://doi.org/10.1038/nature13855.
Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil
biodiversity for agricultural sustainability. Agriculture,
Ecosystems & Environment, 121(3), 233-244.
https://doi.org/10.1016/j.agee.2006.12.013.
Carvalhais, L. C., Dennis, P. G., Badri, D. V., Kidd, B. N., Vivanco, J.
M., & Schenk, P. M. (2015). Linking jasmonic acid signaling, root
exudates, and rhizosphere microbiomes. Molecular Plant-Microbe
Interactions, 28(9), 1049-58.
https://doi.org/10.1094/MPMI-01-15-0016-R.
Deng, J. J., Zhang, Y. L., Hu, J. W., Jiao, J. G., Hu, F., Li, H. X., &
Zhang, S. X. (2017). Autotoxicity of phthalate esters in tobacco root
exudates: effects on seed germination and seedling growth.Pedosphere, 27(6), 1073-82.
https://doi.org/10.1016/S1002-0160(17)60374-6.
Diacono, M., & Montemurro, F. (2010). Long-term effects of organic
amendments on soil fertility. A review. Agronomy for Sustainable
Development, 30, 401-422. https://doi.org/10.1051/agro/2009040.
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P.
(2013). Carbon sequestration and the role of biological carbon
mitigation: a review. Renewable and Sustainable Energy Reviews,
21, 712-727. https://doi.org/10.1016/j.rser.2012.12.038.
Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests.Methods in Ecology and Evolution, 4, 336-344.
https://doi.org/10.1111/2041-210x.12018.
Gupta, R. K., Abrol, I. P., Finkl, C. W., Kirkham, M. B., Arbestain, M.
C., Macías, F., Chesworth, W., Germida, J. J., Loeppert, R. H., Cook, M.
G., Schwab, G. O., Konstankiewicz, K., Pytka, J., Oertli, J. J., Singer,
A., Edmonds, W. J., Feng, Y. C., Feldman, S. B., Shang, C., Zelazny, L.
W., Ford, P. W., & Clothier, B. E. (2008). Soil Pores. In: W. Chesworth
(Eds.), Encyclopedia of soil science. Encyclopedia of earth
sciences series. Dordrecht, Netherlands: Springer.
https://doi.org/10.1007/978-1-4020-3995-9548.
Gupta, R. S., Naushad, S., & Baker, S. (2015). Phylogenomic analyses
and molecular signatures for the class Halobacteria and its two major
clades: a proposal for division of the class Halobacteria into an
emended order Halobacteriales and two new orders,Haloferacales ord. nov. and Natrialbales ord. nov.,
containing the novel families Haloferacaceae fam. nov. andNatrialbaceae fam. nov. International Journal of Systematic
and Evolutionary Microbiology, 65(Pt 3), 1050-69.
https://doi.org/10.1099/ijs.0.070136-0.
Haldar, S., & Sengupta, S. (2015). Plant-microbe cross-talk in the
rhizosphere: insight and biotechnological potential. The Open
Microbiology Journal, 9, 1-7.
https://doi.org/10.2174/1874285801509010001.
Hartle, R. T., Fernandez, G. C. J., & Nowak, R. S. (2006). Horizontal
and vertical zones of influence for root systems of four Mojave Desert
shrubs. Journal of Arid Environments, 64(4), 586-603.
https://doi.org/10.1016/j.jaridenv.2005.06.021.
Holmes, D. E., Nevin, K. P., & Lovley, D. R. (2004). Comparison of16S rRNA , nifD, recA, gyrB, rpoB and fusAgenes within the family Geobacteraceae fam. nov.International Journal of Systematic Bacteriology, 54(Pt5),
1591-9. https://doi.org/10.1099/ijs.0.02958-0.
Jazaeri, M., Akhgar, A., Sarcheshmehpour, M., & Mohammad, A. H. (2016).
Bioresource efficacy of phosphate rock, sulfur and Thiobacillusinoculum in improving soil phosphorus availability. Communications
in Soil Science and Plant Analysis, 47(11), 1441-50.
https://doi.org/10.1080/00103624. 2016.1179750.
Jiang, S. Q., Yu, Y. N., Gao, R.W., Wang, H., Zhang, J., Li, R., Long,
X. H., Shen, Q. R., Chen, W., & Cai, F. (2019). High-throughput
absolute quantification sequencing reveals the effect of different
fertilizer applications on bacterial community in a tomato cultivated
coastal saline soil. Science of the Total Environment, 687(15),601-9. https://doi.org/10.1016/j.scitotenv.2019.06.105.
Keire, D. A., Anton, P., Faull, K. F., Ruth, E., Walsh, J. H., Chew, P.,
Quisimorol, D., Territo, M., & Reeve, J. R. (2001). Diethyl phthalata,
a chemotactic factor secreted by Helicobacter pylori. Journal of
Biological Chemistry, 276(52), 48847-53.
https://doi.org/10.1074/jbc.M109811200.
