References
Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling and Behavior, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873.
Alfreider, A., Vogt, C., Hoffmann, D., & Babel, W. (2003). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microbial Ecology, 45 , 317-328. https://doi.org/10.1007/s00248-003-2004-9.
Ankati, S., & Podile, A. R. (2019). Metabolites in the rhizosphere exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner. Journal of plant physiology, 243 , 153057. https://doi.org/10.1016/j.jplph.2019.153057.
Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks.ISME Journal, 2(8), 805-814. https://doi.org/10.1038/ismej.2008.58.
Bardgett, R. D., & van der Putten, W. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505-511. https://doi.org/10.1038/nature13855.
Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233-244. https://doi.org/10.1016/j.agee.2006.12.013.
Carvalhais, L. C., Dennis, P. G., Badri, D. V., Kidd, B. N., Vivanco, J. M., & Schenk, P. M. (2015). Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions, 28(9), 1049-58. https://doi.org/10.1094/MPMI-01-15-0016-R.
Deng, J. J., Zhang, Y. L., Hu, J. W., Jiao, J. G., Hu, F., Li, H. X., & Zhang, S. X. (2017). Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth.Pedosphere, 27(6), 1073-82. https://doi.org/10.1016/S1002-0160(17)60374-6.
Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30, 401-422. https://doi.org/10.1051/agro/2009040.
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: a review. Renewable and Sustainable Energy Reviews, 21, 712-727. https://doi.org/10.1016/j.rser.2012.12.038.
Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests.Methods in Ecology and Evolution, 4, 336-344. https://doi.org/10.1111/2041-210x.12018.
Gupta, R. K., Abrol, I. P., Finkl, C. W., Kirkham, M. B., Arbestain, M. C., Macías, F., Chesworth, W., Germida, J. J., Loeppert, R. H., Cook, M. G., Schwab, G. O., Konstankiewicz, K., Pytka, J., Oertli, J. J., Singer, A., Edmonds, W. J., Feng, Y. C., Feldman, S. B., Shang, C., Zelazny, L. W., Ford, P. W., & Clothier, B. E. (2008). Soil Pores. In: W. Chesworth (Eds.), Encyclopedia of soil science. Encyclopedia of earth sciences series. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-3995-9548.
Gupta, R. S., Naushad, S., & Baker, S. (2015). Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders,Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. andNatrialbaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 65(Pt 3), 1050-69. https://doi.org/10.1099/ijs.0.070136-0.
Haldar, S., & Sengupta, S. (2015). Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. The Open Microbiology Journal, 9, 1-7. https://doi.org/10.2174/1874285801509010001.
Hartle, R. T., Fernandez, G. C. J., & Nowak, R. S. (2006). Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs. Journal of Arid Environments, 64(4), 586-603. https://doi.org/10.1016/j.jaridenv.2005.06.021.
Holmes, D. E., Nevin, K. P., & Lovley, D. R. (2004). Comparison of16S rRNA , nifD, recA, gyrB, rpoB and fusAgenes within the family Geobacteraceae fam. nov.International Journal of Systematic Bacteriology, 54(Pt5), 1591-9. https://doi.org/10.1099/ijs.0.02958-0.
Jazaeri, M., Akhgar, A., Sarcheshmehpour, M., & Mohammad, A. H. (2016). Bioresource efficacy of phosphate rock, sulfur and Thiobacillusinoculum in improving soil phosphorus availability. Communications in Soil Science and Plant Analysis, 47(11), 1441-50. https://doi.org/10.1080/00103624. 2016.1179750.
Jiang, S. Q., Yu, Y. N., Gao, R.W., Wang, H., Zhang, J., Li, R., Long, X. H., Shen, Q. R., Chen, W., & Cai, F. (2019). High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil. Science of the Total Environment, 687(15),601-9. https://doi.org/10.1016/j.scitotenv.2019.06.105.
