References
  1. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C 2015, 25, 1–29.
  2. Khaki, M. R. D.; Shafeeyan, M. S.; Raman, A. A. A.; Daud, W. M. A. Application of doped photocatalysts for organic pollutant degradation-a review. J. Environ. Manage. 2017, 198, 78–94.
  3. Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. The role of lanthanides in TiO2-based photocatalysis: a review. Appl. Catal. B 2018, 233, 301–317.
  4. Chen, D.; Cheng, Y.; Zhou, N.; Chen. P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Cleaner Prod. 2020, 268, 121725.
  5. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.
  6. Kumaravel V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl. Catal. B 2019, 244, 1021–1064.
  7. Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K. Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobiol. A 2001, 141, 209–217.
  8. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.
  9. Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019.
  10. Li, Z.; Shen, W.; He, W.; Zu, X. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue. J. Hazard. Mater. 2008, 155, 590–594.
  11. Ganesh, I.; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham. G.; Sundararajan, G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 2012, 2012, 127326.
  12. Sakatani, Y.; Ando, H.; Okusako, K.; Koike, H.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Res. 2004, 19, 2100–2108.
  13. Xing, M.; Wu, Y.; Zhang, J.; Chen, F. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO. Nanoscale 2010, 2, 1233–1239.
  14. Khan, M.; Gul, S. R.; Li, J.; Cao, W. Photocatalytic degradation of methylene blue by hydrothermally prepared Ag-doped TiO2 under visible light irradiations. JOM 2015, 67, 2104–2107.
  15. Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516.
  16. Fujii, H.; Inata, K.; Ohtaki, M.; Eguchi, K.; Arai, H. Synthesis of TiO2/CdS nanocomposite via TiO2coating on CdS nanoparticles by compartmentalized hydrolysis of Ti alkoxide. J. Mater. Sci. 2001, 36, 527–532.
  17. Ismail, A. A.; Lars, R.; Bahnemann, D. W. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2nanocomposites. Chem. Phys. Chem. 2011, 12, 982–991.
  18. Chainarong, S.; Niyomwas, S.; Sikong, L.; Pavasupree, S. The effect of molar ratio of TiO2/WO3 nanocomposites on visible light prepared by hydrothermal method. Adv. Mater. Res. 2012, 488–489, 572–577.
  19. Hahlin, M.; Johansson, E. M. J.; Plogmaker, S.; Odelius, M.; Hagberg, D. P.; Sun, L.; Siegbahn, H.; Rensmo, H. Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Phys. Chem. Chem. Phys. 2010, 12, 1507–1517.
  20. Nishikawa, M.; Sakamoto, H.; Nosaka, Y. Reinvestigation of the photocatalytic reaction mechanism for Pt-complex-modified TiO2 under visible light irradiation by means of ESR spectroscopy and chemiluminescence photometry. J. Phys. Chem. A 2012, 116, 9674–9679.
  21. Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679.
  22. Tayade, R. J.; Kulkarni, R. G.; Jasra, R. V. Enhanced photocatalytic activity of TiO2-coated NaY and HY zeolites for the degradation of methylene blue in water. Ind. Eng. Chem. Res. 2007, 46, 369–376.
  23. Zhou, M.; Yu, J.; Cheng, B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J. Hazard. Mater. 2006, 137, 1838–1847.
  24. Kim, D. H.; Lee, K. S.; Kim, Y. S.; Chung, Y. C.; Kim, S. J. Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 2006, 89, 515–518.
  25. Jia, C.; Fan, W.; Yang, F.; Zhao, X.; Sun, H.; Li, P.; Liu, L. A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: correlation between surface structure and photocatalytic properties. Langmuir 2013, 29, 7025–7037.
  26. Hebenstreit, W.; Ruzycki, N.; Herman, G. S.; Gao, Y.; Diebold, U. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B 2000, 62, R16334–R16336.
  27. Labat, F.; Baranek, P.; Adamo, C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces:  An ab initio investigation. J. Chem.Theory Comput. 2008, 4, 341–352.
  28. Ma, X. G.; Tang, C. Q.; Huang, J. Q.; Hu, L. F.; Xue, X.; Zhou, W. B. First-principle calculations on the geometry and relaxation structure of anatase TiO2 (101) surface. Chinese J. Phys. 2006, 55, 4208–4213.
  29. Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.
  30. Perdew, J. P. Burke, K. Ernzerhof, M. Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868.
  31. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 1990, 41, 7892–7895.
  32. Yu, W.; Zhang, J.; Peng, T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B 2016, 181, 220–227.
  33. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J. Photochem. 2015, 25, 1–29.
  34. Yu, J.; Zhou, P.; Li, Q. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Phys. Chem. Chem. Phys. 2013, 15, 12040–12047.
  35. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W.; Smith, J. V. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639–3646.
  36. Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J. Electronic and optical properties of anatase TiO2. Phys. Rev. B 2000, 61, 7459–7465.
  37. Boschloo, G. K.; Goossens, A.; Schoonman, J. Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition. J. Electrochem. Soc. 1997, 144, 1311–1317.
  38. Yang, Y.; Feng, Q.; Wang, W.; Wang, Y. First-principle study on the electronic and optical properties of the anatase TiO2(101) surface. J. Semicond. 2013, 34, 073004-1–073004-5.