Killham, K. (1994). Soil ecology. Cambridge University Press, Cambridge.
Klann, J., McHenry, A., Montelongo, C., & Goffredi, S. K. (2016).
Decomposition of plant‐sourced carbon compounds by heterotrophicbetaproteobacteria isolated from a tropical Costa Rican
bromeliad. Microbiology Open, 5(3), 479-89.
https://doi.org/10.1002/mbo3.344.
Kraemer, S. A., Ramachandran, A., Colatriano, D., Lovejoy, C., & Walsh,
D. A. (2020). Diversity and biogeography of SAR11 bacteria from the
Arctic Ocean. ISME Journal, 14(12), 79-90.
https://doi.org/10.1038/s41396-019-0499-4.
Kuffner, M., Hai, B., Rattei, T., Melodelima, C., Schloter, M.,
Zechmeister-Boltenstern, S., Jandl, R., Schindlbacher, A., & Sessitsch,
A. (2012). Effects of season and experimental warming on the bacterial
community in a temperate mountain forest soil assessed by 16S rRNA gene
pyrosequencing. FEMS Microbiology Ecology, 82(3), 551-562.
https://doi.org/10.1111/j.1574-6941.2012.01420.x.
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R., & Fierer, N.
(2010). Effect of storage conditions on the assessment of bacterial
community structure in soil and human-associated samples. FEMS
Microbiology Letters, 307, 80-86.
https://doi.org/10.1111/j.1574-6968.2010.01965.x.
Li, N., Shao, T., Zhu, T. S., Long, X. H., Gao, X. M., Liu, Z. P., Shao,
H. B., & Rengel, Z. (2018). Vegetation succession influences soil
carbon sequestration in coastal alkali-saline soils in southeast China.Scientific Reports, 8, 9728.
https://doi.org/10.1038/s41598-018-28054-0.
Liu, S. L., Hou, X. Y., Yang, M., Cheng, F. Y., Coxixo, A., Wu, X., &
Zhang, Y. Q. (2018). Factors driving the relationships between
vegetation and soil properties in the Yellow River Delta, China.Catena, 165, 279-85.
https://doi.org/10.1016/j.catena.2018.02.004.
Liu, W. X., Hou, J. Y., Wang, Q. L., Yang, H. J., Luo, Y. M., &
Christie, P. (2015). Collection and analysis of root exudates ofFestuca arundinacea L. and their role in facilitating the
phytoremediation of petroleum-contaminated soil. Plant and Soil,
389(1-2), 109-119. https://doi.org/10.1007/s11104-014-2345-9.
Lodwig, E. M., Hosie, A. H. F., Bourdès, A., Findlay, K., Allaway, D.,
Karunakaran, R., Downie, J.A., & Poole, P. S. (2003). Amino-acid
cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.Nature, 422, 722-6. https://doi.org/10.1038/nature01527.
Long, X. H., Huang, Z. R., Huang, Y. L., Kang, Y. L., Zhang, J., & Liu,
Z. H. (2010). Response of two Jerusalem artichoke (Helianthus
tuberosus ) cultivars differing in tolerance to salt treatment.Pedosphere, 20(4), 515-524.
https://doi.org/10.1016/S1002-0160(10)60041-0.
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl,
D. A. (2019). Unit 5: Microbial Ecology and Environmental
Microbiology. Brock Biology of Microorganisms (15th ed.). San
Francisco: Pearson Education.
Mahinpey, N., Asghari, K., & Mirjafari, P. (2011). Biological
sequestration of carbon dioxide in geological formations. Chemical
Engineering Research and Design, 89(9), 1873-78.
https://doi.org/10.1016/j.cherd.2010.10.016.
Mao, W. B., Kang, S. Z., Wan, Y. S., Sun, Y. X., Li, X. H., & Wang, Y.
F. (2016). Yellow River sediment as a soil amendment for amelioration of
saline land in the Yellow River delta. Land Degradation &
Development, 27(6), 1595-1606. https://doi.org/10.1002/ldr.2323.
Marschner, H. (1995). Mineral nutrition of higher plants (2nd
ed.). London: Academic Press, pp. 889.
https://doi.org/10.1016/B978-0-12-473542-2.X5000-7.
Moulin, L., Munive, A., Dreyfus, B., & Boivin-Masson, C. (2001).
Nodulation of legumes by members of the β-subclass of proteobacteria.Nature, 411, 948-950. https://doi.org/10.1038/35082070.