Keire, D. A., Anton, P., Faull, K. F., Ruth, E., Walsh, J. H., Chew, P., Quisimorol, D., Territo, M., & Reeve, J. R. (2001). Diethyl phthalata, a chemotactic factor secreted by Helicobacter pylori. Journal of Biological Chemistry, 276(52), 48847-53. https://doi.org/10.1074/jbc.M109811200.
Killham, K. (1994). Soil ecology. Cambridge University Press, Cambridge.
Klann, J., McHenry, A., Montelongo, C., & Goffredi, S. K. (2016). Decomposition of plant‐sourced carbon compounds by heterotrophicbetaproteobacteria isolated from a tropical Costa Rican bromeliad. Microbiology Open, 5(3), 479-89. https://doi.org/10.1002/mbo3.344.
Kraemer, S. A., Ramachandran, A., Colatriano, D., Lovejoy, C., & Walsh, D. A. (2020). Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. ISME Journal, 14(12), 79-90. https://doi.org/10.1038/s41396-019-0499-4.
Kuffner, M., Hai, B., Rattei, T., Melodelima, C., Schloter, M., Zechmeister-Boltenstern, S., Jandl, R., Schindlbacher, A., & Sessitsch, A. (2012). Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiology Ecology, 82(3), 551-562. https://doi.org/10.1111/j.1574-6941.2012.01420.x.
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R., & Fierer, N. (2010). Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiology Letters, 307, 80-86. https://doi.org/10.1111/j.1574-6968.2010.01965.x.
Li, N., Shao, T., Zhu, T. S., Long, X. H., Gao, X. M., Liu, Z. P., Shao, H. B., & Rengel, Z. (2018). Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China.Scientific Reports, 8, 9728. https://doi.org/10.1038/s41598-018-28054-0.
Liu, S. L., Hou, X. Y., Yang, M., Cheng, F. Y., Coxixo, A., Wu, X., & Zhang, Y. Q. (2018). Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China.Catena, 165, 279-85. https://doi.org/10.1016/j.catena.2018.02.004.
Liu, W. X., Hou, J. Y., Wang, Q. L., Yang, H. J., Luo, Y. M., & Christie, P. (2015). Collection and analysis of root exudates ofFestuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant and Soil, 389(1-2), 109-119. https://doi.org/10.1007/s11104-014-2345-9.
Lodwig, E. M., Hosie, A. H. F., Bourdès, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J.A., & Poole, P. S. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.Nature, 422, 722-6. https://doi.org/10.1038/nature01527.
Long, X. H., Huang, Z. R., Huang, Y. L., Kang, Y. L., Zhang, J., & Liu, Z. H. (2010). Response of two Jerusalem artichoke (Helianthus tuberosus ) cultivars differing in tolerance to salt treatment.Pedosphere, 20(4), 515-524. https://doi.org/10.1016/S1002-0160(10)60041-0.
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2019). Unit 5: Microbial Ecology and Environmental Microbiology. Brock Biology of Microorganisms (15th ed.). San Francisco: Pearson Education.
Mahinpey, N., Asghari, K., & Mirjafari, P. (2011). Biological sequestration of carbon dioxide in geological formations. Chemical Engineering Research and Design, 89(9), 1873-78. https://doi.org/10.1016/j.cherd.2010.10.016.
Mao, W. B., Kang, S. Z., Wan, Y. S., Sun, Y. X., Li, X. H., & Wang, Y. F. (2016). Yellow River sediment as a soil amendment for amelioration of saline land in the Yellow River delta. Land Degradation & Development, 27(6), 1595-1606. https://doi.org/10.1002/ldr.2323.
Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press, pp. 889. https://doi.org/10.1016/B978-0-12-473542-2.X5000-7.
Moulin, L., Munive, A., Dreyfus, B., & Boivin-Masson, C. (2001). Nodulation of legumes by members of the β-subclass of proteobacteria.Nature, 411, 948-950. https://doi.org/10.1038/35082070.