Nevin, K. P., Holmes, D. E., Woodard, T. L., Covalla, S. F., & Lovley,
D. R. (2007). Reclassification of Trichlorobacter thiogenes asGeobacter thiogenes comb. nov. International Journal
of Systematic and Evolutionary Microbiology, 57(Pt3), 463-6.
https://doi.org/10.1099/ijs.0.63408-0.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019, September 01).
https://lib.ugent.be/CRAN/web/packages/vegan/index.html. Vegan 2.5-6:
Community Ecology Package.
Rodriguez, N. J. P., Muñera, L. M., & Peñuela, G. A. (2016). Root
exudates and plant secondary metabolites of different plants enhance
polychlorinated biphenyl degradation by rhizobacteria.Bioremediation Journal, 20(2), 108.
https://doi.org/10.1080/10889868.2015.1124065.
San, J. M. F., Caniego, F. J., & García, G. C. (2017). Lacunarity of
soil macropore space arrangement of CT images: Effect of soil management
and depth. Geoderma, 287, 80-89.
https://doi.org/10.1016/j.geoderma.2016.09.007.
Sedgwick, P. (2014). Spearman’s rank correlation coefficient. BMJ
Journals, 349(nov28 1), g7528. https://doi.org/10.1136/bmj.g7327.
Selesi, D., Pattis, I., Schmid, M., Kandeler, E., & Hartmann, A.
(2007). Quantification of bacterial RubisCO genes in soils bycbbL targeted real-time PCR. Journal of Microbiological
Methods, 69, 497-503. https://doi.org/10.1016/j.mimet.2007.03.002.
Shao, T. Y., Gu, X. Y., Zhu, T. S., Pan, X. T., Zhu, Y., Long, X. H.,
Shao, H. B., Liu, M. Q., & Rengel, Z. (2019). Industrial crop Jerusalem
artichoke restored coastal saline soil quality by reducing salt and
increasing diversity of bacterial community. Applied Soil Ecology,
138, 195-206. https://doi.org/10.1016/j.apsoil.2019.03.003.
Shao, T.Y., Zhao, J.J., Liu, A.H., Long, X.H., Shao, H.B., Liu, M.Q. &
Rengel, Z. (2020). Effects of soil physicochemical properties on
microbial communities in different ecological niches in coastal area.Applied Soil Ecology, 150, 103486.
https://doi.org/10.1016/j.apsoil.2019.103486
Shi, S. J., Richardson, A. E., Callaghan, M. O., Deangelis, K. M.,
Jones, E. E., Stewart, A., Firestone, M. K., & Condron, L. M. (2011).
Effects of selected root exudate components on soil bacterial
communities. FEMS Microbiology Ecology, 77(3), 600-610.
https://doi.org/10.1111/j.1574-6941.2011.01150.x
Shiraishi, A., Matsushita, N., & Hougetsu, T. (2010). Nodulation in
black locust by the Gammaproteobacteria Pseudomonas sp. and theBetaproteobacteria Burkholderia sp. Systematic and Applied
Microbiology, 33(5), 269-274.
https://doi.org/10.1016/j.syapm.2010.04.005.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious
environmental issue and plant growth promoting bacteria as one of the
tools for its alleviation. Saudi Journal of Biological Sciences,
22(2), 123-131. doi:10.1016/j.sjbs.2014.12.001.
Sorokin, D. Y., Muntyan, M. S., Panteleeva, A. N., & Muyzer, G. (2012).Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic,
sulfur-oxidizing Gammaproteobacterium from alkaline habitats.International Journal of Systematic and Evolutionary Microbiology,
62(Pt8), 1884-9. https://doi.org/10.1099/ijs.0.034504-0.
Stephan, D. J., Shockey, R. E., Moe, T. A., & Dorn, R. (2002). Carbon
dioxide sequestering using microalgal systems. Grand Forks: University
of North Dakota. https://doi.org/10.2172/882000.
Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial
allelopathies in the root zone: The management of soil quality and plant
disease with rhizobacteria. Soil and Tillage Research, 72(2),107-23. https://doi.org/10.1016/S0167-1987(03)00082-5.
Tatangelo, V., Franzetti, A., Gandolfi, I., Bestetti, G., & Ambrosini,
R. (2014). Effect of preservation method on the assessment of bacterial
community structure in soil and water samples. FEMS Microbiology
Letters, 356, 32-38. https://doi.org/10.1111/1574-6968.12475.
Tourova, T. P., Kovaleva, O. L., Sorokin, D. Y., & Muyzer, G. (2010).
Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional
marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in
hypersaline habitats. Microbiology, 156(Pt7), 2016-25.
https://doi.org/10.1099/mic.0.034603-0.
van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the
rhizosphere: tapping into belowground chemical communication.Trends in Plant Science, 21(3), 256-265.
https://doi.org/10.1016/j.tplants.2016.01.008.
van der Wielen, P. W. (2006). Diversity of ribulose-1,5-bisphosphate
carboxylase/oxygenase large-subunit genes in the
MgCl2-dominated deep hypersaline anoxic basin discovery.FEMS Microbiology Letters, 259(2), 326-331.
https://doi.org/10.1111/j.1574-6968.2006.00284.x.