Nevin, K. P., Holmes, D. E., Woodard, T. L., Covalla, S. F., & Lovley, D. R. (2007). Reclassification of Trichlorobacter thiogenes asGeobacter thiogenes comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(Pt3), 463-6. https://doi.org/10.1099/ijs.0.63408-0.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019, September 01). https://lib.ugent.be/CRAN/web/packages/vegan/index.html. Vegan 2.5-6: Community Ecology Package.
Rodriguez, N. J. P., Muñera, L. M., & Peñuela, G. A. (2016). Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria.Bioremediation Journal, 20(2), 108. https://doi.org/10.1080/10889868.2015.1124065.
San, J. M. F., Caniego, F. J., & García, G. C. (2017). Lacunarity of soil macropore space arrangement of CT images: Effect of soil management and depth. Geoderma, 287, 80-89. https://doi.org/10.1016/j.geoderma.2016.09.007.
Sedgwick, P. (2014). Spearman’s rank correlation coefficient. BMJ Journals, 349(nov28 1), g7528. https://doi.org/10.1136/bmj.g7327.
Selesi, D., Pattis, I., Schmid, M., Kandeler, E., & Hartmann, A. (2007). Quantification of bacterial RubisCO genes in soils bycbbL targeted real-time PCR. Journal of Microbiological Methods, 69, 497-503. https://doi.org/10.1016/j.mimet.2007.03.002.
Shao, T. Y., Gu, X. Y., Zhu, T. S., Pan, X. T., Zhu, Y., Long, X. H., Shao, H. B., Liu, M. Q., & Rengel, Z. (2019). Industrial crop Jerusalem artichoke restored coastal saline soil quality by reducing salt and increasing diversity of bacterial community. Applied Soil Ecology, 138, 195-206. https://doi.org/10.1016/j.apsoil.2019.03.003.
Shao, T.Y., Zhao, J.J., Liu, A.H., Long, X.H., Shao, H.B., Liu, M.Q. & Rengel, Z. (2020). Effects of soil physicochemical properties on microbial communities in different ecological niches in coastal area.Applied Soil Ecology, 150, 103486. https://doi.org/10.1016/j.apsoil.2019.103486
Shi, S. J., Richardson, A. E., Callaghan, M. O., Deangelis, K. M., Jones, E. E., Stewart, A., Firestone, M. K., & Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77(3), 600-610. https://doi.org/10.1111/j.1574-6941.2011.01150.x
Shiraishi, A., Matsushita, N., & Hougetsu, T. (2010). Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and theBetaproteobacteria Burkholderia sp. Systematic and Applied Microbiology, 33(5), 269-274. https://doi.org/10.1016/j.syapm.2010.04.005.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. doi:10.1016/j.sjbs.2014.12.001.
Sorokin, D. Y., Muntyan, M. S., Panteleeva, A. N., & Muyzer, G. (2012).Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing Gammaproteobacterium from alkaline habitats.International Journal of Systematic and Evolutionary Microbiology, 62(Pt8), 1884-9. https://doi.org/10.1099/ijs.0.034504-0.
Stephan, D. J., Shockey, R. E., Moe, T. A., & Dorn, R. (2002). Carbon dioxide sequestering using microalgal systems. Grand Forks: University of North Dakota. https://doi.org/10.2172/882000.
Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72(2),107-23. https://doi.org/10.1016/S0167-1987(03)00082-5.
Tatangelo, V., Franzetti, A., Gandolfi, I., Bestetti, G., & Ambrosini, R. (2014). Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiology Letters, 356, 32-38. https://doi.org/10.1111/1574-6968.12475.