Vandamme, P., & Coenye, T. (2004). Taxonomy of the genusCupriavidus : a tale of lost and found. International
Journal of Systematic and Evolutionary Microbiology, 54(Pt6), 2285-9.
https://doi.org/10.1099/00207713-39-3-319.
Videmsek, U., Hagn, A., Suhadolc, M., Radl, V., Knicker, H., Schloter,
M., & Vodnik, D. (2009). Abundance and diversity of
CO2-fixing bacteria in grassland soils close to natural
carbon dioxide springs. Microbial Ecology, 58(1), 1-9.
https://doi.org/10.1007/s00248-008-9442-3.
Viprey, V., Rosenthal, A., Broughton, W. J., & Perret, X. (2000).
Genetic snapshots of the rhizobium species NGR234 genome.Genome Biology, 1(6), research0014.1-17.
https://doi.org/10.1186/gb-2000-1-6-research0014.
Vives-Peris, V., de Ollas, V. C., Gómez-Cadenas, A., & Perez-Clemente,
R. M. (2020). Root exudates: from plant to rhizosphere and beyond.Plant Cell Reports, 39(3), 3-17.
https://doi.org/10.1007/s00299-019-02447-5.
Wang, B., Zhang, G. H., Yang, Y. F., Li, P. P., & Liu, J. X. (2018).
Response of soil detachment capacity to plant root and soil properties
in typical grasslands on the Loess Plateau. Agriculture,
Ecosystems & Environment, 266, 68-75.
https://doi.org/10.1016/j.agee.2018.07.016
Xia, J. B., Ren, J. Y., Zhang, S. Y., Wang, Y. H., & Fang, Y. (2019).
Forest and grass composite patterns improve the soil quality in the
coastal saline-alkali land of the Yellow River Delta, China.Geoderma, 349, 25-35.
https://doi.org/10.1016/j.geoderma.2019.04.032.
Xu, Z. K., Shao, T. Y., Lv, Z. X., Yue, Y., Liu, A. H., Long, X. H.,
Zhou, Z. S., Gao, X. M., & Rengel, Z. (2020). The mechanisms of
improving coastal saline soils by planting rice. Science of the
Total Environment, 703, 135529.
https://doi.org/10.1016/j.scitotenv.2019.135529.
Yu, P.J., Liu, S.W., Yang, H.T., Fan, G.H., & Zhou, D.W., 2018.
Short-term land use conversions influence the profile distribution of
soil salinity and sodicity in northeastern. Ecological Indicators,
88, 79-87. https://doi.org/10.1016/j.ecolind.2018.01.017.
Yue, Y., Shao, T. Y., Long, X. H., He, T. F., Gao, X. M., Zhou, Z. S.,
Liu, Z. P., & Rengel, Z. (2020). Microbiome structure and function in
rhizosphere of Jerusalem artichoke grown in saline land. Science
of the Total Environment, 724, 138259.
https://doi.org/10.1016/j.scitotenv.2020.138259.
Zavarzina, D. G., Kolganova, T. V., Boulygina, E. S., Kostrikina, N. A.,
Turova, T. P., & Zavarzin, G. A. (2006). Geoalkalibacter
ferrihydriticus gen. nov. sp. nov., the first alkaliphilic
representative of the family Geobacteraceae , isolated from a soda
lake. Microbiology, 75(6), 775-85.
https://doi.org/10.1134/S0026261706060099.
Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi,
S. J., Cho, H. J., Karaoz, U., Loqué, D., Bowen, B. P., Firestone, M.
K., Northen, T. R., & Brodie, E. L. (2018). Dynamic root exudate
chemistry and microbial substrate preferences drive patterns in
rhizosphere microbial community assembly. Nature Microbiology, 3,470-480. https://doi.org/10.1038/s41564-018-0129-3
Zhang, X. Z., Li, T. X., & Wang, Y. D. (2007). Relationship between
growth environment and root exudates of plants: A review. Chinese
Journal of Soil Science, 38(4), 785-9. (Chinese)
https://doi.org/10.3969/j.issn.1674-5906.2000.01.017.
Zhou, J. Z., Xue, K., Xie, J. P., Deng, Y., Wu, L. Y., Cheng, X. L.,
Fei, S. F., Deng, S. P., He, Z. L., Van Nostrand, J. D., Luo, Y. Q.
(2012). Microbial mediation of carbon-cycle feedbacks to climate
warming. Nature Climate Change, 2, 106-110.
https://doi.org/10.1038/nclimate1331.