Tourova, T. P., Kovaleva, O. L., Sorokin, D. Y., & Muyzer, G. (2010). Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology, 156(Pt7), 2016-25. https://doi.org/10.1099/mic.0.034603-0.
van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the rhizosphere: tapping into belowground chemical communication.Trends in Plant Science, 21(3), 256-265. https://doi.org/10.1016/j.tplants.2016.01.008.
van der Wielen, P. W. (2006). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery.FEMS Microbiology Letters, 259(2), 326-331. https://doi.org/10.1111/j.1574-6968.2006.00284.x.
Vandamme, P., & Coenye, T. (2004). Taxonomy of the genusCupriavidus : a tale of lost and found. International Journal of Systematic and Evolutionary Microbiology, 54(Pt6), 2285-9. https://doi.org/10.1099/00207713-39-3-319.
Videmsek, U., Hagn, A., Suhadolc, M., Radl, V., Knicker, H., Schloter, M., & Vodnik, D. (2009). Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microbial Ecology, 58(1), 1-9. https://doi.org/10.1007/s00248-008-9442-3.
Viprey, V., Rosenthal, A., Broughton, W. J., & Perret, X. (2000). Genetic snapshots of the rhizobium species NGR234 genome.Genome Biology, 1(6), research0014.1-17. https://doi.org/10.1186/gb-2000-1-6-research0014.
Vives-Peris, V., de Ollas, V. C., Gómez-Cadenas, A., & Perez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond.Plant Cell Reports, 39(3), 3-17. https://doi.org/10.1007/s00299-019-02447-5.
Wang, B., Zhang, G. H., Yang, Y. F., Li, P. P., & Liu, J. X. (2018). Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agriculture, Ecosystems & Environment, 266, 68-75. https://doi.org/10.1016/j.agee.2018.07.016
Xia, J. B., Ren, J. Y., Zhang, S. Y., Wang, Y. H., & Fang, Y. (2019). Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China.Geoderma, 349, 25-35. https://doi.org/10.1016/j.geoderma.2019.04.032.
Xu, Z. K., Shao, T. Y., Lv, Z. X., Yue, Y., Liu, A. H., Long, X. H., Zhou, Z. S., Gao, X. M., & Rengel, Z. (2020). The mechanisms of improving coastal saline soils by planting rice. Science of the Total Environment, 703, 135529. https://doi.org/10.1016/j.scitotenv.2019.135529.
Yu, P.J., Liu, S.W., Yang, H.T., Fan, G.H., & Zhou, D.W., 2018. Short-term land use conversions influence the profile distribution of soil salinity and sodicity in northeastern. Ecological Indicators, 88, 79-87. https://doi.org/10.1016/j.ecolind.2018.01.017.
Yue, Y., Shao, T. Y., Long, X. H., He, T. F., Gao, X. M., Zhou, Z. S., Liu, Z. P., & Rengel, Z. (2020). Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land. Science of the Total Environment, 724, 138259. https://doi.org/10.1016/j.scitotenv.2020.138259.
Zavarzina, D. G., Kolganova, T. V., Boulygina, E. S., Kostrikina, N. A., Turova, T. P., & Zavarzin, G. A. (2006). Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae , isolated from a soda lake. Microbiology, 75(6), 775-85. https://doi.org/10.1134/S0026261706060099.
Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S. J., Cho, H. J., Karaoz, U., Loqué, D., Bowen, B. P., Firestone, M. K., Northen, T. R., & Brodie, E. L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3,470-480. https://doi.org/10.1038/s41564-018-0129-3
Zhang, X. Z., Li, T. X., & Wang, Y. D. (2007). Relationship between growth environment and root exudates of plants: A review. Chinese Journal of Soil Science, 38(4), 785-9. (Chinese) https://doi.org/10.3969/j.issn.1674-5906.2000.01.017.
Zhou, J. Z., Xue, K., Xie, J. P., Deng, Y., Wu, L. Y., Cheng, X. L., Fei, S. F., Deng, S. P., He, Z. L., Van Nostrand, J. D., Luo, Y. Q. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110. https://doi.org/10.1038/nclimate1331.